PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

Spring 1994

Part I. Do three (3) of these problems.

I.1. Let

$$f_n(x) = \begin{cases} n & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} < x < 1. \end{cases}$$

- (a) Find $\lim_{n\to\infty} f_n(x)$.
- (b) Find $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
- (c) Is there a function $g(x) \in L^1(0,1)$ such that $g(x) \ge f_n(x)$ for all n? Explain briefly.

I.2. Let $f_n(x)$ be a sequence of functions on \mathbb{R} with the property that for every fixed $x \in \mathbb{R}$ and every subsequence f_{n_k} of f_n , $f_{n_k}(x)$ has a convergent subsequence. Let S be a countable subset of \mathbb{R} . Show that there exists a subsequence of f_n that converges at all points of S.

I.3. Show that given δ , with $0 < \delta < 1$, there exists a set $E_{\delta} \subset [0, 1]$, which is perfect [i.e., closed and such that every point of the set is a limit point of the set], nowhere dense and $|E_{\delta}| = 1 - \delta$.

Hint: The construction is similar to the construction of the Cantor set, except that at the k-th stahe each interval removed has lenght δ times the length of the intervals used in Cantors construction.

I.4. If the *iterated* integrals

$$\int_0^1 \left(\int_0^1 f(x,y) \, dy \right) dx \quad \text{and} \quad \int_0^1 \left(\int_0^1 f(x,y) \, dx \right) dy$$

exists as finite integrals and are equal to each other, does it necessarily follow that the multiple integral

$$\iint f(x,y)\,dx\,dy$$

exists as a finite integral on the square? Cite a theorem, or provide a counterexample to verify a negative response.

Part II. Do two (2) of these problems.

II.1. Let $f \ge 0$ in \mathbb{R} , and set

$$g(x) = \sum_{n = -\infty}^{\infty} f(x+n)$$

Show that if $g \in L(\mathbb{R})$ then f = 0 a.e.

II.2. For a given function f on [a, b], suppose that there is some $M \ge 0$ such that for all distinct x, y

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M.$$

Explain why

- (a) f must be measurable.
- (b) f must be differentiable a.e. in [a, b].

II.3. Let f be a continuous function in [-1, 2]. Given x, with $0 \le x \le 1$, and $n \ge 1$ define the sequence of functions

$$f_n(x) = \frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(t) dt.$$

Show that f_n is continuous in [0, 1] and f_n converges uniformly to f in [0, 1]