Real Analysis Ph.D. Qualifying Exam Temple University August 26, 2011

Part I. (Do 3 problems)

- 1. Let $f \in C^1(\mathbb{R})$ with $|f'(x)| \le M$ for all x. Prove that
 - (a) if $g \in BV[a, b]$, then the composition $f \circ g$ is of bounded variation in [a, b].
 - (b) if *g* is absolutely continuous on [a, b], then $f \circ g$ is absolutely continuous on [a, b].
- 2. Consider the sequence $f_n(x) = n^2 x e^{-nx^2}$ on $[1, +\infty)$. Prove that
 - (a) f_n converges uniformly on $[1, +\infty)$;
 - (b) f_n converges in measure on $[1, +\infty)$;
 - (c) $\int_1^\infty f_n(x) dx \to 0 \text{ as } n \to \infty.$
- 3. Let $f \in L^{\infty}(\mathbb{R})$. The essential range of f is defined by

$$R_f = \{y \in \mathbb{R} : |\{x \in \mathbb{R} : |f(x) - y| < \epsilon\}| > 0, \text{ for all } \epsilon > 0\}.$$

Prove that

- (a) $R_f \subseteq [-\|f\|_{\infty}, +\|f\|_{\infty}];$
- (b) R_f is compact.

4. Let $f(x, y) = \frac{x - y}{(x + y)^3}$. Is $f \in L^1([1, \infty) \times [1, \infty))$? Justify your answer.

Part II. (Do 2 problems)

1. Let f, f_k be measurable functions in \mathbb{R} such that $f_k \to f$ a.e. Suppose there exist $g, g_k \in L^1(\mathbb{R})$ such that $|f_k| \leq g_k, g_k \to g$, a.e., and $\lim_{k\to\infty} \int_{\mathbb{R}} g_k = \int_{\mathbb{R}} g$. Prove that $\lim_{k\to\infty} \int_{\mathbb{R}} |f_k - f| = 0$.

Hint: $|f_k - f| \le g_k + |f|$, write $\int_{\mathbb{R}} \liminf_{k \to \infty} (g_k + |f| - |f_k - f|) dx$ and use Fatou's Lemma.

- 2. Let f(t, x) be a function defined in $(a, b) \times \mathbb{R}$ such that:
 - for each fixed $t \in (a, b)$ the function $f(t, \cdot)$ is measurable;
 - for each fixed $x \in \mathbb{R}$ the function $f(\cdot, x)$ is continuous.

Prove that the function $g(x) = \sup_{t \in (a,b)} f(t,x)$ is measurable.

3. Let $f \ge 0$ in \mathbb{R} . Prove that if $g(x) = \sum_{n=-\infty}^{\infty} f(x+n)$ is in $L^1(\mathbb{R})$, then f = 0 a.e.