Real Analysis Ph.D. Qualifying Exam Temple University August 26, 2011

Part I. (Do 3 problems)

- 1. Let $f \in C^1(\mathbb{R})$ with $|f'(x)| \le M$ for all *x*. Prove that
	- (a) if $g \in BV[a, b]$, then the composition $f \circ g$ is of bounded variation in [a, b].
	- (b) if *g* is absolutely continuous on [a , b], then $f \circ g$ is absolutely continuous on [a , b].
- 2. Consider the sequence $f_n(x) = n^2 x e^{-nx^2}$ on $[1, +\infty)$. Prove that
	- (a) f_n converges uniformly on $[1, +\infty)$;
	- (b) f_n converges in measure on $[1, +\infty)$;
	- (c) \int^{∞} 1 $f_n(x) dx \to 0$ as $n \to \infty$.
- 3. Let $f \in L^{\infty}(\mathbb{R})$. The essential range of f is defined by

$$
R_f = \{ y \in \mathbb{R} : |\{ x \in \mathbb{R} : |f(x) - y| < \epsilon \}| > 0, \text{ for all } \epsilon > 0 \}.
$$

Prove that

- (a) R_f ⊆ $[-||f||_{\infty}, +||f||_{\infty}]$;
- (b) R_f is compact.

4. Let $f(x, y) =$ *x* − *y* $\frac{x-y}{(x+y)^3}$. Is *f* ∈ *L*¹([1, ∞) × [1, ∞))? Justify your answer.

Part II. (Do 2 problems)

1. Let *f*, *f_k* be measurable functions in R such that $f_k \to f$ a.e. Suppose there exist $g, g_k \in$ $L^1(\mathbb{R})$ such that $|f_k| \leq g_k$, $g_k \to g$, a.e., and $\lim_{k\to\infty} \int_{\mathbb{R}} g_k = \int_{\mathbb{R}} g$. Prove that $\lim_{k\to\infty} \int_{\mathbb{R}} |f_k - g_k|$ $f| = 0.$

Hint: $|f_k - f| \le g_k + |f|$, write $\int_{\mathbb{R}} \liminf_{k \to \infty} (g_k + |f| - |f_k - f|) dx$ and use Fatou's Lemma.

- 2. Let $f(t, x)$ be a function defined in $(a, b) \times \mathbb{R}$ such that:
	- for each fixed $t \in (a, b)$ the function $f(t, \cdot)$ is measurable;
	- for each fixed $x \in \mathbb{R}$ the function $f(\cdot, x)$ is continuous.

Prove that the function $g(x) = \sup f(t, x)$ is measurable. *t*∈(*a*,*b*)

3. Let $f \ge 0$ in \mathbb{R} . Prove that if $g(x) = \sum_{n=-\infty}^{\infty} f(x+n)$ is in $L^1(\mathbb{R})$, then $f = 0$ a.e.