Mathematics Real Analysis Ph.D. Qualifying Exam Temple University August 29, 2008

Part I. (Select 3 questions.)

1. Let $f \in C(\mathbf{R})$. Prove that the sequence defined by

$$
f_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right)
$$

converges uniformly on each finite interval [*a*, *^b*].

2. Let $K \subset \mathbb{R}^n$ be a compact set and let $\{O_i\}_{i \in I}$ be an open covering of *K*. Prove that there exists a number $\delta > 0$ (the Lebesgue number of the covering) such that for each $x \in K$ there exists O_i such that ball $B(x, \delta) \subset O_j$; $B(x, \delta)$ is the Euclidean open ball centered at *x* with radius δ .

HINT: given $x \in K$ there exists $j \in I$ and $\delta_x > 0$ such that $B(x, \delta_x) \subset O_j$. Consider the following open covering of $K : [B(x, \delta_x/2)]$ is Select by compactness of K a finite sub-covering and take δ open covering of $K: {B(x, \delta_x/2)}_{x \in K}$. Select by compactness of K a finite sub-covering and take δ to be the minimum radius.

3. Using that $x - \sin x = \frac{1}{6}$ 6 $x^3 + O(x^5)$ as $x \to 0$, prove that the integral $\int_{-\infty}^{\infty}$ $\boldsymbol{0}$ *x* − sin *x* $\frac{\sin x}{x^{3+\alpha}}$ *dx* converges for all $0 \leq \alpha < 1$.

4. Let $f_n \in C[a, b]$ with $\max_{x \in [a, b]} |f_n(x)| \leq M$ for all *n*. Define $g_n(t) =$ \int_0^t *a f_n*(*x*) *dx* for $a \le t \le b$. Prove that g_n contains a subsequence uniformly convergent in [a , b]. HINT: use Arzelá-Ascoli.

Part II. (Select 2 questions.)

- 1. Prove that the set of numbers in the interval [0, 1] whose binary expansion has zero in all even places is a set of measure zero.
- 2. Let $f \in L^1(0, 1)$ and suppose that $\lim_{x \to 1}$ $-f(x) = A$. Prove that $(n + 1)$ $\boldsymbol{0}$ $x^n f(x) dx \rightarrow A$ as $n \rightarrow \infty$.
- 3. Let *f_n* ∈ *L*²(0, 1) with $||f_n||_2 \text{ ≤ } M$ for all *n*. Suppose *f_n* → *f* in measure. Prove that *f* ∈ *L*²(0, 1) C^1 and \int_1^1 $\boldsymbol{0}$ $f_n(x) g(x) dx \rightarrow$ \int_0^1 0 *f*(*x*) *g*(*x*) *dx* for each *g* ∈ *L*²(0, 1).