PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

August 2002

Part I. Do three (3) of these problems.

I.1. Suppose that $f_n \to f$ a.e. on E and $f_n \to g$ almost uniformly in E.

- $\mathbf{1}$ Give the definition of almost uniform of almost uniform $\mathbf{1}$
- $\mathcal{L} = \mathcal{L}$. $\mathcal{L} = \mathcal{L}$. The extra form $\mathcal{L} = \mathcal{L}$

1.4. Let $\varGamma: [0,+\infty) \to \mathbb{R}^+$ be nondecreasing, and such that there exists a positive constant C satisfying

$$
\int_{2r}^{4r} f(t) dt \le C \int_{r}^{2r} f(t) dt,
$$

for each $r > 0$. Frove that there exists a constant $C \geq 0$ such that $f\left(2r\right) \leq C/f\left(r\right)$ for all $r \geq 0$.

1.3. Let $E \subset \mathbb{R}^n$ measurable such that $|E| < \infty$. Prove that $|E| + |B_R(0)| \to 0$ as $R \to \infty$; where $B_R(0)^\circ$ denotes the complement of the Euchdean ball with center 0 and radius $R.$

I.4. Consider the set $C^{1/2}$ consisting of the functions f's on [0, 1] such that $f(0) = 0$ and

$$
||f|| = \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|^{1/2}} : x \neq y \right\} < \infty.
$$

Frove that $(C^{\rightarrow\prime}$, $\|\cdot\|$ is complete.

² AUGUST 2002

Part II. Do two (2) of these problems.

11.1. Let f_k be measurable and $f_k \to f$ a.e. in \mathbb{R}^n . Frove that there exists a sequence of measurable sets $\{E_j\}_{j=1}^{\infty}$ such that $|\mathbb{R}^n \setminus \cup_{j=1}^{\infty} E_j| = 0$ and $J_k \to J$ uniformly on each E_j .

II.2. Let $f:(a, b) \to \mathbb{R}$ be convex and $x \in (a, b)$.

- (1) Prove that $\frac{f(x + h) f(x)}{h}$, $h > 0$, decreases with h; and $f(x)$, , , , , , ,
- $\mathcal{L} = \mathcal{L}$. Prove that the ones the origination derivatives the original derivatives of \mathcal{L}

$$
D^{\pm} f(x) = \lim_{h \to 0^{\pm}} \frac{f(x+h) - f(x)}{h}
$$

exist and satisfy

$$
\frac{f(x) - f(x - h)}{h} \le D^{-} f(x) \le D^{+} f(x) \le \frac{f(x + h) - f(x)}{h}, \qquad h > 0.
$$

11.3. Let $f \in L^1(0,1)$ and suppose that $\min_{x\to 1^-} f(x) = A < \infty$. Prove that

$$
\lim_{n \to \infty} n \int_0^1 x^n f(x) dx = A.
$$