PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

August 2001

Part I. Do three (3) of these problems.

1.1. Let $F \subset \mathbb{R}^n$ be a closed set, and $r > 0$. Let

 $G = \{y \in \mathbb{R}^n : |x - y| = r \text{ for some } x \in F \text{ depending on } y\}.$

I.2. Let $f : \mathbb{R} \to \mathbb{R}$ be convex. Suppose that

$$
\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{f(x)}{x} = 0.
$$

Prove that ^f is onstant.

Hint: use (do not prove) the following fa
t from onvexity: for ea
h ^y ² ^R there exists p 2 R subset (1999) = p (y) = f (y) + f (y) for all x 2 R.

1.3. Let $f \in U$ [0, ∞) with $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove that

$$
\int_0^\infty f(x)^2 dx \le 2 \left(\int_0^\infty x^2 f(x)^2 dx \right)^{1/2} \left(\int_0^\infty f'(x)^2 dx \right)^{1/2}
$$

:

filmt: write $f(x) =$ $r \infty$ $\overline{}$ $f(t)^{2})'$

1.4. Let $f: [0, \infty) \to \mathbb{R}$ be $C^{\perp}[0, \infty)$ with $f(0) \equiv 0$. Suppose there exists $m \geq 0$ such that

$$
0 \le f'(x) \le m f(x), \qquad \text{for all } 0 \le x < \infty.
$$

Prove that ^f (x) ⁼ ⁰ for ⁰ ^x < 1:

² AUGUST 2001

Part II. Do two (2) of these problems.

11.1. Let $p \ge 1$. Suppose $j_k \in L^p(\mathbb{R}^n)$, sup_k $|j_k| \in L^p(\mathbb{R}^n)$, and $j_k \to j$ a.e. Prove that $f \in L^r(\mathbb{R}^r)$ and $f_k \to f$ in $L^r(\mathbb{R}^r)$.

II.2. Let

$$
f_n(x) = \frac{1}{|x - \frac{1}{n}|^{1/2}}
$$

on the interval (0; 2). Prove that \sim

- $\mathcal{N} = \mathcal{N}$, $\mathcal{N} = \mathcal{N}$; $\mathcal{N} = \mathcal{N}$;
- $\sqrt{-7}$ for $\frac{1}{2}$; $\frac{1}{2}$;
- (3) J_n converges in $L^-(0,1)$;
- (4) there does not exist $g \in L^1(0,1)$ such that $f_n(x) \leq g(x)$ for a.e. $x \in (0,1)$ and for <u>. . .</u> . . .

Hint for (4): calculate $\int_{1/(n+1)}^{1/n} h(x) dx$, where $h(x) = \max\{f_n(x), f_{n+1}(x)\}.$

11.3. Let $f, g \in L^2[0,1]$ be extended as periodic functions to R, i.e., $f(x+1) = f(x)$ and $\mathbf{1}$ $\mathbf{$

$$
\lim_{n \to \infty} \int_0^1 f(x) g(nx) dx = \int_0^1 f(x) dx \int_0^1 g(x) dx
$$

Hint: consider first the case when g is a trigonometric polynomial, $g(x) = \sum_{k=0}^{N} a_k e^{2\pi i k x}$, and use the Riemann-Lebesgue theorem asserting that $\int_0^1 f(x) e^{2\pi i m x} dx \to 0$ as $m \to \infty$. For the general case of $q \in L^2[0,1]$ approximate q by a trigonometric polynomial in L^{\pm} norm.