Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2009

PART I: Do three of the following problems.

- 1. Given a group G , recall that its *commutator subgroup* is the subgroup of G , generated by the elements $a^{-1}b^{-1}ab$, for all $a, b \in G$. Now let n be an integer ≥ 3 , and let D_{2n} denote the dihedral group of order 2n; that is, $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$. Let D'_{2n} denote the commutator subgroup of D_{2n} , and let $[D_{2n} : D'_{2n}]$ denote the index of D'_{2n} in D_{2n}
	- (a) Prove that $D'_{2n} = \langle r^2 \rangle$.
	- (b) Determine $[D_{2n} : D'_{2n}]$, for all *n*.
- 2. Let A be a finite abelian group with the property that for any positive integer n there exist at most *n* distinct elements $a \in A$ such that $a^n = 1$.
	- (a) Suppose A is a p-group, where p is a prime. Prove that A is cyclic.
	- (b) Prove that any finite abelian group with the above property is cyclic.
- 3. Let R be a principal ideal domain, and let I be an ideal of R not equal to either (0) or R itself. Prove that $I^2 \neq I$, where I^2 denotes the ideal

$$
\left\{\sum_{k=1}^n a_k b_k \middle| a_1, \dots, a_n, b_1, \dots, b_n \in I, n = 1, 2, \dots \right\}.
$$

4. Let F be a field and R an integral domain that contains F. Recall that an element $a \in R$ is called *algebraic over* F if there exists a polynomial $p(x) \in F[x]$ such that $p(a) = 0$. Also, recall that $F[a]$ denotes the smallest subring of R containing both F and a , that is,

$$
F[a] = \{c_0 + c_1a + \dots + c_na^n : c_0, ..., c_n \in F \text{ and } n \in \mathbb{N}\}\
$$

Show that $F[a]$ is a field if and only if a is algebraic over F.

Part II: Do two of the following problems.

- 1. Let G be a finite group, H a normal subgroup of G and P a Sylow p-subgroup of G .
	- (a) Show that F \overline{a} H is a Sylow p-subgroup of H .
	- (b) Show that PH/H is a Sylow p-subgroup of G/H .
- 2. Let S be a not-necessarily-commutative ring with a multiplicative identity 1. Assume further that S is simple (i.e., the only two-sided ideals of S are $\langle 0 \rangle$ and S itself). Let L be a nonzero left ideal of S.
	- (a) Prove that $S = LS$, where

$$
LS = \{l_1s_1 + \cdots + l_ms_m \mid l_1, \ldots, l_m \in L, s_1, \ldots, s_m \in S, m = 1, 2, \ldots\}.
$$

(b) Prove there exist (finitely many) elements $x_1, \ldots, x_n \in S$ such that $S = Lx_1 +$ $\cdots + Lx_n$, where

$$
Lx_1 + \cdots + Lx_n = \{l_1x_1 + \cdots + l_nx_n \mid l_1, \ldots, l_n \in L\}.
$$

- 3. Let F be a field and L and K finite extensions of F in an algebraic closure \bar{F} of F. Let $E = LK$ be the composite of L and K.
	- (a) Suppose L and K are Galois over F . Show that E is Galois over F .
	- (b) Suppose further that $Gal(L/F)$ and $Gal(K/F)$ are both abelian. Show that $Gal(E/K)$ is abelian. Hint: show that two Galois transformations of E over K commute if and only if their restrictions to L commute and their restrictions to K commute.