Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2008

PART I: Do three of the following problems.

- 1. Given an additive abelian group A and a positive integer m, set $mA = \{ma : a \in A\}$. Now let A be a finitely generated but not finite additive abelian group. Prove that there exists a postive integer n such that nA is a nonzero free abelian group.
- 2. Let n be a positive integer, and let N be an $n \times n$ complex matrix. Suppose for every $n \times n$ complex matrix A there exists a complex $n \times n$ matrix B such that AN = NB. Prove that N is either the zero matrix or is invertible.
- 3. Let K be a field. Prove that the polynomial ring in two variables K[x, y] is not a principal ideal domain.
- 4. Let F be a subfield of \mathbb{C} . Suppose that $[F : \mathbb{Q}]$ is an odd positive integer and that F is a normal extension of \mathbb{Q} . Prove that F is contained in \mathbb{R} .

Part II: Do two of the following problems.

- 1. Let G be a finite group, and let P be a Sylow p-subgroup of G. Let H be a subgroup of G, and let N be a normal subgroup of G.
 - (a) Prove that $gPg^{-1} \cap H$ is a Sylow *p*-subgroup of *H* for some $g \in G$.
 - (b) Prove that $P \cap N$ is a Sylow *p*-subgroup of *N*.
 - (c) Prove that PN/N is a Sylow *p*-subgroup of G/N.
- 2. Let R be a ring with identity and suppose that R contains a unique maximal left ideal M.
 - (a) Prove that $Ma \subseteq M$ for all $a \in R$, and conclude that M is a two-sided ideal of R.
 - (b) Prove that M is equal to the set of non-invertible elements of R. (Recall that an element u of R will be invertible if and only if there exists an element v of R such that uv = vu = 1.)
 - (c) Prove that M is also the unique maximal right ideal of R.
- 3. Let K be the splitting field over \mathbb{Q} , in \mathbb{C} , of $x^4 2$. Let $G = \operatorname{Gal}(K/\mathbb{Q})$.
 - (a) Determine the order of G, and show that G is isomorphic to the group of symmetries of a plane geometric figure.
 - (b) Specify the subfields of K. For each subfield F of K, give field generators over \mathbb{Q} , and give the degree $[F : \mathbb{Q}]$.