Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2010

Part I. Do three of these problems.

I.1. Let G be a finite abelian group of order n .

(a) Suppose that G has at most one subgroup of order d for each d dividing n. Show that G is cyclic.

(b) Suppose that G has at most d elements of order d for each d dividing n. Show that G is cyclic.

I.2. Let G be a finite group and let $H \leq G$ be a subgroup of G. Recall that the normalizer of H in G is the subgroup of G that is defined by $N_G(H) = \{g \in G \mid g^{-1}Hg = H\}.$

(a) Consider the action of H on the set $S = \{gH \mid g \in G\}$ of left H-cosets by left multiplication: $h \cdot (gH) = hgH$. Show that gH is a fixed point of this action (i.e., $hgH = gH$ for all $h \in H$) if and only if $g \in N_G(H)$ and use this to conclude that the index $|N_G(H): H|$ is equal to the number of left cosets qH that are fixed under left multiplication by H.

(b) Suppose that H is a p-group for some prime p (i.e., |H| is a power of p). Show that

$$
|N_G(H):H| \equiv |G:H| \bmod p.
$$

I.3. Let R be a commutative ring with identity 1.

(a) Show that the principal ideal (x) in the polynomial ring $R[x]$ is prime if and only if R is an integral domain.

(b) Show that the principal ideal $(x^2 + 1)$ is maximal in $R[x]$ if and only if R is a field and -1 is not a square in R.

I.4. Let p be a prime and K a field of characteristic other than p that contains the p^{th} roots of unity. Let α be an element in the algebraic closure of K such that $\alpha^p = a \in K$. Show that $[K(\alpha):K]$ is either 1 or p.

Part II. Do two of these problems.

II.1. Let G be a finite group whose order is divisible by a prime p but not by p^2 . Let Ω denote the set of elements of order p in G, and let $P \leq G$ be a Sylow p-subgroup of G.

(a) Show that

$$
|\Omega| = \frac{|G|(p-1)}{|N_G(P)|}.
$$

(b) Let $G = A_{p+1}$ be the alternating group of degree $p+1 > 3$, and let $N_G(P)$ be as in (a). Show that

$$
|N_G(P)| = \frac{p(p-1)}{2} \; .
$$

II.2. Let V be a left module over some ring R (not necessarily commutative) and let $f \in$ $\text{End}_R(V)$ be an endomorphism of V. Assume that Ker $f^n = \text{Ker } f^{n+1} = \text{Ker } f^{n+2} = \dots$ and $\text{Im } f^n = \text{Im } f^{n+1} = \text{Im } f^{n+2} = \dots$ holds for some positive integer *n*. Prove:

(a) Im f^n and Ker f^n are R-submodules of V, and $V = \text{Im } f^n \oplus \text{Ker } f^n$;

(b) the restriction of f to Im f^n is an automorphism of Im f^n ;

(c) the restriction of f to Ker f^n is a nilpotent endomorphism of Ker f^n .

II.3. Let K be the splitting field of the polynomial $x^6 - 2$ over Q.

(a) Show that $[K : \mathbb{Q}] = 12$ and $Gal(K/\mathbb{Q}) \cong D_{12}$, where D_{12} is the dihedral group with 12 elements.

(b) Determine the number of subfields of K of degree 6 over $\mathbb Q$.

(c) List explicitly (i.e., as \mathbb{Q} , adjoined explicit generators) all those subfields of K of degree 6 over Q that are Galois over Q.