Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2006

PART I: Do three of the following problems.

- 1. Let p be a prime number and let G be a nonabelian group of order p^3 . Recall that the center $Z(G)$ of G is the normal subgroup of G consisting of all elements $z \in G$ such that $zq = qz$ for all $q \in G$.
	- (a) Prove that $|Z(G)| = p$.
	- (b) Prove that $G/Z(G) \cong Z_p \times Z_p$, where Z_p is the group of order p.

(You do not have to prove that $Z(G)$ is a normal subgroup of G. You may also use other standard facts from group theory without proof, but please quote them.)

- 2. Let R be a commutative ring with identity, and let $M_2(R)$ be the ring of 2×2 matrices with entries in R. (You do not have to prove that $M_2(R)$ is a ring.)
	- (a) Prove that every two-sided ideal of $M_2(R)$ has the form

$$
M_2(I) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in I \right\}
$$

for some ideal I of R.

- (b) Say that $M_2(R)$ is *prime* if for all nonzero two-sided ideals A and B of $M_2(R)$, Say that $M_2(A)$ is *prime* if for
the *ideal product*, $AB = \{\sum_{i=1}^n A_i\}$ $_{i=1}^{n} L_i M_i \mid i = 1, 2, \ldots, L_i \in A, M_i \in B$, contains at least one nonzero element. Prove that $M_2(R)$ is prime if and only if R is an integral domain.
- 3. Let $GL_3(\mathbb{C})$ denote the group of all invertible 3×3 complex matrices and let $S = \{A \in$ $GL_3(\mathbb{C}) \mid A^3 = I\},\$ where I is the 3×3 identity matrix.
	- (a) Show that if $A \in S$, then all conjugates $C^{-1}AC$ with $C \in GL_3(\mathbb{C})$ also lie in S. Conclude that S decomposes into a disjoint union of distinct conjugacy classes in $GL_3(\mathbb{C})$.
	- (b) Find the number of conjugacy classes in S. Exhibit a representative of each of the conjugacy classes.
- 4. Let p be a prime number, and let $f(x) = x^p x + 1 \in \mathbb{F}_p[x]$.
	- (a) Suppose that α is a root of $f(x)$ in some extension field K of \mathbb{F}_p . Prove that $\alpha+1$ is also a root in K of $f(x)$.
	- (b) Prove that $f(x)$ is irreducible and separable in $\mathbb{F}_p[x]$.

Part II: Do two of the following problems.

- 1. Let G be a group having a finite normal subgroup N such that G/N is finitely generated abelian.
	- (a) Prove that every subgroup of G is finitely generated.
	- (b) Let C denote the centralizer of N in G (i.e., the set of elements $z \in G$ such that $zn = nz$ for all $n \in N$). Prove that C is a normal subgroup of G of finite index.
	- (c) For $a, c \in C$, put $f_a(c) = aca^{-1}c^{-1}$. Show that $f_a(c) \in C \cap N$ and that $aca^{-1} =$ $f_a(c)c$. Use this to show that f_a is a group homomorphism from C to $C \cap N$.
	- (d) Let S be a (finite) generating set for C. Prove that the intersection $\bigcap_{a\in S}$ Ker f_a is exactly the center $Z(C)$ of C.
	- (e) Conclude that $A = Z(C)$ is a finitely generated abelian normal subgroup of G such that G/A is finite.
- 2. Let F be a field, and set $R = F[x, y, z]/(z^2 xy)$.
	- (a) Prove that $z^2 xy$ is an irreducible element of $F[x, y, z]$.
	- (b) Prove that R is an integral domain.
	- (c) Prove that R is not a UFD.
- 3. Let E/K be a finite Galois extension of fields, with Galois group $G = \text{Gal}(E/K)$. Let $K \subseteq F_i \subseteq E$ $(i = 1, 2)$ be two intermediate fields and let F_1F_2 denote the subfield of E that is generated by F_1 and F_2 .
	- (a) Show that E is Galois over each F_i .
	- (b) Put $G_i = \text{Gal}(E/F_i)$; so each G_i is a subgroup of G. (You don't need to prove this.) Show that $E = F_1F_2$ if and only if $G_1 \cap G_2 = 1$ and that G is generated by G_1 and G_2 if and only if $F_1 \cap F_2 = K$.
	- (c) Show that G is the direct product of G_1 and G_2 if and only if the following three conditions hold: both F_i are Galois over K , $F_1 \cap F_2 = K$, and $E = F_1F_2$.