August, 1999

Comprehensive Examination

Department of Mathematics

ALGEBRA

PART I: Do three of the following problems.

- 1. Let G be a group. Define $\Delta(G) = \{g \in G \mid [G : \mathbb{C}_G(g)] < \infty\}$. (Here, $\mathbb{C}_G(g) = \{x \in G \mid xg = gx\}$ denotes the centralizer of g.)
 - (a) Show that $\Delta(G)$ is a subgroup of G and that $\Delta(G)$ is characteristic; i.e., $\varphi(\Delta(G)) \subseteq \Delta(G)$ holds for all automorphisms φ of G.
 - (b) Show that $\Delta(G)$ contains the center of G and every finite normal subgroup of G.
 - (c) Determine $\Delta(G)$ for the infinite dihedral group $G = D_{\infty} = \langle x, y \mid y^2 = 1, yxy = x^{-1} \rangle$.
- 2. Let R be a commutative ring with 1, and let $e \in R$ be an idempotent $(e^2 = e)$. Prove:
 - (a) e' = 1 e is an idempotent of R;
 - (b) the ideal eR is a ring with multiplicative identity e;
 - (c) R is the direct sum of eR and e'R.
- 3. Prove that two diagonalizable matrices A, B (over some field) are simultaneously diagonalizable (diagonalized by conjugation by the same invertible matrix) if and only if AB = BA.
- 4. Give an explicit example or explain why it is impossible:
 - (a) A field with 49 elements.
 - (b) An infinite field in which every non-zero element is a root of unity.
 - (c) A finite field in which not every non-zero element is a root of unity.
 - (d) A finite, algebraically closed field.
 - (e) An infinite field F whose multiplicative group $F^* = F \setminus \{0\}$ is cyclic.

PART II: Do two of the following problems.

- 1. Let p, q be square-free, relatively prime integers, and let $F = \mathbb{Q}(\sqrt{p} + \sqrt{q})$.
 - (a) Show \sqrt{p} is in F.
 - (b) Show F is normal over \mathbb{Q} .
 - (c) Find the Galois group of F over \mathbb{Q} and describe its action.
- 2. Let R be the subring of $\mathbb{Q}(x)$ given by $R = \{f(x)/g(x) \mid g(1) \neq 0\}$.
 - (a) Find a maximal ideal of R.
 - (b) Show that R is a local ring; i.e., R has a unique maximal ideal.
 - (c) Explicitly determine all the ideals of R.
- 3. Prove:
 - (a) The additive group $(\mathbb{Q}, +)$ of rationals is not the direct sum of two proper subgroups.
 - (b) The quotient of additive groups \mathbb{Q}/\mathbb{Z} is not an infinite direct sum of cyclic subgroups.