PhD Algebra Exam Fall 1994

Part I: Do three of these problems.

1. Find all the integers which are orders of elements of the alternating group A_5 . Count how many elements of A_5 are of each of those orders and describe all the elements of each order.

2. Give short explanations:

- (1) Why is a field necessarily a p. i. d.?
- (2) Why is every subgroup of a solvable group solvable?
- (3) Why is a field extension of finite degree necessarily algebraic?
- (4) Why is the number of elements of a finite field necessarily a prime power?
- (5) Why is an abelian simple group necessarily of prime order?

3. Suppose that V is a finite dimensional vector space, T a nilpotent linear transformation on V. Let $n = \dim V$. Show that $\dim T^k(V) \leq n - k$, and thus $T^n = 0$. What does it say about the Jordan normal form of T if all the inequalities are equality? Give a non-trivial example of a T for which some of the inequalities are not equality.

4. Consider the rings $A = \mathbb{Q}[x]/(x^2 - 2x)$, $B = \mathbb{Q}[x]/(x^2 - 1)$, $C = \mathbb{Q}[x]/(x^2)$. (\mathbb{Q} = rational numbers.) Show that A and B are isomorphic, but B and C are not isomorphic.

Part II: Do two of these problems.

5. Let F be the finite field with p elements (p is a prime), and let GL(n, F) be the group of invertible $n \times n$ matrices with entries in F.

- (1) Determine the order of GL(2, F).
- (2) Find a *p*-Sylow subgroup of GL(2, F).
- (3) Determine the order of GL(3, F).

6. Show that the only group of order 8 which is isomorphic to a subgroup of the symmetric group S_4 is the dihedral group D_4 .

7. Determine the structure of \mathbb{Z}_{15}^{\times} , the group of units of \mathbb{Z}_{15} (= integers mod 15). Let K be the cyclotomic field $\mathbb{Q}(z)$, where z is a primitive 15^{th} root of unity. Exhibit an isomorphism of the Galois group $G(K/\mathbb{Q})$ with \mathbb{Z}_{15}^{\times} .