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ABSTRACT

EFFICIENT COMPUTATION OF VISCOUS 

INCOMPRESSIBLE FLOW

by Hans E. Johnston

Doctor of Philosophy 
Temple University, 1999

Advisor: Dr. Jian-Guo Liu

The present work is concerned with the development of numerical methods 

for the computation of viscous incompressible flows as described by the Navier- 

Stokes equations of classical fluid mechanics. The emphasis is strictly on finite 

difference schemes implemented on non-staggered Cartesian grids, which when 

coupled with a high order explicit time stepping procedure result in very simple 

and efficient methods.

In chapter 2 a second order method based on the primitive variable formu

lation of the Navier-Stokes equations is presented. The scheme is suited for the 

computation of both low and high Reynolds number flows. The novelty of the 

scheme lies primarily in a simple, consistent, and accurate numerical approxima

tion of the Neumann boundary condition for the pressure Poisson equation. Its 

use avoids the need for both fractional-step tim e discretizations and staggered

iii
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grids traditionally required of the most popular numerical methods based on the 

primitive variable formulation. The resulting method achieves clean second order 

accuracy when applied to ID and 2D test problems, and performs equally well 

as a second order vorticity-stream function based scheme when used to  compute 

the canonical cavity flow. We note that the scheme can be easily extended to  

compute 3D flows.

In chapter 3 new developments are presented for a class of fourth order Es

sentially Compact methods (EC4), originally developed by E and Liu, for solving 

unsteady viscous incompressible flows in the vorticity-stream function formula

tion. A novel fine grid patch mesh refinement technique, which is easily incor

porated into the original EC4 scheme, is outlined. Its use results in a dramatic 

increase in computational efficiency, particularly for high Reynolds number flows. 

In addition, we present results on the use of a very effective far-field boundary 

condition for the stream function. As a detailed illustration of an application of 

the above mentioned methodologies, we present high resolution benchmark qual

ity simulations of the impulsively started flow past a circular cylinder at Reynolds 

numbers ranging from 1,000 to 100,000. Even at the considerably high Reynolds 

number of 100,000 the flow is completely resolved.

iv
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1

CHAPTER 1 

PRELIM INARIES

1.1 Ubiquitous Fluid Flow: W hich W ay Did

It Go?

Everyone is aware from everyday experience that gases and liquids are in motion 

all around us. For instance, the simple fact that you are reading these words 

implies that blood is flowing through your circulatory system, and that air is 

moving in and out of your lungs. Other obvious examples range from the move

ment of the clouds in the sky to the water that swirls around your feet and down 

the drain when you take a shower.

Each of the examples above involves a “fluid” that is in motion, and one 

would not be too hard pressed to categorize some of the resulting flow patterns as 

quite complex. The study of such problems is the primary interest o f the field of 

fluid mechanics, the goal of which is not only to understand the physical mecha

nisms that produce these motions, but also to predict what will happen to a fluid, 

with predefined properties, in a given physical arrangement. In many instances 

valuable information of particular flows result from very precise investigations 

performed by experimentalists in a laboratory setting. Alternatively, starting 

from fundamental physical principles one can produce a mathematical model for 

such problems by deriving the equations governing the flow. However, more often
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than not, these equations take the form of a system of nonlinear partial differ

ential equations. In general, in the absence of simplifying assumptions, which 

in many instances obscure the true nature and intricacies present in the flow, 

current analytic techniques prove insufficient for solving the governing equations.

Enter the field of computational fluid dynamics, practitioners of which use 

high speed digital computers is to calculate “approximate” solutions to the gov

erning flow equations. It is precisely this approach to the study of fluid dynamics 

that is the focus of this thesis. The governing equations that we seek approximate 

solutions to are given by the classical time dependent Navier-Stokes equations for 

a viscous incompressible fluid, which we discuss next.

1.2 The Navier-Stokes Equations

Let 12 be a bounded region in ft2 containing a viscous incompressible single com

ponent Newtonian fluid. B y applying to this fluid the principle of conservation of 

mass, along with Newton’s second law of motion, one arrives at the incompress

ible Navier-Stokes equations (NSE). W ith the additional simplifying assumption 

that the density of the fluid is constant, and when written in non-dimensionalized 

form, the NSE for an incompressible viscous fluid are given by:

{1 2 1 ) f  « . +  (« -V )u  +  V p =  J jA u

y V  • u  =  0

in Q, where u  =  (u(x, y, t), v(x, y, t)) is the velocity and p(x, y, t) is the pressure. 

We note that V  and A  represent the gradient and Laplace operators, respectively, 

and the subscript t denotes differentiation with respect to tim e. The parameter 

Re  is a dimensionless quantity representing the ratio of inertial forces to viscous 

forces in the flow. The system  (1.2.1) is referred to as the primitive variable 

formulation of the NSE given by the momentum equation and incompressibility
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condition, respectively. Thus in this formulation, in 2D, the NSE are a system of 

three coupled nonlinear partial differential equations. For a detailed derivation 

see [CM].

To make the statement of the problem complete we must specify both initial 

and boundary conditions for (1.2.1). As for initial conditions, the velocity field 

at time t  =  0, tio, is assumed to be incompressible, i.e., V  • Uo =  0. Now, let 

r —dQ denote the boundary, which is assumed to be comprised of solid walls at 

rest. Since second order derivatives o f u  appear in (1.2.1) we must prescribe two 

boundary conditions. Let n  and r  denote the unit normal and unit tangential 

vectors to T, respectively. The physically evident fact that the fluid cannot cross T 

leads to the condition u*n = 0 . This is called the no-penetration condition. Also, 

due to the effects of viscosity one would expect that very close to a stationary 

wall that the tangential velocity of the fluid should approach 0. This is in fact 

found experimentally to be the case. Thus, v  • r  =  0, which is known as the 

no-slip condition. Together we then have

(1.2 .2) { V * uo =  0

u |r  = 0  V t.

The numerical method outlined in chapter 2 will employ an alternative prim

itive variable formulation of the NSE which we now derive. Taking the divergence 

of the momentum equation, commuting the space and time derivatives, and using 

the incompressibility condition V * u = 0 , we obtain the pressure Poisson equation 

(PPE):

(1.2.3) Ap  =  —V  • (u  • V u ).

However, the PPE and the momentum equation, along with (1.2.2), are not 

sufficient to ensure that the velocity field u  remains incompressible for all t  >  0. 

That u  and p  satisfy the PPE is only necessary, but not sufficient, condition to
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ensure that u  remains divergence-free. To see this, assume that (t*,p) satisfies 

the momentum equation and the PPE subject to the conditions in (1.2.2). Then 

again taking the divergence of the momentum equation, and using the PPE, we 

arrive at

( V ' u)t =  / b A (V ' u )-

Along with V  - Uo = 0 , all this tells us is that the scalar quantity V -ti satisfies the 

heat equation with homogeneous initial conditions. Therefore, to ensure that the 

velocity field remains incompressible for all t  >  0 we must impose the additional 

condition that V  ■ v |r  = 0  at any time t; see [Qu]. W ith this additional condition 

the formulation (1.2.1)-(1.2.2) is equivalent to

Ut +  (u  • V )u  +  V p  =

(1.2.4) Ap =  - V  • (t* • V u)

t i |p  — V • u |r — 0 V t.

Note that in (1.2.4) there is no explicit boundary condition for the elliptic 

PPE. We can derive one by taking the dot product o f the momentum equation 

with the unit normal n  along I \ Since u |r = 0 , we obtain

d-2.5) J r = ( ^ A“) '" 011 r -
a Neumann boundary condition. Equation (1.2.5) involves evaluating the viscous 

term at the boundary, which in a numerical setting is the most difficult term to 

compute. It is precisely this issue that is the main focus of chapter 2. The key 

is to evaluate, in a consistent manner, the viscous term on T with the aid of the 

boundary condition V  • u |r = 0 .

In chapter 3 we turn our attention to the vorticity-stream function (u, ip) 

formulation of the NSE which we now derive from (1.2.1). The vorticity u  at any 

point in 12 is given by

(1.2.6) u> =  V x u  =  dxv — dyU,
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the curl of the velocity vector field, ui is the local angular velocity of the fluid 

which in 2D is a scalar quantity. Taking the curl of the momentum equation in

(1.2.1), again commuting space and time derivatives, we arrive at

ujt  +  (tt * V)w =

which is referred to as the vorticity transport equation. It is important to note 

that the pressure p  no longer appears since the curl o f a smooth gradient field is 

zero.

Now assume that Q is simply connected. The incompressibility condition 

implies that there exists a scalar function ip(x, y, t) defined on Q such that

u =  dyip and v =  —dxip.

The stream function ip is unique up to an additive constant, and is so named 

since for a fixed tim e t  the streamlines of the flow lie on level curves of ip. With 

ip in hand, we rewrite (1.2.6) as

(1.2.7) (j =  dxv — dyu =  dx(—dxip) — dy(dyip) =  —d%ip — =  —At/?

To obtain boundary conditions for the (u, ip) formulation we proceed as 

follows: from (1.2.2) u =  0 along T which in terms of the stream function ip 

reads

Q I

(1.2.8) ——  =  0 and ip =  constant along T.
on

Recall that ip is determined up to an additive constant from the Poisson equation

(1.2.7). Choosing ip to be 0 at any point on T together with the second condition 

of (1.2.8) gives:
dip . .|r =  ip\v =  0.
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(1.2.9)

Putting everything together, the (u;, ip) formulation of the NSE is given by:

cot ■+■ (u  • V)u/ =

Aip =  —a/ 

u — dyip, v =  —dxip 

w "lr =  ^ |r  =  0

1.3 Solution Strategy and Numerical

Considerations

Though the schemes presented in chapters 2 and 3 are based on different formula

tions of the NSE, namely the (u ,p) formulation (1.2.4) and the (uj, ip) formulation

(1.2.9), respectively, our solution strategy for each is generally the same. Com

paring (1.2.4) and (1.2.9) we see that:

•  Boundary conditions are given for only one of the coupled variables; the 

velocity in (1.2.4) and the stream function in (1.2.9).

•  The time dependent convection-diffusion equation of parabolic type is cou

pled with an elliptic Poisson equation. There is no evolution equation for 

the solution of the Poisson equation.

The key step that allows us to develop very efficient numerical methods for both 

formulations is the conversion of a given boundary condition for one flow variable 

into a “local” numerical boundary condition for the remaining flow variable. This 

procedure is well known in the case of the (u, ip) formulation and leads to, e.g., 

Briley’s formula, a vorticity boundary condition derived using a boundary condi

tion for the stream function; see [EL2] and §3.2.4. We employ a similar strategy 

for the (u , p) formulation by utilizing one of the velocity boundary conditions in

(1.2.4) to evaluate numerically the Neumann boundary condition (1.2.5) for the
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pressure, resulting in the REBC scheme described in chapter 2. For both formu

lations the use of these “converted” boundary conditions decouples the computa

tion of the convection-diffiision equation from that o f the Poisson equation. We 

then use a high order explicit tim e stepping scheme to advance the solution of the 

convection-diffiision equation, and standard FFT-based fast solvers for the Pois

son equation. In each case very efficient numerical methods for approximating 

solutions of the NSE result.

1.3.1 Spatial Discretization: F inite Differences

This thesis is concerned exclusively with the use of finite difference methods for 

the approximation of solutions to the unsteady NSE. Finite difference methods 

produce numerical approximations to the solution of an ordinary or partial dif

ferential equation, at a finite number of “grid” points within the domain, by 

replacing derivatives with difference quotients. This procedure generally results 

in a system, possibly nonlinear, of algebraic equations which one then solves to 

obtain an approximate discrete solution.

In this section we derive the finite difference operators that are used in chap

ters 2 and 3 for the spatial derivatives appearing in the NSE. No consideration 

is given here to the treatment of boundary conditions, which often requires the 

use of one-sided approximations. These are derived in subsequent chapters when 

needed. For simplicity we derive the difference operators in the case o f one spatial 

dimension, using partial derivative notation; extension to 2D is straightforward.

Suppose that Q =  [a, 6], choose N ,  and let h — A x  =  (b — a ) /N .  Define a 

finite difference grid for Q by:

Qk =  { x i : Xi =  a 4- *h, i  =  0 , 1 , . . . ,  N }.

The points {x»} of D& are referred to  as “grid” points, which are chosen here
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8

to be uniformly spaced. All of the methods presented in this thesis use uniform 

grids. Given a function u £  C*(Q), Taylor series expansion about any interior 

point Xi £  Qh, reads

where u,- =  u(x,) and ti#±i =  u(x,- ±  h). Define the finite difference operators D x 

and D x by

(4« )(*») =  (D ,u)(Xi) +  0 ( h 2) and (3 ^ )(x .) =  (D*«)(*i) +  0 ( h 2).

Dx and Dx are, respectively, the standard second order centered finite difference

The operators in (1.3.1.2) are the only ones required for the spatial dis

cretizations of the second order numerical scheme developed in chapter 2. In 

chapter 3 the underlying numerical scheme is EC4 [EL2], which is spatially fourth 

order accurate, and employs higher order compact and long-stencil finite dif

ference operators that are easily expressed using Dx and D 2. To simplify the 

derivations we drop the cumbersome reference to the values of u at specific grid 

points and work directly with the finite difference and differential operators. It 

is however implicit that there is always an underlying uniform grid D*.

(1.3.1.1) iia i =  u, ±  h(d,u)(Xi) +  —  (<£«)(*,) ±  y ( # i ) ( n )  +  0 (h ') ,

(1.3.1.2) (D*u)(x,) = tt»+l ~  M»—1
2h

, (Dlu)(Xi) = Kj+i - 2 Uj +  Ut-i
h*

Using the expansions in (1.3.1.1) we have

approximations to dx and 8%..

Using d ? = D 2 4- 0 ( h 2) and ^ ( D 2 -|- 0 (h 2)) =  ̂ -D2 4- 0 ( /i4), a more careful

use of Taylor series gives

£>, =  dT +  ^ + 0 ( h l )

(1.3.1.4)
— -p t  )) +  0 (h l ) 

=  3 ,(1  +  f D l )  +  O(M).
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Formally (1 -+- =  (1 — +  ̂ (^ 4)> and using this in (1.3.1.4) gives

(13.1 .5) a , =  5 .(1  -  ^ D l )  +  0(5*).
O

The operator Dx{ 1 — j f D 2) is a fourth order long-stencil approximation to dx, 

so-called since when applied one has

(5 .(1  -

which involves values o f u extending two grid points to either side of x ,. 

Formally dividing (1.3.1.4) by (1 -+- ^-D2) gives

a fourth order compact approximation of dx. The main advantage of compact 

operators is that they provide high order approximations while maintaining a 

small stencil. It will be made clear in chapter 3 how one applies such an operator 

in practice, i.e., how one interprets division by a difference operator.

Proceeding as in (1.3.1.4), again using d£ =  D 2 +  0 (h 2), Taylor series gives

Oj =  3 +  £ 3 +  0(5*)

= a?ri
(1.3.1.7)

=  3 ( 1 +  £ 3 ) + 0 ( 5 * )

=  3 (1  +  £(H* +  0 (5 2)) +  0(5*) 
= 3 ( i  +  £ d S )+ o (5*).

Formally dividing (1.3.1.7) by (1 +  ^ D 2) gives 

a fourth order compact approximation of
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1.3.2 Temporal Discretization and Stability

Since our interest is the approximation of unsteady, time dependent solutions 

of the NSE, we must select a time discretization scheme for the evolution equa

tions in (1.2.4) and (1.2.9). In choosing a time stepping scheme the main issues 

that one must take into account are accuracy, efficiency, and stability. la  or

der to understand these issues in the context o f the NSE, consider the following 

convection-diffiision equation

(1.3.2.1) ut =  adxu +  t/d£u

on f t =[0, 27t], with periodic boundary conditions. One can think of (1.3.2.1) as a 

ID  model of the convective and diffusive dynamics, with representative velocity 

a and v = l / R e ,  governed by the evolution equations in (1.2.4) and (1.2.9).

Using (1.3.1.2) to discretize the spatial derivatives in (1.3.2.1) gives

(1.3.2.2) d,us =  a 5 .i i , +  uDluj =  ~  2% +  ,

where Uj(t) =  u(xj,t ),  Xj =  jh , for j  =  1 , 2 , . . . ,  N ,  and h =  2ir/N. Since the 

solution is periodic it can be expanded as a discrete Fourier series

«j(*) =  5Z uk(t)eikXi,
k= 1

which when substituted into (1.3.2.2) gives for each mode k = l ,  2 , . . . ,  iV 

t̂Wfc(t) =  (—4 ^ sin 2(kh/2) +  *^sin (kh))uk(t).

Each of the above equations is an ODE of the form

(1.3.2.3) dtv =  Xv,

where A =  (—4 ^ sin 2(A:/i/2) i f  sin(fch)). The spatial discretizations have basi

cally been lumped into the parameter A, which allows us investigate the impli

cations of discretizing dt in (1.3.2.2) by examining how the discretization scheme 

behaves when applied to (1.3.2.3).
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Now, suppcwe we are given a well-posed ODE o f the form

(1.3.2.4) dtv =  f (v) ,

with initial condition Vo at t  =  0. Most standard discretization schemes for

(1.3.2.4) can essentially be classified as either explicit or im plicit. The simplest 

explicit scheme is the forward Euler method, given by

(1.3-2.5) «n+1 =  un -f- A  t f ( v %

where A t is the tim e step, and vn is the approximation to the true solution at 

time n A t  with v° =  v0. We note that Euler’s method is first order, i.e., has a 

truncation error that is O (A t).

Applying (1.3.2.5) to  (1.3.2.3) gives

(1.3.2.6) vn+1 =  (14- A A *K ,

where (1 +  AA£) is the amplification factor which implies that if (1.3.2.6) is to 

be of any practical use we must ensure that

(1.3.2.7) |1 +  AA*| <  1.

The set of all A that satisfy (1.3.2.7) defines the stability region of the method; 

see [Ge]. The stability condition (1.3.2.7) is necessary to  ensure that any errors in 

the approximation vn, which are most certainly guaranteed to exist due to both 

truncation and roundoff errors, do not grow uncontrollably as we repeatedly apply 

the iteration (1.3.2.6).

Condition (1.3.2.7) holds for the values of A given in (1.3.2.3) if we choose 

A  t  such that

lalA t 2i/A t 
( i .3-2-8) <  l.
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The first inequality above gives

(1.3.2.9) Rec =  ^  <  2.

Rec is known as the cell Reynolds number, and correspondingly, (1.3.2.9) the cell 

Reynolds number constraint. It imposes a severe restriction on the spatial grid 

size, especially in the case of high Reynolds number flows. The second inequality 

in (1.3.2.8) is the stability condition coming from the diffusion term, and must 

always be enforced for an explicit scheme.

Notice that for A in (1.3.2.3), the convective velocity a only appears in the 

imaginary part, and the diffusion coefficient u only in the real part. The cell 

Reynolds number constraint (1.3.2.9) arises due to  the fact that for our values of 

A the stability region of the forward Euler method does not contain any portion of 

the imaginary axis; see [Ge], [Te], In fact, for i / = 0  the method is unconditionally 

unstable when applied to (1.3.2.4).

An easy way to avoid the cell Reynolds number constraint is to use implicit 

methods. The sim plest of these, when applied to (1.3.2.4), is given by

(1.3.2.10) un+1 =  vn +  A  t /(u n+1).

The scheme (1.3.2.10) is first order, and it is known as the backward Euler 

method. When used to discretize (1.3.2.3), the method is stable as long as

|1 — AAt| >  1.

Hence, unconditional stability results when backward Euler is used for the time 

discretization in the convection-diffiision equation (1.3.2.2). While this approach 

is widely used when computing solutions of the NSE (see [ELI]), a trem endous 

computational price must be paid. Since in the NSE the convective speed de

pends on it, at each tim e step we must solve a large sparse nonlinear system of
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equations. This implies that implicit methods should only be used when the cost 

of the tim e stepping is the main issue, e.g., steady state or low Reynolds number 

flows; see [ELI].

03

Figure 1.1: Stability Region of RK4

What is needed to overcome all of these difficulties is an explicit method 

whose stability region encompasses an appreciable portion of the imaginary axis. 

Such methods exist, the most well known of which is the classical fourth order 

Runge-Kutta scheme (RK4); see [Ge]. When applied to (1.3.2.4) the method is 

given by

v-L =  vn +  t f ( v n), ki =  f (v i )

(1.3.2.11) ^  =  +  ‘M l  * » - / W
v3 = v n +  A  t f {v 2), k3 =  f ( v 3)

t7"+l =  vn +  x ( / ( U") +  +  2*2 +  *3).

Notice that RK4 is essentially comprised of four forward Euler steps, which leads 

to  easy implementation from a programming perspective. As for stability, when 

RK4 is applied to (1.3.2.3) A t must be chosen such that

|1 +  (AAt) +  (AA*)2/2  +  (AAt)3/6  +  (AAt)4/24 | <  1.
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Graphically we can easily determine the points in the complex plane in terms of 

AAt for which the above inequality holds. This is shown in Figure 1.1, where the 

interior of the curve represents stable values.

For the full 2D NSE we must take into account that there is convection 

and diffusion in both coordinate directions, and also that the convection term is 

nonlinear. When used in conjunction with centered spatial differencing as given 

by (1.3.1.2), the RK4 scheme is stable when applied to the 2D NSE as long as 

the following two conditions hold (see [ELI]):

(1.3.2.12) ^ ^ < C F L < 1 . 5  and 4 ^  <  1.
n h£

Here /i= m in {A x, A y} and a is the maximum velocity present in the flow at tim e 

t.
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CH APTER 2
REYNOLDS NU M BER BOUNDARY

CONDITION

2.1 Introduction

In this chapter we present a spatially second order finite difference scheme for the 

numerical solution of the incompressible Navier-Stokes equations (NSE) based on 

the primitive variable formulation. The novelty of the scheme lies primarily in 

a simple, consistent, and accurate numerical implementation of the Neumann 

boundary condition (1.2.5) for the pressure Poisson equation (PPE) in (1.2.4). 

This numerical boundary condition, referred to hereinafter as the Reynolds num

ber boundary condition (REBC), enables us to accurately solve the PPE on non

staggered grids using standard FFT-based fast Poisson solvers. When used in 

conjunction with high order explicit tim e stepping the resulting scheme is simple 

to implement and very efficient.

Evidence of the numerical performance of the method is given in the form 

of both ID  and 2D accuracy checks, as well as a convergence study of solutions 

of the canonical Cavity flow. In all cases the scheme achieves clean second order 

accuracy. In addition, the computations of the Cavity flow are shown to be in 

excellent agreement with solutions computed using a second order (w, ip)-based 

m ethod. The key point here is that it has been proven analytically that the (u, ip) 

scheme is convergent; see [HW] and [WE].
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2.2 Description o f the Scheme

In §1.2 one possible primitive variable formulation of the 2D incompressible NSE 

is given by (1.2.4), which we reiterate here for easy reference,

( 2 2 1 )  U  +  ( « V ) «  +  VP =  £ A »

[ Ap =  —V • («* V u )

on a bounded domain Q, where u  =  (u, v) is the velocity and p is the pressure, 

along with the boundary conditions

(2.2.2) u  =  0 and V  - u  =  0 on dCl.

We now describe a numerical scheme to approximate a solution of (2.2.1)-(2.2.2). 

First, the spatial discretization of our scheme is outlined, treating time as con

tinuous.

Assume that Q is rectangular, and that its lower left-hand corner coincides 

with the origin. Denote by 12/, a finite difference grid for fi, which, without loss of 

generality, has equal grid spacing h in each coordinate direction, i.e., /i= A x = A t/. 

Thus,

f 2^ =  { ( x * ,  j / j )  . x, =  t h ,  i  =  0 , 1 , . . . ,  Tix, V j ~~ j h ,  j  —  0 , 1 , . . . ,  f ly }

where nx -1-1 and riy + 1  are, respectively, the number of grid points in the x and 

y  directions. It is at the points of 12/, that we seek a numerical approximation to  

the solution o f (2.2.1)-(2.2.2).

Since the flow is incompressible, at any tim e the velocity field must satisfy 

the condition V  • u =  0. Using this, the righthand side o f the PPE in (2.2.1) can 

be simplified as follows:

(2.2.3) V  • (u  • V u) =  2 (dyudxv — dxudyv).
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(U>

0.1)

(0.19) 0-1 f l )  (1 0) (M .0)

o o o o o
t t-1 )

Figure 2.1: A Comer of ft*

We discretize (2.2.1) using

(2.2.4) I
ut  +  (u  • Vftti) +  Vftp =

A*p =  —2 {DvuDxv — DxuDyv).

Here A* =  (D2 + D 2), the 5-point discrete Lapladan, and V* =  (Dx, Z)v) . The 

symbols D  and D 2 denote the standard second order center difference approxima

tions for the first and second partial derivative, respectively. See §1.3 for further 

details.

As it is, (2.2.4) is formally a second order accurate spatial discretization of

(2.2.1). We still must implement numerically the boundary conditions given in

(2.2.2). The condition u |r = 0  is explicitly used in (2.2.4) to set both u  =  0 at 

the boundary points of fl* for the momentum equation, and the righthand side 

of the PPE equal to zero at these same points. That leaves V  * u |r = 0  which, as 

we show next, is “converted” to a boundary condition for the pressure p.

Note that we have yet to specify a boundary condition for the PPE in (2.2.4). 

It was shown in §1.2, by dotting the momentum equation with the unit normal
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n  , oriented in the coordinate direction, along T and again using u|p = 0 , that 

a natural candidate is given by the Neum ann boundary condition (1.2.5), which 

we reiterate here for easy reference,

However, enforcing (2.2.5) in (2.2.4) for the PPE requires evaluating the viscous 

term at the boundary which can be difficult in a discrete setting.

To explain the difficulty, assume the mesh is as depicted in Figure 2.1. The 

computational points are denoted by the symbol. Numerical approximations

r = rrU ry. We focus our attention along Tx. Since u  =  0 on T, a second order 

centered approximation of A u * n  at the (z, 0) grid point is given by

A u • n  =  Au

This requires a value for v at the (z, —1) grid point, referred to as a “ghost” point, 

whose value is unknown since it lies outside of the computational domain. The 

“ghost” points are indicated in Figure 2.1 by the “o” symbol.

To obtain a consistent approximation for we use the boundary condition 

V • u|p =  0. A second order centered approximation to V - tz at the (z, 0) grid 

point reads

where again we have used t t | r = 0 ,  which implies that we should take ut-t_ i =  u,-ti. 

Thus, to enforce discretely the Neumann boundary condition for the PPE in

(2.2.5)

to u  and p are defined only at these points, which includes all the points along

=  A hv +  0 ( h 2)

=  (u.,1 +  V i - 1)/h2 +  0 (h 2).

(2.2.6)

0 =  V -u

=  Dxu +  D vv + 0 ( h 2)

=  Dyv +  0 ( h 2)

=  K i  -  V i-\) /2h  +  0 (h 2),
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(2.2.4) at the (i, 0) grid point we use the approximation

_   ̂ 1 „ 1 2Vi i  „
(2.2.7) — A n n  *  — on IV

The same argument is applied along r y to define the “ghost” points there in order 

to approximate A u, giving

(2.2.8) h A u  n  a i i r v -  oa  r »

It is (2.2.7)—(2.2.8) that we refer to as the REBC. This completes the description 

of the spatial discretization used in the scheme.

For the tim e discretization, if we use an explicit discretization, a high order 

method must be used in order to avoid any cell Reynolds number constraint.

In practice we use the classical fourth order Runge-Kutta method, which can 

essentially be written as four forward Euler steps. These issues were discussed in 

detail in §1.3.2. Therefore, we illustrate the tim e discretization of (2.2.4) using 

forward Euler. The complete method is then given by:

(2.2.9) U ~  A t  U +  ^  =  j b AfcUn

and

(2.2.10) A*pn+1 =  - 2 ( D vun+1Dxvn+1 -  D xun+1Dyvn+l).

We see that the overall scheme is very simple. Given u n and p”, explicitly com

pute ttn+1 at the in terior points of 12* using (2.2.9), setting u n+1 =  0 on T. 

Then compute the righthand side of (2.2.10), noting that this expression is zero 

at points along T. Next, compute an approximation to the Neumann boundary 

condition in (2.2.5) using the REBC (2.2.7)-(2.2.8). Lastly, recover prt+1 at all 

points of f2* by solving the discrete PPE. This can be done using standard fast 

FFT solvers. Thus, the overall method is very efficient.
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2.3 Im plem enting Slip Boundary Conditions

The REBC scheme can easily be modified to handle the case in which a physical 

boundary slips, i.e., it moves with some prescribed velocity.

Refer once again to Figure 2.1. Suppose that the boundary Tx slips with a 

given velocity ub(x). The flow still must satisfy V  • u | r  = 0 ,  and (2.2.6) now reads:

0 =  V t i

(2.3.1) =  dxub(x ) \  n + D vv +  0 (h 2)

= |(>t 0) +(«.,i -  m,-i)/2k + o(h2).

The value of v at the (i, —1) “ghost” point is then taken to be

Vi,-i =  u,-,i +  2hdxub(x)

In this case the REBC at the (i, 0) grid point is given by:

where n  is the unit normal to T oriented in the coordinate direction.

Also, the righthand side of the PPE in (2.2.1) is no longer necessarily 0 along 

r x. We still have vx =  0, and V  • u | r = 0  tells us that vy =  —ux at any point of 

T. Then using (2.2.3), at the (i,0 ) grid point

V  • (tt • Vti) I =  2(dyudxv — dxudyv)
(2.3.3) l(Xi>0)

=  -2 (d xuh{ x ) f

2.4 Accuracy Checks

We now present accuracy checks for the numerical scheme outlined in §2.2. In 

§2.4.1 the general framework of the REBC scheme is applied to a ID model of the 

unsteady 2D Stokes equations. The usefulness of this model lies primarily in that
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the Stokes equations differ from the NSE only in the absence of the nonlinear con

vection term. Therefore, as long as consistent discretizations are used, any error 

in the computed solution is clearly attributable to an improper implementation 

of the pressure boundary condition. Additionally, in this simplified setting exact 

solutions are available, and these are used to determine the order of convergence 

of the numerical scheme.

In §2.4.2 we implement the REBC scheme (2.2.8)-(2.2.9) for the full 2D NSE. 

In this situation exact solutions are not available. To overcome this difficulty we 

choose tim e dependent functions for u  and p  and then add appropriate forcing 

terms to the NSE equations to ensure that our choices for u  and p  are exact 

solutions. By doing so we are able to determine the order of convergence of the 

numerical scheme applied to the full 2D equations. For both the ID and 2D 

results we measure the errors using standard discrete L1, L2, and L°° norms.

2.4.1 ID Accuracy Check: A  Simplified Model 

Consider the simple ID model on D = [ —1,1],

ut +  dxp  =  -  k2)u

(2.4.1.1) ~  k*)P =  0

u =  dxu =  0 , at x  =  —1,1.

Notice that the boundary conditions are a ID analogue of those found in (2.2.2) 

for the full 2D NSE. Solutions of (2.4.1.1) are the fc-th mode solution of the
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unsteady Stokes equations in the domain fi =  [—1,1] x  [0,27r] given by

“• + Vp = ikA“
(2.4.1.2)

tf =  0 on dCl

where u  =  (u, v); see [OIM]. The system o f equations (2.4.1.2) differs from the 

NSE only in that the nonlinear convection term is absent. However, the equations

viscous term that are found in the NSE.

For sim plicity we take k =  1 in all that follows. The exact solution of

(2.4.1.1) is then given by:

where /z satisfies /xtan/x +  tanh l =  0 and a  =  —{n2 + 1)/(Re). Again, see [OIM] 

for details.

Our finite difference discretization of (2.4.1.1) is simply an application of 

the REBC scheme to the ID model. Choose nx, let h =  2/nx, and define O/t =  

{ x i : Xi =  —1 +  ih  i  =  0 , l , . . . ,  nx}. Again, treating all terms explicitly, we step 

in time using

still embody the essential features of incompressibility and the presence of a

(2.4.1.3)

cos (p) cosh (x)
cosh( 1)

cos (/i) sinh (x)
cosh( 1)

(2.4.1.4)
un+1 — un

+  D.P" =  -  1)U"A t

and

(2.4.1.5) (D \ -  l)p"+ l =  0,
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with mo =  Un* =  0. The Neumann boundary condition for p, say at x  — —1, is 

approximated using

1 /o2 . 1 u i + u _ i  1 2mi

Px ~  R e ^  ~  Re  h2 +   ̂ ~  t o  /i2 ’

where we have used 0 =  u*(—1) =  (ui — u _i)/(2 /i) 4- 0 ( h 2) to obtain a value for 

u-i-  The same derivation follows at x  =  1. This is exactly the REBC for this ID  

setting.

For the accuracy check we implement (2.4.1.4)-(2.4.1.5) with R e= 100, and 

compute solutions for various values of nx until time t  =  2.0. Table 2.1 shows 

the absolute errors between the numerical solutions and the exact solutions given 

by (2.4.1.3). The method clearly achieves clean second order accuracy for both 

u and p.

Table 2.1: Absolute Errors for ID model at t  =  2
Tlx L 1 error order L2 error order L°° error order
32 8.80e-04 6.41e-04 5.12e-04
64 2.24e-04 1.98 1.63e-04 1.98 1.30e-04 1.98

u 128 5.63e-05 2.00 4.10e-05 2.00 3.27e-05 2.00
256 1.41e-05 2.00 1.03e-05 2.00 8.19e-06 2.00
512 3.52e-06 2.00 2.56e-06 2.00 2.05e-06 2.00
32 2.79e-04 2.28e-04 2.84e-04
64 6.70e-05 2.04 5.53e-05 2.03 7.04e-05 2.01

p 128 1.64e-05 2.02 1.36e-05 2.01 1.76e-05 2.00
256 4.08e-06 2.01 3.38e-06 2.01 4.39e-06 2.00
512 1.01e-06 2.00 8.43e-07 2.00 1.01e-06 2.00

2.4.2 2D Accuracy Check

We now present an accuracy check of the REBC scheme applied to the full 2D 

NSE. In general, exact solutions are not available for the 2D NSE. However, let
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Q =  [0, 2tt] x  [0 ,2%\ and

| u(x, y ,t)  =  — cos (t) sin2 (x) sin (y) cos (y) 

v(x, y, t) =  cos (t) sin (x) cos (x) sin2 (y) 

p(x, y, t) =  cos (t) cos (x) sin (y)

We ensure that (2.4.2.1) is an exact solution of (1-2.4) by adding appropriate 

forcing functions to the system. Note that we still have that u  =  («, v) satisfies 

V  • t t | r = u [ r = 0  at any time t.

We implemented the full REBC scheme (2.2.7)-(2.2.10) with Re  =  500, 

and computed solutions for various values o f w* (taking riy =  nx) until time 

t  =  6.0, allowing the solution to pass through 0 a number of times. Fourth 

order Runge-Kutta time stepping was used in order to avoid any cell Reynolds 

number constraint. In all cases the tim e step is determined by conditions given 

by (1.3.2.12), with CFL =  1.0.

Table 2.2 shows the absolute errors between the numerical solutions and 

the exact solutions given by (2.4.2.1), as well as the divergence of the computed

velocity field. As the grid is refined the method achieves clean second order

accuracy, as expected, for both u  and p, as well as the divergence.

2.5 Convergence Study: Cavity Flow

Formally the REBC scheme is second order accurate in space, and in §2.4 we saw 

that the scheme achieved this accuracy when implemented numerically in both a 

ID  and 2D setting. However, the exact solutions used for the accuracy checks are 

“well-behaved” test functions, and in no sense represent an actual physical flow. 

In this section we evaluate the performance o f the REBC scheme applied to the 

canonical Cavity Flow problem; see [PT]. The flow is computed on successively 

finer grids, and we take as the true solution the computation on the finest grid.
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Table 2.2: Absolute Errors for 2D NSE at t  =  6
nx L error order L2 error order L°° error order
32 7.05e-01 1.65e-01 9.54e-02
64 1.94e-01 1.90 4.77e-02 1.86 3.05e-02 1.77

div t i 128 4.97e-02 1.98 1.24e-02 1.96 8.29e-03 1.92
256 1.25e-02 2.00 3.14e-03 1.99 2.12e-03 1.98
512 3.13e-03 2.00 7.88e-04 2.00 5.33e-04 1.99
32 2.11e-01 4.91e-02 2.26e-02
64 5.66e-02 1.93 1.33e-02 1.92 6.26e-03 1.90

u 128 1.44e-02 1.98 3.40e-03 1.98 1.62e-03 1.97
256 3.62e-03 2.00 8.56e-04 1.99 4.07e-04 1.99
512 9.06e-04 2.00 2.14e-04 2.00 1.02e-04 2.00
32 2.11e-01 4.89e-02 2.17e-02
64 5.68e-02 1.93 1.33e-02 1.92 6.03e-03 1.90

V 128 1.45e-02 1.98 3.40e-03 1.98 1.56e-03 1.96
256 3.64e-03 2.00 8.54e-04 1.99 3.94e-04 1.99
512 9.10e-04 2.00 2.14e-04 2.00 9.87e-05 2.00
32 1.09e-01 2.18e-02 8.18e-03
64 2.68e-02 2.01 5.43e-03 2.00 1.96e-03 2.04

P 128 6.67e-03 2.00 1.36e-03 2.00 4.96e-04 1.99
256 1.66e-03 2.00 3.40e-04 2.00 1.25e-04 2.00
512 4.15e-04 2.00 8.51e-05 2.00 3.12e-05 2.00

This “converged” solution is then used to measure the convergence rate of the 

overall scheme.

The flow domain is 12 =  [0,1] x [0,1], with the no-slip boundary condition 

u = 0  applied along T=d£2, except along y = 1, which is allowed to slip with given 

velocity u&(x) =  16x2( l  — x)2. It is this boundary condition that drives the flow. 

The initial conditions for the velocity field u  =  (u, v) are given by:

f u(x, y, 0) =  16x2( l  — ar)2(3y2 — 2y)
(2.5.1) t

[ v(x, y, 0) =  -3 2 x (l — x)(2x — 1 )(y2 — y3).

The initial pressure p  is obtained by solving (2.2.10) with the REBC, taking 

into account the fact that the upper boundary slips. In this situation (2.3.2)-

(2.3.3) are now relevant. We computed this flow using the REBC scheme until 

a final time of t  =  5.0 for both Re =  1,000 and Re =  5,000. For all of the
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computations — riy. Fourth order Runge-Kutta time stepping was used for 

the time discretization, with the tim e step determined by the stability conditions 

given in (1.3.2.12), with C FL=1.0-

Table 2.3: Divergence Errors for Cavity Flow Re =  1,000 at t  =  5

n* L  error order X2 error order X°° error order
64 3.58e-02 5.18e-02 3.31e-01
128 9.32e-03 1.95 1.33e-02 1.97 7.12e-02 2.16
256 2.38e-03 1.98 3.40e-03 1.98 1.84e-02 1.97
512 5.98e-04 1.99 8.56e-04 2.09 4.64e-03 1.99

Table 2.4: Divergence Errors for Cavity Flow Re =  5,000 at t  =  5

n , X* error order L 2 error order X°° error order
64 2.22e-01 3.25e-01 2.41e-00
128 3.29e-02 2.60 6.08e-02 2.31 5.12e-01 2.05
256 8.58e-03 1.96 1.69e-02 1.90 1.67e-01 1.75
512 2.22e-03 1.96 4.46e-03 1.95 4.69e-02 1.89
1024 5.62e-04 1.99 1.13e-03 1.98 1.20e-02 1.97

Table 2.5: Relative Errors for Cavity Flow Re =  1,000 at t  =  5

Tlx X1 error order X2 error order X°° error order
64 6.06 e-02 6.24e-02 4.01e-02

u 128 1.53e-02 1.99 1.65e-02 1.94 1.17e-02 1.85
256 3.17e-03 2.20 8.56e-04 2.18 2.50e-03 2.17
64 6.54e-02 6.64e-02 7.44e-02

V 128 1.64e-02 2.00 1.72e-02 1.96 2.05e-02 1.90
256 3.40e-03 2.19 3.59e-03 2.19 4.37e-03 2.17
64 9.95e-02 l.lle -0 1 1.35e-01

p 128 2.99e-02 1.82 3.36e-02 1.82 4.18e-02 1.80
256 6.39e-03 2.16 7.20e-03 2.16 9.04e-03 2.15

For Re =  1,000 solutions were computed using n* =  64,128,256, and 512. 

Table 2.5 lists the errors for velocity components and pressure relative to the 

“converged” solution computed using n* =  512. In Table 2.3 we see that the 

divergence of the velocity field is clearly converging to zero at more or less the
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Table 2.6: Relative Errors for Cavity Flow Re  =  5,000 at t  =  5

n* L1 error order L4 error order L°° error order
64 3.40e-01 3.85e-01 3.60e-01
128 6.89e-02 2.22 7.32e-02 2.29 8.94e-02 2.01

u 256 1.90e-02 1.91 1.94e-02 1.94 2.10e-02 2.06
512 3.82e-03 2.23 3.88e-03 2.24 3.99e-03 2.29
64 3.87e-01 3.80e-01 5.55e-01
128 6.19e-02 2.50 6.22e-02 2.47 1.09e-01 2.26

V 256 1.76e-02 1.88 1.78e-02 1.87 2.87e-02 1.95
512 3.64e-03 2.20 3.67e-03 2.20 5.77e-03 2.23
64 4.92e-01 4.84e-01 4.29e-01
128 6.12e-02 2.83 6.53e-02 2.72 9.30e-02 2.15

p 256 2.01e-02 1.74 2.04e-02 1.79 2.82e-02 1.82
512 4.31e-03 2.16 4.36e-03 2.16 5.82e-03 2.20

expected rate. In Figure 2.2 is shown the vorticity field o f the “converged” 

solution computed to second order from the velocity field using u = D xv — Dyu.

At R e =5,000 solutions were computed using n* =  64,128,256,512, and 1024. 

Table 2.6 lists the errors for velocity components and pressure relative to the 

“converged” solution with n* =  1024. In Table 2.4 we observe, as was the case 

for Re  =  1,000, that the divergence of the velocity field is converging to zero at 

more or less the expected rate. In Figure 2.2 is shown the vorticity field of the 

“converged” solution computed, as above for R e = l ,  000, from the velocity field.

2.6 Comparison with Second Order ( a tp) 

Cavity Flow Com putations

In this section we compare computations of the canonical Cavity flow problem 

presented in §2.5 to solutions obtained using a spatially second order accurate 

discretization of the vorticity-stream function formulation (1.2.9) of the NSE. 

The objective is to determine whether or not the computations using the REBC
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Figure 2.2: REBC Cavity Flow
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scheme are converging to the true solution. This goal is realizable due to the fact 

that convergence of the above mentioned (u/, ip) scheme as implemented here has 

been proven analytically; see [HW] and [WL].

Recall that the domain is ft =  [0,1] x  [0,1], with the no-slip boundary con

dition u  =  0 applied along T =  dft, except along y =  1, which slips with velocity 

Ub(x) =  16x2( l  — x)2. The standard centered second order discretization of (1.2.9) 

is given by:

(2.6.1)

u t  +  ( u  * V fc)u/ =

&hip =  -w , ip\r  =  0, 

u — Dylp, v =  —Dxip.
      y

As before, A* =  (D^+Dy) is the 5-point discrete Lapladan, and V* =  {Dx, Dv) . 

Note that the homogeneous Dirichlet boundary condition has been enforced for 

the Poisson equation in (2.6.1). The Neumann boundary condition for ip in (1.2.9) 

is “converted” into a local boundary condition, Thom’s formula [TH], for w; see 

[ELI]. This is given by, say along y = 0 ,

(2.6.2) ujqj =
(A  x)2'

This should be compared with the REBC (2.2.8). In fact, it was precisely the 

derivation of (2.6.2) which motivated the development of the REBC. A easily 

derived modification to Thom’s formula is needed along y = 1, given by

_ 1 , M X ) \

to account for the fact that this boundary slips with velocity u&(x). For the (w,^) 

formulation the initial data is given directly in terms of the stream function ip by

ip(x, y, 0) =  16(y3 -  y2)x2( l  -  x )2 =  (y3 -  y2)ub(x).

We computed the flow for both R e = 1,000 and R e —5,000 using (2.6.1)-(2.6.2), 

until time t = 5.0, using the same grid sizes as for the REBC scheme computations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

in §2.5. As before, RK4 time stepping was used for the time discretization, with 

the tim e step determined by the stability conditions given in (1.3.2.12), with 

CFL =  1.0.

Table 2.7: Relative Errors REBC vs. (u/, if>) Re =  1,000 at t  =  5

nx L 1 error order Z/2 error order L°° error order
64 6.60e-02 6.93e-02 4.45e-02
128 1.65e-02 2.00 1.77e-02 1.98 1.28e-02 1.87

u 256 4.23e-03 1.97 4.59e-03 1.97 3.41e-03 1.94
512 1.07e-03 1.99 1.16e-03 1.99 8.66e-04 1.98
64 7.11e-02 6.99e-02 7.39e-02
128 1.58e-02 2.12 1.66e-02 2.05 2.03e-02 1.91

V 256 3.91e-03 2.01 4.22e-03 1.99 5.39e-03 1.94
512 9.79e-04 2.00 1.06e-03 2.00 1.37e-03 1.98

Table 2.8: Relative Errors REBC vs. (u/, ip) Re =  5,000 at t  =  5

n* L l error order I?  error order L°° error order
64 4.23e-01 4.64e-01 4.00e-01
128 5.38e-02 2.81 6.09e-02 2.76 7.41 e-02 2.32

u 256 1.36e-02 1.99 1.56e-01 1.97 1.78e-02 2.04
512 3.61e-03 1.94 4.16e-03 1.94 4.42e-03 2.01
1024 9.21e-04 1.98 1.06e-03 1.98 1.10e-03 2.00
64 5.26e-01 5.12e-01 7.47e-01
128 5.45e-02 3.11 5.62e-02 3.02 9.86e-02 2.75

V 256 1.41e-02 1.97 1.44e-02 1.98 2.60 e-02 1.95
512 3.69e-03 1.96 3.81e-03 1.95 7.19e-03 1.90
1024 9.34e-04 1.99 9.68e-04 1.98 1.85e-03 1.97

In Table 2.7 are shown the relative errors, with the (a>,ip) computations 

taken as the true solutions, for the components o f the velocity field at R e = 1,000. 

As the grids are refined, not only are the computations of the two methods con

verging to  the same solution, but there is clearly clean second order convergence. 

This is even true in the L°° norm, which is quite unexpected. In Table 2.8 the 

relative errors are shown, again with the (cj, if)) computations taken as the true 

solutions, for the components of the velocity field at R e = 5,000. More or less the
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same convergence behavior is seen as in the Re  =  1,000 case. Note that rather 

than comparing the REBC solutions with a single (u/, ip) computation using the 

finest grid size, we have compared solutions using the same grid sizes. This was 

done in order to gauge whether or not the second order divergence errors present 

in the REBC scheme (recall that the (o>, ip) computations are divergence-free to  

machine precision!) significantly affect the overall flow dynamics. This does not 

appear to be the case for the Re =  1,000 simulations. However, there does seem  

to be an indication o f such affects in the computations at R e = 5,000 as evidenced 

by the slightly greater relative errors between solutions on the coarsest grids.

Finally, in Figure 2.3 the vorticity contours are shown at the final tim e 

t  =  5.0 for both computations on the finest grids. They are clearly in excellen t 

agreement with the results of the REBC simulations shown in Figure 2.2.
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Figure 2.3: Second Order (w, ip) Cavity Flow
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CHAPTER 3
FINE GRID PATCH: FLOW AROUND A

CYLINDER

3.1 Introduction

la  this chapter new developments are presented for a class of fourth order Es

sentially Compact methods (EC4), originally developed by E and Liu [EL2], for 

solving unsteady viscous incompressible flows in the vorticity-stream function 

formulation. A novel fine grid patch mesh refinement technique, which is easily 

incorporated into the original EC4 scheme, is developed. Its use results in a 

dramatic increase in computational efficiency, particularly for the case of flows 

at high Reynolds numbers. It is important to note here that implementation of 

the fine grid patch does not preclude us from using standard fast Poisson solvers 

for solving the Poisson-like equations which arise in the scheme. In addition, we 

present results of the use of a very effective far-field boundary condition for the 

stream function, derived from a high order expansion in terms of moments of the 

vorticity [Ti].

As a detailed illustration of an application of the above mentioned method

ologies, we present high resolution benchmark quality computations of the flow 

past an impulsively started circular cylinder for Reynolds numbers ranging from 

1,000 to 100,000. Even at the considerably high Reynolds number of 100,000 

the flow is completely resolved.
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3.2 Problem  D escription

34

Our interest is the development of an efficient finite difference scheme for comput

ing the viscous incompressible flow around an impulsively started two dimensional 

cylinder. The physical description of the problem is as follows: A circular cylinder 

of diameter D  is placed into a viscous fluid. The cylinder is then instantaneously 

accelerated (impulsive start), in a direction normal to  its axis, to a constant ve

locity. Assume that the cylinder is so long as compared to its diameter that 

the ends have no effect upon the resulting flow. This reduces the problem to 

describing the flow in any plane normal to  the cylinder.

The impulsively started cylinder problem described above has been exten

sively studied as a prototype of unsteady separated flows; see the review in [KL]. 

Even though the geometry of the problem is what might be considered simple, 

very complex fluid motions resuit, especially as the Reynolds number is increased 

(which one can think of loosely as corresponding to a reduction in the viscosity of 

the fluid). Most notably the flow begins to  exhibit unsteady boundary layer sepa

ration, which in turn triggers subsequent vortex shedding from the surface of the 

cylinder. It is primarily these flow structures that determine the time-dependent 

forces, in particular the drag, “felt” by the cylinder. Hence, computational meth

ods provide an invaluable tool for studying such flows.

3.2.1 Equations o f M otion

Our starting point is the non-dimensionalized vorticity-stream function formula

tion of the NSE, which when expressed in polar coordinates reads:

duj (  v \  ( du duj\ 1 ( l  d  (  d u \  1 &*uj\
W  +  («■ 7)■  ( * •  m  j  =  K  { 7 a 7  { r a 7 )  +  ■

/ o  n i  1  ^  \  1

(  ̂ 7  dr  V dr )  +  7*60* ~  - a /’
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on the infinite domain {(r, 9) : 0 <  rmin <  r  , 0 <  9 <  2tt}. The quantity u; is 

the vorticity, V* the stream function, and u and v  are the radial and tangential 

components o f the velocity, respectively. The non-dimensionalization is based 

on the cylinder diameter 2rmtn, the free-stream velocity at infinity ««,, and the 

kinematic viscosity u, giving Re  =  (2rmtnu00)/i/ .

Applying the change o f variable z =  ln r to (3.2.1.1)-(3.2.1.3), and writing 

the convection term in conservative form gives

hence rmin =  1. The computational domain Q extends to a distance of which 

will vary due to  considerations such as the magnitude of the Re., as well as the 

final time o f the simulations, i.e., short .vs. long time simulations. The finite 

difference grid for f2 is equi-spaced with respect to both the z  and 9 directions.

equations, but naturally results in a higher density of grid points near the surface

(3.2.1.4) 2z du} de — - +  —
dt d z

cPu dPv 
~ d # + ~d¥ ) ■

(3.2.1.5)

(3.2.1.6)

where (U, V ) =r(u ,  v). We compute the flow around the cylinder using this form 

of the equations.

3.2.2 Computational Grid

All of the computations presented are for flows around a cylinder of radius 1,

The use of the change of variable z  =  In r therefore not only simplifies the flow
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Figure 3.1: A Representative Grid for 12

of the cylinder, exactly where they are needed to resolve the viscous boundary 

layer. The flow is only computed around the upper half of the cylinder, with 

symmetry boundary conditions applied along the horizontal line of symmetry. 

The computational grid 12 consists of the points defined by

12 =  {(zi,9j) : Zi =  iA z ,  i  =  0 , 1 , . . . ,n r, 8 j = j A0, j  =  0 ,1 , . .  .,n®}

where A z  =  Qnrmax) /n z , A 8= ir /ne ,  and nz and n« are the number of grid points 

in the z  and 8 directions, respectively. Boundary segments of 12 are denoted as 

follows: rrmin corresponds to the cylinder surface, rrmax the outer radial boundary, 

and Ii0 and Is, are the segments along the symmetry line. A representative grid 

12 is shown in Figure 3.1.

3.2.3 Spatial Discretization

The spatial discretization of (3.2.1.4)-(3.2.1.6) follows the general methodology of 

EC4 given in [EL2]. Treating tim e as continuous, we formally discretize (3.2.1.4)-

(3.2.1.5) in space to  fourth order using the compact finite difference operators
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(1.3.1.6) and (1.3.1.8), giving

(3.2.3.1) A *  +  ( T T § 5 S )  +  (V -)

W|-  1 (  Di I D > )
R e { 1 + ^ i D i +  l  +  ^ . D 2 )

(3 Z3 2> ( l  +  +  1 +  ^ D ? )  *  =  _e2""'

Recall that D  and D 2 denote the standard second order center difference approx

imations for the first and second derivative, respectively; see §1.3.1. The dis

cretizations (3.2.3. l)—(3.2.3.2) must now be manipulated, while preserving fourth 

order accuracy, to produce a system that can be implemented computationally. 

Define the auxiliary variable uJ by

(3.2.3.3J ZT =  ( i  +  i  ((A a)2D f +  ( A ( e 2‘w)  .

Multiplying (3.2.3.1) and (3.2.3.2J by (1 +  i ( ( A * ) 2D f +  (A #)2£>|)), and ignor- 

ing high order terms, we have

U, +  D,(l + m tDfj(Uw) + D»( 1 + Vu)
(3.2.3.4) ~ i ( ( A  z f D l  +  (&S)2D l)(U D ,u  +  VDaui)

(3.2.3.5) (A(i,9) +  i ( ( A  z f  +  (A »)2)D fD 2)v. =  -S i,

where &(z,e) =  +  ̂ 1) denotes the standard 5-point Laplacian. Above we have

used the fact that

5 r  ( 1  +  =  D , ( l -  +  O  ((A z )‘) ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

and the analogous formula for the 9 derivative. Also note that, due to incom

pressibility, to second order

D z{Uu) +  Dg(Vuj) =  UDzu  +  V D eu.

This is required to give the final form of the second line o f (3.2.3.4), which avoids 

the use of a long stencil approximation near the boundary. The velocity compo

nents in (3.2.1.6) are recovered using the fourth order long stencil approximation

(1.3.1.5):

(3.2.3.6) U =  D»(  1 -  V  =  - D ' ( l  -

3.2.4 Numerical Boundary Conditions

To implement (3.2.2.3)-(3.2.2.6), numerical boundary conditions fora;, ip, U, and 

V  must be prescribed which are consistent with the physical problem. Along Iio 

and straightforward symmetry conditions are implemented. Along Î m{n and 

Trmo,  the issue of proper boundary conditions is significantly more involved. We 

start with the vorticity ui.

The subject of vorticity boundary conditions in the context of finite differ

ence schemes for the NSE in the (u/, ip) formulation has a long history, beginning 

with Thom [Th]. A detailed discussion of this issue in the context of modern nu

merical methods can be found in [ELI]. Following the prescription found there, 

we derive a numerical boundary condition for u> as follows: as was discussed in 

§1.2, it is natural to impose the boundary conditions

(3.2.4.1) * |  = 0 , J ^ - | = § £ |  = 0 ,
o n  lr rm,-n O Z  lr rmjn

on the stream function. To evaluate the vorticity along r rmi7i, we use a centered 

fourth order approximation of ui — —Aip =  —ipzz (noting from (3.2.4.1) that
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ipM =  0 along the surface of the cylinder):

(3.2.4.2) o/0j  =  ^  ^  (l6 (^ _ ij  +  rpij) -  (ip-2j  +  f o j ) )  -

Using a fourth order one-sided approximation and a fourth order centered ap

proximation to dip [ d z  along r rmin we derive values for the “ghost” points ip - ij  

and ip-2j ,  given by

(3.2.4.3) =  +  ^  ~  * * *  ’
=  40fcj -  15V-2J +  i* 3J -  20Az ( | f ) o j ,

where we have used, according to (3.2.4.1), Tp0j =0 .  Plugging these into (3.2.4.2), 

and again using (3.2.4.1), we obtain

(o o A _  108^1J -  27ip2j +  4ip3d
(3.2.4.4) °J ~ ------------- I i ( A ^ -----------’

which is known as Briley’s formula; see [ELI].

To prescribe values for u  along r r a simple outflow boundary condition

is used:

— SWnt- 2 j  +  j  =  0 ,. . . ,  Tlz / 2

(3.2.4.5) =
0 j  — (nz/ 2) ■+■ 1 , . . . ,  nz.

In order to solve the Dirichlet problem (3.2.3.5) we must prescribe boundary 

values for ip along I \  The no-slip condition in (3.2.4.1) gives ip =  0 along 

Imposing a symmetry condition along r,„ and r0w also gives ip = 0. The difficulty 

arises along the far-field boundary rrm<jx. The true physical flow domain is infinite 

and one must impose a boundary condition that accurately “mimics” this fact 

in a computational setting. We have found that the choice of far-field condition 

for ip dramatically affects the character and measured physical parameters of the 

computed flow.
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We investigated the use of 2 far-field boundary conditions for rp:

tp(r, 0) =  Uoo(r — r-1) sin 0 (PBC)

(3.2.4.6) = u 00r sin tf+  iE ^ iiG « r -" s in (n tf), (ISBC)

where Gn =  fn uj(r, 0)Pl+1 sia(n0) drdd.

The first boundary condition results in the case where the flow is assumed to be 

irrotational, and is referred to as the potential boundary condition (PBC). O f the 

two conditions above we found the ISBC, the integral series boundary condition 

of Sa and Chang [SC], originally developed by Ting (see [Ti], [TK]), to be far 

superior. W hile the PBC requires no additional work other than initialization, 

the computational results vary greatly, in particular the calculated physical pa

rameters, depending on the choice of rmai. For instance, for the impulsive start, 

only the ISBC produced consistent coefficient of drag computations as r^,* was 

varied (see §3.4.3).

For completeness we include here a derivation of the ISBC for our particular 

flow setup. Consider the Poisson equation for the stream function

(3.2.4.7) =  - v

in fi =  {(r, 0) : 0 <  rmtn <  r <  oo, 0 <  0 <  27r}. Note that Q now represents 

the full exterior of the disc. Denoting r =  (r,0) and r0 =  (r0,0O), the solution of

(3.2.4.7) with free-stream velocity (ti,*,, i>oo) at infinity is given by

^ (r) =  «c»r sin 0 -  voorcos0  -  j f  v f a )  ln(ll*o ~  r||)rfSb ,

where [fro — r|| is the standard Euclidean distance between ro and r. Consider 

the function

=  / j ^ a,(r° ) ln (llro — rII)rf-So-

Identifying points in the plane with complex variables, i.e., z= re x p (i0 ) , we have
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that

0(z) =  ln (z -z „ M 2 0)d5„)

(3.2.4.S) =  ^ S ( / X to (2:( 1 ~  f  ) ) “ (*>)<>$>)

= to (zM *>)dS0 +  ffn In ( l  -  ^ ) a l(20)dSo),

where i t  denotes the real part of the expression. For the second integral in the 

last equation of (3.2.4.8), since ||ao|| <  \\z\\, we can use the expansion

k= 1

Substituting this into (3.2.4.8), interchanging the order of integration and sum

mation, and using

^ ( ~ )  =  r *(ro cos W o)  cos (k0) +  r* sin (k0o) sin (k0)J, 

we have, re-expressing 0 in terms of (r, 0), that 

<Hr> #) =  ' ^ f f a in (rM ro , 0o)dSo

(3.2.4.9) - £ ( i t i I L r° COS(Wo)“ (ro' <=“  (*»)

~  J  fa  r® sin (M o)v(r0,0o)dSo)r~ k sin (k9).

Since we are assuming that the flow around the cylinder is symmetric, the first

two terms of (3.2.4.9) are 0. Using 5 terms from the last sum for 0  along with

(uooj^oo) =  (1,0) gives the ISBC (3.2.4.6), a 0 (r~ 6) approximation to  0  along 

r̂Tmax *
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For the velocity components U  and V, (3.2.4.1) implies

(3.2.4.10) U \  = K  = 0 .
rmiii

Computing U  along using (3.2.3.6) presents no problem due to the assumed 

symmetry of the flow. However, using (3.2.3.6) to  recover V ij for i =  nr_ i, nz 

would require values o f ^  beyond the far-field boundary. To avoid this we use 

second order centered and one-sided approximations for —ipz, respectively, to 

compute V. Doing so does not result in any loss of accuracy of the overall method 

since the velocity is for the most part constant at the far-field, particularly in the 

case of short time simulations. The exceptional case is applying (3.2.3.6) to 

compute V ij, which requires values for ip -ij, for which we use (3.2.4.3), giving

(3.2.4.11) K j  =  - g f o + 9 f o - * M ,
v ’ °  18A0

3.3 Fine Grid Patch and Tim e Stepping

It is well known that resolving boundary layers in high Reynolds number flows 

is of the utmost importance since it is primarily the dynamics o f the boundary 

layer that determines the overall characteristics o f the flow. This is especially 

true for the flow around a cylinder since the flow dynamics are determined by 

the rollup and eventual separation of the boundary layer along the rear of the 

cylinder surface.

The simplicity of EC4 allows us to easily incorporate a fine grid computa

tional patch (FGP), denoted by Qp, into the overall scheme. For the flow around 

a cylinder, we use a fine grid patch along the surface of the cylinder, extending to 

an outer radius of rmaip <  r ^ .  Simply put, at each tim e step lj and ip, as well as 

being computed on the coarse grid Q, are computed on the fine grid Qp. Bound

ary values on the outer boundary of the patch, denoted by are obtained
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by simple interpolation of the corresponding, just computed, values on the coarse 

grid 12. The flow variables u  and ip on Q are then overwritten with a smooth 

combination of the values from both grids at common points. The benefits are 

clear. Not only do we get increased resolution exactly where we need it, but we 

can then select a coarser grid for fl. This results in a significant computational 

savings when compared to using a computational grid 12 with fine resolution over 

the entire domain.

and Cl rp

Figure 3.2: Coarse Grid 12 and Fine Grid Patch Clp

The geometry of Qp is defined by rmaxp, A z, and A 0, which are, respectively, 

the outer radius of Clp, and the mesh size in the z  and 9 directions. We determine 

rmaxp by rmaxp =  e^Azj/Zoctor  ̂where fa c to r  is problem dependent. The choice of 

factor  is mainly influenced by the the Reynolds number and one’s wish to insure 

that the grid sizes on which the FFTs are performed are products of powers of 

small primes. Therefore, Clp is given by

ClP =  { (* ,9 ; ) :  Z i =  iA z , i  =  0 , 1 , . . . ,n z, 0, =  jA B , j  = 0 , l , . . . , n * } ,

where A z  =  A z/2 , A0 =  A 0/2 , n2 =  (2 nz) / factor, and ng =  2ng. A representa

tive grid showing both f2 and Clp is shown in Figure 3.2.
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We now outline, illustrated using forward Euler, the complete implementa

tion of (3.2.3.3)—(3.2.3.6) in conjunction with the use of a fine grid patch. As 

was discussed in §1.3, in practice the classical Runge-Kutta method is used for 

the time discretization for both efficiency and to avoid any cell Reynolds number 

constraint. Flow variables on Sip are denoted by & ,ip , U , and V, and z'm denotes 

the t** coordinate of the points on SI that correspond to r rmaxr, the outer radial 

boundary of Sip.

T im e-stepp ing: Given and we compute {uJ/j-1} and {u/,”*1}

via the following steps:

Step 1. Solve for {ip ij}  in the interior of ft from

+  Y J « A z )! +  =  -5 7 ”

with boundary conditions

i H  = o , = b c ,
rmin lir "a»

where BC is one of the far-field boundary conditions for ip discussed in §3.2.4.

All of the main results in §3.5 employ the ISBC (3.2.4.6) to compute ip at the 

far-field.

Step 1.1 Solve for {ip?j} in the interior of Sip using

(A(.,) + ^((A2)2 + (AS)2)Z>2Z>J)i%- = -S ”.

with boundary conditions
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Step 2. Solve for in the interior of ft using

( l  +  i  ( ( A z f D l  +  (A «)*d J)) ( « X )  =

and recover u)n along from ipn using Briley’s formula (3.2.4.4). Along rrmax

the outflow condition (3.2.4.5) is applied.

Step 2.1 Solve for {££,-} in the interior of ftp using

( l  +  ((A2)2£>f +  (A#)*D!)) (e2̂ )  =  3 ”-,

and recover u n along rrmifi from ipn using Briley’s formula (3.2.4.4). Values for

ujn along rrmaip are computed by interpolating u n as was done in step 1 . 1  for ipn.

It is important to note here that each of the discrete Poisson-like equations 

that appear above have constant coefficients. Hence, the solution of each may 

be obtained very efficiently using standard fast FFT-based solvers. At this point 

the only coupling between the flow variables on f t  and f tp  has occurred along 

r rmaxp- We now overwrite, at common grid points, u) {ip) on ft with a smooth 

combination u> and lj {ip and ip) on the intersection of ft and ftp- We illustrate 

this procedure for u/.

Step 3 Overwrite un {ipn) on ft fl ftp.

Recall that above we denoted the z** coordinate of the points on ft that lie along 

Trmazp by We now overwrite ujn as follows:

^2i,2j 1 = 0 , . . . ,  Zm/ 2

uj?j  =  < (! -  S {i))u ^ j  +  S{i)uj?d i =  (zM/ 2) + 1 , . . . ,  iM -  1

for j  =  0 , . . . ,  ri0 , where

^ arctan(27r(e*Az — e'wAl/2 )/(e ,wAz — e*MAz/2) — 7r) -f- arctan(7r)
W ~  2arctan(7r)
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Here (e*Ar — e,MAz/2) is the radial distance from the current point to r=e*wAz/2, 

and (e’MAz — e***^2) the radial width of the outer portion of fip on which u/n is 

replaced with a convex combination of u/n and Qn. S (i) varies smoothly from 0 

to 1 as i varies from i'm/2 to i« . Exactly the same procedure is used to overwrite

•0n.

Step 4- Recover the velocity components {{7/j} and using 

U*. =  D .( i  -  =  - 0 , ( 1  _

with the boundary conditions

t ^ l r  = ^ | r = 0 -
rmm 11 •’mm

When i  =  1, (3.2.4.11) is used for V*. As discussed in §3.2.4, second order 

approximations are used to recover Vn at the far-field.

Step 4-1 Recover the velocity components {(/," } and {V#” }  using

=  5 « (1 ~  K" =  - 5 , ( i  -

with the boundary conditions

5 ” |r =  ? * |r =<>•
rmm 'nun

Again, we use (3.2.4.11) for V n when i =  1, and both Un and V n are recovered 

along Trmazv by interpolating Un and VB; see step 1.1.

Step 5 . Update {uJ/j'1} in the interior of 12 using

A t ^  +  5 l ( 1 +  o  +  5 ,( 1  +  «&)

- ± ( ( A z)2D2z +  (A«fDS)(VZ +  VPj Dtu*j)

l-(±  l « A z)i  +  (AII), ) n W l  .-  H--------------- D zDe)Uij-
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■=rn+l-,Step 5.1 Update {5,” } in the interior of Op using

1 w + « 2\ ̂  * « ~,r\ 2

+g.(i + S") + 5,(1 + ̂ - d?)(v™. a?.)

--j((Af)2̂  + (a»)2dJ)(^. 5, a", + v™. D.afj)

/  . ((A z)2 4- (A 0)2) _  -  _n
=  ^(A (m) 4- ■ ■ v DlEfgjuj^j.

The implementation o f the fine grid patch in conjunction with EC4 requires 

no additional numerical tools other than standard interpolation. N O  coupled 

grid Poisson solver is required. The same fast FFT-based solvers that are used to 

solve the Poisson-like equations which arise on both 12 and Clp. Also, since we are 

using the (a;, ip) formulation the velocity field is automatically divergence free. 

The simplicity, high accuracy, and robustness of the EC4 scheme is preserved.

Obviously, the use of the fine grid patch has a cost in terms of additional 

computational time. In order to ensure stability we must have

<  CFL, 4 < /|£  <  1.0,

where a is the maximum velocity present in the flow and CFL <  1.5; see §1.3.2. 

When employing the fine grid patch h =  min{ A z, A 0}, resulting in a A t that is 

half of what it would be if  we did not use the patch. Although this doubles the 

number of tim e steps required to  reach a given tim e t, the fine grid patch allows us 

to concentrate our computational effort per tim e step along the cylinder surface. 

Computational evidence o f the effectiveness and the resulting gain in efficiency 

when the fine grid patch is used, is given in §3.4.2.
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3.4 Algorithm Testing

Before presenting the results of numerical simulations of the flow around a cylin

der we first evaluate the performance of the method applied to a variety o f test 

problems. In particular, we are interested in determ ining the overall accuracy of 

the method as well as the effectiveness and resulting efficiency, if any, of using 

both the FGP, outlined in §3.3, and the ISBC (3.2.4.6). In order to answer each 

of these questions we focus on the computed vorticity field v , and physical char

acteristics of the flow deduced from it, namely, the coefficient o f drag (denoted 

by Co) and points along the cylinder surface of zero shear stress.

We compute the C o  from u; using the following two formulas (see [KL]):

(3.4.1) C o  =  — 2-rr [  u (z ,9 ) sin.9e3zdzd9,a t J n

(3.4.2) Co =  — 2u f*  ~ (O ,0 )s in 0 d 0  +  2i/ uj(0,9) sin 9 d9.
Jo o z  Jo

The derivative in the first term of (3.4.2) is approximated to second order via a 

one-sided formula, and numerical quadrature in the form of the trapezoidal rule 

is used to approximate the integrals appearing in both formulas. Since (3.4.1) 

requires integration over all of Q we will refer to it as the global method, while

(3.4.2) only involves integration along the cylinder surface and will be referred to 

as the local method. Note that the first term in (3.4.2) is the contribution to the 

Co  due to pressure, and the second term the contribution due to friction. An 

excellent measure of the overall quality of the computational results is the ability 

of our scheme to accurately compute the time evolution of the coefficient of drag 

for a large range of Reynolds numbers.
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Further useful information deduced from, the vorticity field is provided in

stress, i.e., points where uj= 0. In the case of a  steady flow these points coincide 

with points of separation, while for unsteady flows this information proves quite 

useful in understanding the dynamics of the boundary layer.

We present accuracy checks of the vorticity uj for a test flow at Re =  1000, with 

free-stream velocity =  1, until tim e £=3.0. The computational domain extends 

to rnMZ=  3, which is more than sufficient to capture the vorticity field up to the 

final time. Both impulsive and smooth startup scenarios are investigated, as well 

as results obtained with and without the use of a  F6P. Since the largest gradients 

of the vorticity occur along the cylinder surface, we measure the error both there 

as well as over the interior of the computational domain. The following discrete 

L2 and L°° norms are used:

We simulate a smooth startup by using the PBC, discussed in §3.2.4, for

A computation on a 512x2048 grid is taken as the “converged” solution. In 

Table 3.1 the relative errors at £ =  3.0, as the grid size is varied, are shown. In 

the interior of the computational domain the scheme achieves more or less fourth

the form of the time evolution of points along the cylinder surface of zero shear

3.4.1 Accuracy Checks

I M U i n t  =  “ a x  | w y |  ,  I M I oo,m  =  * [ » «  M

the far-field boundary condition for ip, which is multiplied by a time dependent 

function that varies smoothly from 0 to 1 as £ varies from 0 to oo:

i>(rmax, 0, £) =  (1 -  e ‘Voo(TW c -  r^ J sin tf.
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order accuracy. Along the surface of the cylinder there is seen a slight loss of 

accuracy. This is true for both the L2 and L°° norms.

Table 3.1: Relative Errors: Smooth Start without Patch
Interior Boundary

L2 L°° L 2 L°°
grid error order error order error order error order

32x128 1.37e-02 9.78e-03 1.63e-02 2.02e-02
64x256 1.15e-03 3.46 8.15e-04 3.46 6.12e-04 5.16 8.92e-04 4.76

128x512 8.41e-05 3.69 5.81e-05 3.74 2.78e-05 4.69 3.62e-05 4.97
256x1024 5.50e-06 3.91 3.81e-06 3.90 1.95e-06 3.77 2.53e-06 3.78

Table 3.2: Relative Errors: Smooth Start with Patch
Interior Boundary

L2 L°° L2 L°°
grid error order error order error order error order

32x128 6.45e-03 4.49e-03 4.41e-03 4.36e-03
64x256 4.39e-04 3.84 3.21e-04 3.74 2.83e-04 3.95 2.73e-04 4.00
128x512 2.55e-05 4.15 1.87e-05 4.15 1.70e-05 4.08 1.70e-05 4.01

Table 3.3: Relative Errors: Smooth Start P .vs. NP

grid
Interior Boundary

£ 2 L°° L2 L°°
32x128
64x256
128x512

256x1024

1.39e-02
1.06e-03
7.72e-05
5.35e-06

1.61e-02 
9.78e-04 
6.94e-05 
4.48 e-06

1.42e-02
5.31e-04
2.83e-05
2.32e-06

1.83e-02 
7.60 e-04 
3.21e-05 
2.49e-06

In Table 3.2 are shown the relative errors at t  =  3.0 of simulations using 

the F 6P . In this case, a computation using a 256x1024 coarse grid is taken as 

the “converged” solution, and for each simulation fa c to r= 4, with the resolution 

of f2p twice that of Q. W ith the use of the FGP the scheme achieves more or 

less fourth order accuracy in the interior as well as along the boundary. This is 

clearly due to greater grid resolution in the boundary layer provided by the FGP.
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An important question is if the computations with and without the FGP are 

converging to the same solution. In Table 3.3 the relative errors of computations 

with and without the FGP are shown. In computing the relative error we have 

taken the FGP computations, for each grid, as the converged solution. As we can 

see, all of the computations are converging to the same solution.

Table 3.4: Relative Errors: Impulsive Start without Patch

Interior Boundary
L2 L°° L'1 L°°

grid error order error order error order error order
32x128 3.37e-02 2.20e-02 2.70e-02 5.94e-02
64x256 3.57e-03 3.07 3.36 e-03 2.56 1.12e-03 4.90 2.56e-03 4.81

128x512 2.67e-04 3.66 2.47e-04 3.69 6.57e-05 4.14 1.38e-04 4.31
256x1024 1.82e-05 3.84 1.50e-05 3.98 5.04e-06 3.61 1.21e-05 3.37

Table 3.5: Relative Errors: Impulsive Start with Patch

Interior Boundary
L°° Ll L°°

grid error order error order error order error order
32x128 2.49e-02 1.94e-02 9.84e-02 1.04e-02
64x256 2.78e-03 3.00 2.99e-03 2.55 1.02e-03 3.10 1.15e-03 3.00
128x512 2.15e-04 3.59 1.95e-04 3.92 1.06e-04 3.10 1.15e-04 3.17

An impulsive start is modeled by directly implementating the PBC to pre

scribe values for xp at the far-field boundary. This startup scenario presents a 

tremendous challenge to numerical schemes in that the method must accurately 

capture the very thin vortex sheet that immediately forms along the surface of the 

cylinder; see [TE]. We again performed computations of the test flow with and 

without the FGP. The same grid parameter ranges were computed as above in the 

sm ooth startup case, and the same grid sizes were used to compute “converged” 

solutions.
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Table 3.6: Relative Errors: Impulsive Start P .vs. NP

grid
Interior error Boundary error
L 2 L°° L l L°°

32x128
64x256
128x512

256x1024

2.61e-02
2.39e-03
2.45e-04
2.76e-05

3.24e-02
2.91e-03
2.30e-04
2.68e-05

2.59e-02
1.39e-03
1.32e-04
1.58e-05

5.78e-02
3.03e-03
1.99e-04
2.58e-05

Table 3.4 shows the relative errors of solutions computed without the FGP. 

We see that close to fourth order accuracy is achieved in the interior of the 

flow domain, with a slight loss of accuracy along the cylinder surface. Similar 

performance results when the FGP is used, as demonstrated in Table 3.5. Finally, 

Table 3.6 lists the relative errors of solutions obtained with and without the FGP, 

where again, the FGP computations are taken as the “converged” solution for 

each grid. As in the case of a smooth start, all of the simulations are seen to be 

converging to the same solution.

3.4.2 Performance of the Fine Grid Patch

To evaluate the effectiveness of the FGP we compare solutions of a flow at R e =  

9500 until t  =  10.0, with fl extending to =  8.0. The ISBC (3.2.4.6) is used 

to compute the far-field boundary condition for ip. One solution was computed 

using the FGP, and three without the patch on grids with increasing resolution. 

Table 3.7 lists the grid sizes for each of the computations, along with the CPU 

time required on a single processor of a CRAY T90. For run P, A z  =  2Az, 

A 0 = 2 A 0 ,  and f a c to r = 4, resulting in the FGP extending to 1.68.

In Figure 3.3 the time evolution of the coefficient of drag is shown, computed 

using the global method (3.4.1), for each of the simulations. All are in good 

agreement up until t  ss 6.2, with runs P and NOPFINE in excellent agreement 

through to the final time t  =  10.0. While the NOPMFINE run uses a relatively
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Table 3.7: Run Parameters for FGP Evaluation
Run fi(n r,n*) f2p(n2, n$) cpu seconds

P (512,768) (256,1536) 11867
NOP (512,768) none 2953

NOPMFINE (768,1024) none na
NOPFINE (1024,1536) none 24165

1.2

0.8

Coefficient of Drag for Re*9,500 Patch .vs. No Patch
 r~

M .
9%

S  :0 :#-- - 
0
0 r 

*
••

o p 512x768
* NOP 512x768
o NOPMFINE 768x1024

NOPFINE 1024x1536

Figure 3.3: C d Comparison w /o FGP

finer grid than was used for the NOP run, it is only in agreement with the results 

of the P and NOPFINE runs until t  ~  7.5. Thus, a lack of resolution along the 

cylinder surface eventually affects the overall character of the flow.

As a further comparison of the flow dynamics produced by each run we plot 

the tim e evolution of the points o f zero shear stress produced by the FGP run P 

compared with the NOP and NOPMFINE rims, shown in Figure 3.4. Similar to 

the comparisons of the coefficient o f drag, the NOPMFINE run agrees well with 

the P run until £«7.5, while the NOP run begins to differ as early as £~6.0.  In
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Figure 3.4: Points of Zero Shear Stress: P Compared with NOP and NOPMFINE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Points of Zsro Shoar StrMs(a>-0) R«s9,SOO P .vs. NOPFINE
100

so

80

70

S 80

40

30

20

10

Figure 3.5: Points of Zero Shear Stress: P Compared with NOPFINE

Figure 3.5 is shown the comparison of the P and NOPFINE runs. They are in 

excellent agreement, producing identical boundary layer dynamics.

In Table 3.7 we see that the NOPFINE run required more than twice the cpu 

tim e as the P run. Since the P and NOPFINE runs are producing nearly identical 

flow dynamics, this confirms our m otivation for developing the FGP methodology 

to compute the flow around a cylinder. It is very inefficient computationally to 

use the same resolution over the entire computational domain. The FGP allows 

us to concentrate our computational effort where the “action” is, resulting in very 

significant computational savings.

3.4.3 Effectiveness of the Integral Series Boundary Condition

In order to solve the Poisson equation (3.2.2.5) we must prescribe values for ip 

along the far-field computational boundary r rmaz. The difficulty arises from the
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fact that the true physical domain of the flow we are attempting to model is 

infinite, while for obvious practical considerations our computational domain is 

of finite extent. In §3.2.4 we outlined the ISBC (3.2.4.6), developed by Ting (see 

[Ti],[TK]), for computing an approximation to the far-field values of Sa and 

Chang [SC] performed a detailed study of the use o f the ISBC for flow around 

the cylinder, although for the case of relatively low Re numbers. They found 

the boundary condition to be excellent. Our experience has been the same. Its 

accuracy has allowed us to use a significantly smaller computational domain than 

would have been required if, say, we had used the PBC.

□rag Comparfcon aMi r ^ . l l  IS8C .ra. PBC 1,000
1.4

1.1

03

0.7

03

03
03 13

tfma
23

Figure 3.6: Co  Comparison w /o  FGP

To demonstrate the effectiveness of the ISBC we compare simulations using 

both the ISBC and PBC, on computational domains with varying radii, for a 

flow at Re =  1000 until t  =  3.0. We begin with a computation on a (nz, n$) =  

(512,512) grid with rmai =  16. Figure 3.6 shows the coefficient of drag produced 

by these runs, and we see that the two far-field conditions give almost identical 

results. This is not surprising since the vorticity field for this Reynolds number 

is effectively contained within two cylinder diameters at t = 3  (see §3.5), and thus
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Figure 3.7: Difference in Coefficient of Drag

has not yet had an appreciable affect on the free stream flow at rmax =  16.

We now recompute the test flow, again using both the PBC and ISBC, on 

domains extending to rmax =  2 and rmax = 4 , using a (128,512) and (256,512) grid, 

respectively. Thus, for all the computations A z, AO, and hence A t,  are identical. 

In Figure 3.7 is shown the difference between the drag coefficient produced by 

each of these runs and the previous runs using rmaT =  16. The performance of the 

ISBC is excellent. Even with rmax =  2, using the ISBC the absolute error in the
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drag coefficient is less than 2% at t =  3.0. This is remarkable since by this tim e 

the strength of the vorticity field close to the far-field boundary is not negligible 

(see Figure 3.11). The PBC computation with rmaT = 4  is acceptable, whereas 

with rmax= 2 the absolute error is almost 50% at t  =  3.0.

For all three values of rmnT the ISBC produces a very accurate description of 

the far-field boundary condition for ip, as evidenced by the consistent calculations 

of Cp. Furthermore, computing the ISBC at each tim e step is also efficient, 

typically accounting for no more than 1% — 2% o f the total runtime.

3.5 Main Num erical R esults

We now present high resolution benchmark quality numerical simulations of 

the early stages of the flow around an impulsively started circular cylinder for 

Reynolds numbers ranging from 1,000 to 100,000. The computational parame

ters for each simulation are given in Table 3.8. In all cases the FGP was used 

with A z  =  2 A z  and A 0 =  2A0. The far-field boundary condition for ip was de

termined using the ISBC as given by (3.2.4.6). As discussed in §3.3, RK4 is used 

for the time discretization of the vorticity transport equation, and the tim e step 

is chosen so that the stability conditions given in (1.3.2.12) are satisfied. For all 

simulations presented here we have taken CFL <  1.0.

Table 3.8: Computational Parameters for Cylinder Flow

Re nz ng I'max nz fig 1~maxp tfinal
1,000 384 512 8.00 96 1024 1.30 10.0
3,000 512 768 8.00 128 1536 1.30 10.0
9,500 1024 1024 8.00 256 2048 1.30 10.0
20,000 1024 1536 4.33 256 3072 1.20 5.0
50,000 1536 3072 3.75 384 6144 1.18 5.0
100,000 1536 4096 2.69 384 8192 1.13 5.0
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Only by fully resolving the viscous boundary layer along the surface of the 

cylinder, which has a thickness that is 0 ( l/y /R e )  (see [TV]), can we expect to 

achieve benchmark quality results. To this end, the grid resolution for each 

simulation has been chosen so that

- i 5 5 B ?

which translates into ensuring that approximately 10 radial computational points 

lie in the boundary layer. Additionally, since the FFT is most efficient on data sets 

whose lengths are products of small primes, all grid sizes have further been chosen 

to be of the form 2n3m. A ll of the computations were performed on the Cray 

C90 at the Pittsburgh Supercomputer Center, and the code achieves on average 

425 MFLOPS on a single processor for the high Reynolds number simulations, 

indicating a high degree o f vectorization. We have found that approximately 80% 

of the runtime is attributable to  the FFT based discrete Poisson solvers, making 

the code an excellent candidate for parallelization.

Impulsively started flows present a serious challenge for numerical methods 

due to the singular nature of the effects of the viscous boundary layer at tim e <= 

0+. Until now, the simulations of Koumoutsakos & Leonard [KL] and Anderson 

& Reider [AR] were considered benchmarks in the field. [KL] use an adaptive 

vortex method, while the scheme in [AR] is based, similar to that in this thesis, 

on fourth order finite differences. However, in [AR] the surface vorticity and 

the stream function at the far-field are computed using global methods, each 

requiring the costly solution of a discrete Poisson equation.

[KL] and [AR] compute solutions for Reynolds numbers up to 9,500, and 

both include results at Re =  1,000 and Re =  3,000. However, [AR] only present 

data until <=3.0, which are in general agreement with the computations in [KL]. 

Therefore, we only present comparisons of our results with the [KL] simulations.
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In Figure 3.8 the tim e evolution of Cjj at the above mentioned Reynolds numbers 

is shown, calculated using the global method (3.4.1), computed by both the 

present scheme and [KL]. For both R e = 1,000 and 3,000 the results are in good 

agreement, while differences are apparent at Re  =  9,500 as early aa t  =  3.5, and 

become quite significant by t  =  5.0. This is a clear indication that by this point 

in time the respective schemes are producing dissimilar flow dynamics. In order 

to verify our results we recalculated this flow with both greater resolution and 

a larger computational domain. Our computation of C o  remained unchanged. 

We further note that we have agreement of the computation of Co  using both 

the local method (3.4.2) and the global method (3.4.1); see Figure 3.16. In the 

case of the [KL] simulations, the corresponding measurements begin to differ at 

t «  4.0.

We now present our results of the impulsively started flow around a circular 

cylinder. As mentioned above, computations were performed for each Reynolds 

number listed in Table 3.8. For each simulation we present plots of the time 

evolution of points on the surface of the cylinder of zero shear stress (u =  0), 

the time evolution o f the coefficient of drag (Co) computed by both the local 

and global methods, and contour plots of equi-vorticity at selected times. As 

the Reynolds number increases, which essentially corresponds to a decrease of 

the fluid viscosity, a number of trends occur. The initial vortex sheet that forms 

around the cylinder becomes increasingly thinner, and the tim e at which the 

boundary layer first separates from the surface of the cylinder decreases. In 

addition, ever smaller scale vortical structures are produced in the boundary 

layer, and in the case of the higher Reynolds number simulations, these vortices 

completely separate from the surface of the cylinder, and are then advected into 

the wake of the flow. Quite interestingly, for the Re =  50,000 and 100,000 

simulations the boundary layer separation subsequently triggers a vortex shedding
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process that appears to become periodic in time. This is suggested by the plots of 

the time evolution of points o f zero shear stress along the surface o f the cylinder 

in Figure 3.23. Evidence o f this phenomena can also be seen in the oscillations 

that appear in the CD plots shown in Figure 3.24.

For the contour plots o f equi-vorticity, solid lines are used to indicate nega

tive vorticity (clockwise rotation), while the dashed lines indicate positive vortic- 

ity. Only images o f the upper right quarter of the cylinder are presented. Even 

though a vortex sheet forms along the front of the cylinder, it does not sepa

rate, and the resulting flow in that region is quite uninteresting. In addition to 

providing a “view” of the dynamics of the flow, these plots are also very useful 

in understanding the flow structures that determine the body forces experienced 

by the cylinder. We can infer from the expression for the global computation of 

Cd (3.4.1) that a negative (clockwise) vortical structure moving in the positive 

y  direction adds to CD, while an increase in the strength of a positive vortex 

at the upper rear of the cylinder leads to a reduction of Cd - We note that at 

all Reynolds numbers, due to the singular nature of the impulsive start, there is 

seen a sudden initial drop in Cd - However, in all cases the effects of convection 

quickly becomes important and the Cd begins to recover.

3.5.1 R e  =  l ,  000 and i? e = 3 ,000

For these Reynolds numbers the method quite easily captures the full dynamics 

of the flow. A time sequence o f equi-vorticity contours at Re —1,000 is presented 

in Figures 3.11 and 3.12. At tim e t  =  2.0 the primary vortex is beginning to 

rollup, confining a region of counter rotating positive vorticity forming below it. 

By £=4.0 the primary vortex has fully developed, and a small tertiary vortex is 

seen at the cylinder surface. The development of this tertiary vortex shortly after 

t  =  2.0 can also be deduced from the time evolution of the points of zero shear
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stress shown in Figure 3.9. While the primary vortex, and to some degree the 

secondary vortex, continues to grow, the tertiary vortex remains confined. In the 

final image at £=6.0, we see that a large recirculation region has formed at the 

rear of the cylinder, and both the secondary and tertiary vortical regions appear 

to be stabilizing.

In Figures 3.13 and 3.14 a time sequence of equi-vorticity contours for R e— 

3,000 is presented. While similar in overall nature to the flow at Re =  1,000, as 

expected, the boundary layer begins its rollup earlier, and produces an increasing 

number o f smaller vortical structures along the surface of the cylinder. These 

dynamics are most easily deduced from the time evolution of the points of zero 

shear stress along the surface shown in Figure 3.9. In particular, just after £=3.0 

a small vortex forms at 0 «  60°, disappears at £ «  6.0, and briefly reappears at 

£ ~  7.0. By £=6.0 a slightly more compact primary vortex, as compared to the 

Re =  1,000 flow, has fully formed, and the tertiary vortex is more pronounced. 

Note that there is a smaller vortex just below the tertiary vortex, and the two 

merge just before £=8.0; see Figure 3.9.

For both simulations there is excellent agreement between the computations 

of C d using both the global and local methods. Furthermore, a greater portion 

of CD is due to the pressure forces at Re =  3,000 than at Re =  1,000, with a 

clear decrease in the friction drag. This general trend continues with increasing 

Reynolds number.

3.5.2 R e = 9 ,5 0 0  and R e = 20 ,000

At these Reynolds numbers a series of new separation phenomena appears. In 

Figures 3.17, 3.18, and 3.19 a time sequence of equi-vorticity contours at R e =  

9,500 is presented. By £ =  2.0 a primary, secondary, and tertiary vortex have
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formed. As expected, due to the decrease in viscosity as compared to the lower 

Reynolds number simulations presented in §3.5.1, these boundary layer structures 

are both significantly smaller and form earlier. At £=2.5 the primary vortex has 

started to detach from the body of the cylinder, carrying with it a small portion of 

the secondary vortex. Since this vortex has negative sign, its movement upward 

into the flow causes the increase in Cd ; see Figure 3.16. Simultaneously, a new 

negative vortex is seen forming at a  slightly greater angle than did the primary 

vortex, producing a new region of positive vorticity below it. This process repeats 

a number of times as indicated by the plot of tim e evolution of points of zero shear 

stress in Figure 3.15. At later times (£ =  4 — 5), although a number of vortices 

have separated from the body, they have become caught in a recirculation region 

at the rear of the cylinder. By £= 7.5  this region of recirculation, which is being 

continually fed by the oncoming flow, has become quite large and is attached by 

a thin link to the separating shear layer.

In Figures 3.20, 3.21, and 3.22 a time sequence of equi-vorticity contours 

for Re =  20,000 is presented. We see that many of the early flow phenomena 

that develop are similar to those found at R e = 9,500. However, there is clearly 

an increased complexity in the structure of the boundary layer, which begins to  

separate at an earlier time. At £= 3.0 , two negative vortices that have detached 

from the boundary layer begin to merge, allowing, by £ =  3.5, a larger region of 

positive vorticity to develop near the cylinder surface. This in turn pushes the 

feeding link of the merging vortices upwards, confining the the oncoming flow and 

triggering the development of a larger negative vortex. This process does not go 

unnoticed by the Cd which, due to the movement of a large region of negative 

vorticity down towards the cylinder surface, decreases over this same period of 

time; see Figure 3.16.
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Note that, as was the case for Re =  1,000 and 3,000, for these simulations 

we have excellent agreement between the computations of Cd using both the 

global and local methods, and most of the drag on the cylinder is now solely due 

to the dynamics of the pressure along the surface.

3.5.3 R e = 50 ,000  and R e  =  100,000

By far, these simulations are the most interesting, and present the greatest chal

lenge to our numerical scheme. A time sequence of plots of equi-vorticity contours 

at Re =  50,000 is presented in Figures 3.25, 3.26, and 3.27. For Re =  100,000, 

these plots are presented in Figures 3.28, 3.29, 3.30, and 3.31. There is clearly a 

significant difference in the overall character of the flow, when compared with the 

lower Reynolds number simulations, indicating the presence of a phase transition 

for the impulsively started cylinder flow between R e= 20,000  and 50,000. Note 

both the complexity and similarities between the plots of the time evolution of 

points of zero shear stress along the surface of the cylinder shown in Figure 3.23. 

At both R e= 50,000 and 100,000, once the initial boundary layer has separated 

from the cylinder surface, an almost periodic vortex shedding process develops. 

This is most striking at Re =  100,000, indicated by the well defined finger-like 

structures in the image. As expected, due to the decrease in the fluid viscosity, 

the initial vortex sheet that forms around the cylinder is thinner at R e=100,000  

as compared to Re =  50,000, and separates earlier. A particularly interesting 

new phenomena, not seen in the lower Reynolds number simulations, is the ini

tial simultaneous rollup of tw o  negative vortices along the cylinder surface. This 

can be seen in the contour plot of equi-vorticity at t= 2 .0  for R e= 50,000 (Figure 

3.25), and at t  =  1.7 for Re =  100,000 (Figure 3.29). In the latter image, the 

detailed structures that have formed in the boundary layer are quite dramatic. 

In the final plots of equi-vorticity presented for each Reynolds number, Figures
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Figure 3.19: Equi-vorticity R e = 9 , 500 at t = 7.5
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Figure 3.22: Equi-vorticity i2e=20,000 at £=4.75
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3.27 and 3.31, respectively, a large number of vortical structures are seen in the 

wake of the flow. As was the case for R e = 20,000, these vortices are caught in a 

large region of recirculation behind the cylinder.

Note that, for these Reynolds numbers, we no longer have agreement be

tween the computations of Cd , shown in Figure 3.24, using both the global and 

local methods. In both cases, deviations begin at approximately the same time at 

which the boundary layer first separates from the surface of the cylinder. How

ever, we do not believe that this difference is due to an overall loss o f accuracy in 

our computed solutions. For both R e= 50,000  and 100,000, the friction compo

nent of the drag remains smooth, while the pressure component “jumps” at the 

time of separation. This is most likely due to our use of a second order one-sided 

approximation to the z  derivative of u> that appears in the first integral of (3.4.2). 

It is precisely this integral that represents the pressure component of CD. We 

thus consider the computation of Cd using the global method as a more accurate 

estimate of the coefficient of drag.
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