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The topic of this thesis focuses on high order finite/spectral element meth­

ods for solving unsteady incompressible viscous Navier-Stokes equations. The 

gauge formulation of the Navier-Stokes equations was proposed by Weinan E 

and Jian-Guo Liu recently [10]. The main advantage is that the gauge variable 

is uuuphysical, so we have the freedom to assign boundary conditions.

In many cases, the low order methods are not able to catch up the compli­

cated flow structures, to achieve good accuracy for the pressure term, or the 

divergence free condition. In this thesis, we focus on developing high order 

finite/spectral element methods for solving Navier-Stokes equations.

Based on the gauge formulation, several high order finite/spectral ele­

ment methods based on the gauge formulation are developed. For the time 

stepping procedures, backward Euler and Crank-Nicholson methods are used. 

The numerical experiments show clean high order accuracy. Some high order 

time-stepping procedures such as the backward differentiation methods or the 

explicit forth-order Runge-Kutta method have also been tried. In all these 

methods, the computations of the gauge variable and the auxiliary field are 

decoupled, with the nonlinear term treated explicitly. All the computations 

are reduced to solving heat equations and Poisson equations, so they are very 

efficient.

Based on the vorticitv-stream function formulation of the Navier-Stokes
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equations, Jian-Guo Liu and VVeinan E [22] proposed an efficient time-stepping 

procedure recently so that the computations of the vorticitv function and the 

stream function are decoupled, with the nonlinear term treated explicitly. The 

second part of the thesis is the implementation of the procedure by using high 

order finite/spectral element methods for space discretization. The numer­

ical experiments are presented including clean high order accuracy and the 

simulations of the canonical driven cavity flows.

Preconditioned conjugated gradient (CG) methods are used to solving the 

resulting linear systems. We have studied the convergence property of the CG 

method when applied to symmetric positive semi-definite systems.

To exploit the sparsity structures of the stiffness matrix and mass ma­

trix, the local assembly technologies are used to evaluate the nonlinear terms, 

various right hand sides, the gradients and the matrix-vector product.
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CHAPTER 1

INTRODUCTION

The motion of fluid flow is governed by the principles of classical mechanics 

and thermodynamics for the conservation of mass, momentum, and energy. 

Applications of these principals lead to the conservation equations in integral 

form for mass, momentum, and energy. The properties of the flow need not be 

continuous functions of space and time: If the physics properties of the flow arc 

continuous and sufficiently differentiable in some domain of space and time, 

then the conservation integral equations can be transformed into an equivalent 

set of partial differential equations-the Navier-Stokes equations [6].

The topic of my dissertation focuses on finding the numerical solutions 

of the Navier-Stokes equations for incompressible viscous flow, of which the 

primitive-variable formulation in two-dimensional case reads as follows:

where u = is the velocity field and p is the pressure, with the

simplest physical boundary condition:

where T =  dQ. The difficulties in the numerical computation of (1.1) 

are the lack of an evolution equation for pressure and the implementation of

( 1 . 1 ) n
n

( 1 . 2 )
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the incompressibility condition(dit'(u) = 0). Taking divergence on the first 

equation leads to a pressure Poisson equation,

(1.3) Ap =  V • (u • VtT) +  V • /

The task of solving (1.1) would become much easier if we could attach a 

simple boundary condition to this equation. Unfortunately the most natural 

candidate obtained from extending (1.1) to the boundary:

(1.4) |  =  A n . A f f - H / . f f

involves evaluating the viscous term at the boundary, where n is the unit out­

ward normal direction. Not only it is difficult to enforce this condition accu­

rately. maintaining consistency between (1.3) and (1.4) (since this is Neumann 

problem) in a discrete setting is also very difficult. The projection method, 

which was invented by Chorin [5] and Teman [33] independently in late six­

ties, by-passes the issue of the pressure boundary condition, see also [16]. The 

price has been paid is that some special discretization schemes have to be 

used to discretize the pressure equation. This seriously limits the simplicity 

and flexibility of the projection method.

Recently E & Liu [10] proposed a new formulation-gauge formulation- for 

the Navier-Stokes equations. The key point of the gauge formulation is to 

replace the pressure by a gauge variable <?. The main advantage of the gauge 

formulation is that the gauge variable is non-physical, so we have the freedom 

to assign boundary condition for it.

There are already many existing low order methods for solving the Navier- 

Stokes equations. In many cases, however, the low order methods are not able 

to catch up the complicated flow structures, or to achieve good accuracy for 

the pressure term or the divergence free condition.

High order methods are necessary to overcome these drawbacks of low or­

der methods. High order finite/spectral element methods are more promising 

than high order finite difference methods, because the boundary conditions 

are very difficult to be satisfied for high order finite difference methods, while
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3

the variational formulations of finite/spectral element methods have the nat­

ural enforcement of boundary conditions. In this thesis, several high order 

finite/spectral element methods based on the gauge formulation are presented. 

For the time stepping procedures, backward Euler and Crank-Nicholson meth­

ods are used. The numerical experiment shows clean high order accuracy.

It is natural to ask if we can have any higher order time stepping pro­

cedure which matches the high order finite element space discretization. We 

have considered the mixed Adams-Bashforth-Adams-Molton methods and the 

backward differentiation methods, see e.g. [12, 19j. We have tried the third- 

order backward differentiation gauge finite element method, unfortunately our 

numerical experiments show that these schemes are not stable in the gauge for­

mulation. We have also tried the explicit forth-order Runge-Kutta method for 

time marching, not stable either. So it is an open problem what are high order 

time stepping procedures for the high order gauge finite element methods.

The two-dimensional incompressible Navier-Stokes equations in vorticity- 

stream function formulation read follows:

%• fx )• an<  ̂ ^ t îe un^  outward normal direction.
Note that in (1.5) the vorticitv function uj and the stream function 

are coupled together, much confusion and complexity would come if their 

computation still coupled together in a numerical method for solving (1.5).

Also note that there is no explicit boundary conditions for the vorticitv 

function, this could cause difficulty when one constructs finite difference meth­

ods . especially for curved boundary problems.

Finite element methods for solving (1.5) are more promising, since the vari­

ational formulation of (1.5) has natural enforcement of boundary conditions. 

There have been some finite element methods for the steady Navier-Stokes

(1.5)

with the boundary conditions w\r =  / 2 r§ f |r  =  h ,  where u =  V i c  =
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equations, i.e. the time independent problem, see [1, 2, 4, 18, 30]. But in all 

the schemes, the convection term is treated implicitly, so the computation of 

the vorticitv and stream functions are fully coupled.

To avoid this coupling, it is natural to think to treat the convection term 

explicitly. Then the issue of stability becomes crucial in choosing time stepping 

procedure.

Recently E and Liu ([8. 9. 22]) discovered the efficient time stepping procedures- 

the explicit high order Runge-Kutta methods, which allow the convection term 

and diffusion term are treated explicitly, and they argued that stability is ob­

tained under standard Courant-Fridrich-Lewy(CFL) condition in both finite 

difference and finite element setting.

In this thesis, we implement the high order simple finite/spectral element 

methods, i.e., we are going to use the explicit forth-order Runge-Kutta method 

for the time marching and high order finite/spectral element methods for the 

space discretization. Numerical experiments including clean high order accu­

racy and the simulations of the canonical Dnven-Cavity flow are presented.

The thesis is organized as follows.

The gauge finite/spectral element methods for the Navier-Stokes equations 

are derived in chapter 2. In chapter 3 we derive the simple finite/spectral 

element methods for the vorticity-stream function formulation of the Navier- 

Stokes equations.

In chapter 4 we study the preconditioned conjugate gradient methods for 

solving the resulting large sparse linear systems. In the gauge finite/spectral 

element methods, the linear systems arise in the discretization of a heat-like 

equation, a  Poisson-Neumann problem, and the evaluation of the gradient of 

the gauge variable. The linear system corresponding to the Poisson-Neumann 

problem is symmetric, but only positive semi-definite. We will show that 

the convergence properties of conjugate gradient method when applied to the 

symmetric positive semi-definite system. In the simple finite/spectral ele­

ment methods, in each stage of the Runge-Kutta time marching procedure, a 

Poisson-Dirichlet problem needs to be solved. To accelerate the convergence
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rate of the conjugate gradient method, we use the preconditioning techniques 

by using the discrete trigonometric transforms(see e.g. [34. 31]) as precondi­

tioners. We want to emphasize that as preconditioners the discrete trigono­

metric transforms are still good choices even if the computational domain is 

not rectangular. The numerical computation of the integrals and the assembly 

techniques for both triangle and rectangle elements are described in chapter 

5. Finally we present the results of the numerical experiments in chapter 6. 

including accuracy checking and simulations of driven cavity flows.
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CHAPTER 2

HIGH ORDER GAUGE 
FINITE/SPECTRAL 
ELEMENT METHODS

We start with the veiocity-pressure formulation of the incompressible Navier- 

Stokes equations

where u =  (u. u) is the velocity field and p is the pressure, with the simplest 

physical boundary condition:

where T =  dQ.
A new approach-Gauge method- was introduced by E &: Liu [10] in 1996. 

The key point of the gauge method is to replace pressure by a gauge variable 

0 . They write the velocity field as a sum of two parts: if =  a +  Vo. and use 

a to take care of the convective term and V<z> to take care of the boundary 

condition and incompressibilitv constraint.

(2 .1)

(2 .2 )
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Then we have a new formulation of (2.1)

(  I  - ^ A J + ( J . A ) S  = /

(2.3) ( -A o  = V - S

H =  0 -4- Vo

And the pressure can be recovered as following:

(2.4)

The idea of gauge formulation dated back to 1989. when Oseledets [24] first 

introduced an impulse variable to reformulate Euler equations in a Hamilto­

nian system. It has received considerable attention since then. Buttke [3] used 

an impulse variable to design a numerical method for incompressible fluid flow 

in 1993. E and Liu [11] found that the velocity impulse formulation of Buttke 

is marginally ill-posed for the inviscid flow and they presented numerical evi­

dence of this instability. Maddocks and Pego [23] used an impulsive variable 

to formulate an unconstrained Hamiltonian for the Euler equation m 1995. 

Russo and Smereka [28] studied the connection of different impulse/gauge for­

mulation in 1999.

The main advantage of the gauge method (2.3) is that we have the free­

dom to assign boundary condition for o, since it is a non-physical variable. 

Corresponding to (2.2). for example, one can either prescribe the Neumann 

boundary condition

do do(2.5) —  = 0. a - n = 0. a ■ r  =  —
dn dr

or the Dirichlet boundary condition

do(2.6) 0 =  0. a • n =  — . a • f  =  0
dn

on T. Here f  is the unit vector in the tangential direction, and n is the unit 

vector in the outward normal direction.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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2.1 Semi-Discrete M ethods

We first discretize time, keep space continuous. We consider two schemes: 

backward Euler method and Crank-Nicholson method.

Given the values an. u". u”-1. Qn, o n~l. we have the the following methods 

to produce values of a .u .o  at the (n + l ) th time step by using either the 

Dirichlet boundary condition or the Neumann boundary condition :

M ethod 2.1. Backward Euler gauge method with Neumann boundary con­

dition

sn^-s i  + (un. 'V)un = -±-eA a n+l + f n+l in fi

Step. 1 <
st

a71+1 • n = 0. on T
r*n-r 1 ~ oq n• r  = on rd f

Step 2.
- A  <&n+l =  V -a"-1-1. in Q 

^  =  0. on r

Step 3. un+l =  an+1 +  V o„ n+ l

rtn+1 — (hn 1
Slep4 .

M ethod 2.2. Backward Euler gauge method with Dirichlet boundary con­

dition

Stepl. <
^  + {un - vys*  =  A.Aa"+I + / n+I in QS t  1 T fie

a"-*"1 • f  =  0. on T
“ •  d o n pc r+ l • n =  on r

Step2. |
- A o r*4' 1 =  V • a71" 1, in Q 

0 n+l = o . on r

Step3. u"+1 =  an+1 +  V on+t

rtn+l — On 1
Step 4. pn+l = . * -  4 -A o " + l

A t Re

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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From step 2 and step 3 in Method 2.2. we have by divergence theorem

- J „ ± o * + 'd n  = - I r ^ f d s

(2.7) =  Jr ^n+1 ' dds = - j T % d s
= -}„  Ao"dn

This means that Jn A<z>n+ldQ does not change for all the time steps. In 

general this is not true for the exact solution of the Navier-Stokes equations. So 

the numerical solution of Method 2.2 will not converges to the exact solution. 

The numerical solution of p will not either, since it is given by (2.4). But it is 

claimed that the velocity uT1 converges to the exact solution, see [26). Also see 

[35] for the setting of finite difference method.

It is an open problem how to fix this incompatibility problem for the Dirich­

let boundary condition. And for this reason, we will use the Neumann bound­

ary condition. Now let us use the second-order Crank-Nicholson method for 

the time discretization.

Given the values a", u". u"-1. O'1. 0n~l , we have the the following method 

to produce values of a. u .o  at the (n +  l)th  time step

M eth o d  2.3. Crank-Nicholson gauge method with Neumann boundary 

condition

Stepl <

+  [§(£"• V)u" -  • V)uA t

= +  f ^ L2 in n  

a""1"1 • h  =  0. on T 

a"+ l - f = - ( 2 ^ - ^ )  on T

—A o“*' = V ■ a"+l. in f!
ddn+l n- % r  =  0. on

Step2.

Step3. tf1* 1 = a ^ 1 +  Vd>”+1

Step 4. =
H y Nt  Re
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The equation in Stepl can be rewritten as

R em ark . In all of the above methods, the boundary conditions for the 

auxiliary field a are implemented explicitly via extrapolation. The resulting 

momentum equation is decoupled from the kinematic equation, and the com­

putational cost in each time step is reduced to solving a standard heat equation 

and a Poisson equation.

2.2 Full D iscrete M ethods

There are already many existing low order methods for the space discretiza­

tion. In many cases, however, these low order methods always lead to large 

error in the divergence of the velocity, especially when there is not enough 

resolution. They are not able to catch up the complicated flow structures, to 

achieve good accuracy for the pressure term, or the divergence free condition.

High order methods are necessary to overcome these drawbacks of low 

order methods. High order finite/spectral element methods are more promising 

than high order finite difference methods, because the boundary conditions 

are very difficult to be satisfied for high order finite difference methods, while 

the variational formulations of finite/spectral element methods have natural 

enforcement of boundary conditions.

Let H l. Hq be the standard Sobolev spaces. Then we now give variational 

formulations of method 2.1 and method 2.3.

Given the values a", un. o n,4)n~l, corresponding to Method 2.1 we have

Variational formulation for backward Euler gauge method with Neumann

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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boundary condition

Step 1. <

Find a"-1"1 € H l x H l. such that 

{ ^ K w )  +  ^ ( V a " +1.V t')  =

(a". v)  -  ((5" • V)u". v)Af +  ( / " ^ .  ^)A t

vm € i/o1

an + l• n =  0. on T 

a"+l • f  =  — ̂  on Td r

Step 2.
Find O 6 H l such that 

(Von+I. Vw) = - ( V  ■ on+1. c').Vv € H l

Find it £ H l x i/ 1 such that 

Step 3. { (i?l+1, t-) = (a"-1-1, w) + (V<z>n+1. y).

Vc e H x

Step 4. <
Find pn+l € such that 

(P"+1, t )  =  v )  +  i(Vo>"+1. V f).
Vc- € H l .

Corresponding to method 2.3. we have

Variational formulation for Crank-Nicholson gauge method with Neumann 

boundary condition

Find a"-1" € H  x H x. such that

(on+l,«>) + 5 s (V a n+l.Vtf) =
(a". ii’) -  5^ ( V a " . Vii’) —

Stepl < -(§ (« "  • V)u" -  • V)u"~l . v )A t  +  i ( / " +1 + p .  f)A f

W> € / / q1

a'1'*'1 • n = 0. on T 

S » + » .f = - ( 2  on T

Step2.
Find <z> € i / 1 such that 

( V ^ +l.V y ) =  - ( V - a " +1.cO-Ve- 6 i / 1

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Find u € H l x H l such that 

Step3.  ̂ (u"+l. L1) = (an+l. w) +  (Vd>n+l. v),

Vt’ € H l

Step 4. <

Find p"Tl 6 H l such that
I . e) +  (Vori+1. Vt-).

w e H 1.

Suppose that Q is a polygon, and we have a triangulation or rectangulation 

Th of Q. Let G/j =  {x,} be the set of all grid points.

Let X™h C Hq and X™ C H l be the standard finite element spaces that 

consist of piecewise mth order polynomials on fi. Let 11/, be the standard 

interpolation operator from C 1 to A'™:

(2 .8) n h(/)(xj) =  / ( x j ,  Vx, e  Gh.

Given the values oJJ, uJJ. corresponding to method 2.1. we have the values 

of a/,, uh. d>h at the (n + l)th  time step as follows:

M eth o d  2.4. Backward Euler gauge finite element method with Neumann 

boundary condition

Find a£+L € A'£ x A'*, such that

Stepl <
K, *•) -  (K  • v)u". + (iw n+l. y)At

Vt- e  -Yfj.

a?+L • n =  0. on f

4 -r = -n*(^) on r

Find o£+l € A'*^1 such that 

( V o r V c )  =  - (V  • o£+I. IV). Vc € A'**1

Find tT?-1"1 € A't x A'ff such that

Step2.

Step3. < ( C l -tt',) =  (SS+l.^ )  +  (V0j;+1,c;)
Vt- 6 A'*

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Step 4. <

Find p£+l G Xfr such that'k

(pT 1̂ )  = (v _ r^
A t

Vtf G X kh.

Note that we do not need to evaluate the divergence of d"^1 for the right 

hand side of step 2. Indeed.

f t tV-aZ+l *dn =

/ n v - ( K +1) ^ - / p . v ^ - d r idfi =
= f r ^ l . n d s - J n V w ^ ldQ

= - J n V ^

(2.9)

**+ldQ

Given the values d£. u%. <z>£. d£_l. corresponding to method 2.3. we 

have the values of d/,. if/,. 6h at the (n + 1)th time step as follows:

M ethod 2.5. Crank-Nicholson gauge finite element method with Neumann 

boundary condition

Find d?+l G X k * Y*. such that.

(S*+1.^ )  +  5e (VSS+i ,V (p) =

Stepl - ( [ § «  • V)d£ -  ^ i f ^ - 1 • V ) ^ - 1]. c)A f +  J (n ft/ n+1 + n h/" .  w)Xt
Vw G A'*a

d ^ 1 • n =  0, on T
-**T1 -f-1 —* t—r \ rd ^ 1 - r  =  - n / , ( 2 ^ -  - £ - )  on r

Step2.

Step 3. <

Find <2>£+l G -Ya+1 such that 

(V$*+ l. V v )  =  - (V  • d£+l. iL’),Vv  G A

Find d?+I G A'£ x A'* such that

Vt-' G A”a

tf’) 4- (v • dj|. c).
Vtf G A*.

Step 4. <
Find pJJ G A'* such that

A t
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Again the right hand side in step 2 is given by

-  [  V -o £ +1b’rffi =  f
3 n in

We make the following remarks for both method 2.4 and method 2.5.

R em a rk  1. In both Method 4 and 5. the integral ( /.  c) is approximated 

by (Tlhf.ip). By Sobolev interpolation theory [7] . this approximation does 

not decrease the order of accuracy.

R e m a rk  2. The reason for that the order of the elements for o  is 1 higher 

than the other terms is that the boundary condition for a is given by the 

derivative of in step 1.

R em a rk  3. The gradient of o computed in step 3 can be used to compute 

the tangent derivative of & along the boundary.

R e m a rk  4. The step 2 is solving a Poisson-Xeumann problem. It's solu­

tion is unique up to a constant. In gauge method we need only one of this kind 

of solutions. And we will prove that the conjugate gradient method converges 

to a solution for any initial gauss, see chapter 4.

2.3 Is There Any Higher-Order Tim e Step­

ping Procedure?

Since we are going to use high order finite/spectral element method for 

space discretization, it would be ideal if we can have high order time stepping 

procedures to match them. The stability issue is crucial. The stability re­

gions of two important classes of multistep methods-mixed Adams-Bashforth- 

Adams-Molton(ABAM) methods and backward differentiation methods- for 

ordinary' differential equations are analyzed in this section. We have tried 

the third-order backward differentiation gauge finite element method and the 

forth-order Runge-Kutta gauge finite element method. Our preliminary com­

putational results show that they are not stable. It is an open problem to find 

a high order time stepping procedure for gauge finite element methods.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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2.3.1 Stability Regions of the Mixed ABAM Methods

Consider an ordinary differential equation as follows

(2 .10) | - / + 9

Integrate the equation with respect time from tn to t"+ l. we get

f t  „ + l r t n  + l

(2.11) un+l -  un =  / f d t  +  / gdt
J t n J t n

The mixed ABAM method is obtained by using the explicit Adams-Bashforth 

method [12] to treat the first integral and the implicit Adams-Molton method 

[12] to treat the second integral. The fcth-order ABAM method is as following:

(2.12) uni. i = u„ +  +  ^■tT.l‘=l3k}gn+2-j

The coefficients 3kji3kj are given in table 2.1.

Table 2.1: Coefficients for ABAM methods
i 1 2 3 4 5

3u 1
232l -1
1‘233i 23 -16 5
243.u 55 -59 37 -9

7205k 1901 -2774 2616 -1274 251
3u 1

:23o*. 1 1
1233t 5 8 -1
243:, 9 19 -5 1

7203r 251 646 -264 106 -19

To find the stability regions of the mixed ABAM methods, consider the 

following special ordinary differential equation

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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where A = b + ic. b <  0 . c is also a real number, and i is the imaginary unit. 

Apply the mixed ABAM method to this equation, treating the imaginary term 

explicitly and real term implicitly. Then we have

("2.14) U n +1 =  tin 4“ tc S j—j 3 k j un+ i —j  ^ u n ^ . > - j

where b =  Af6, c = Ate.

The stability region of a method is defined as the set of all the AAf which 

makes the method stable. We use the Fourier mode analysis to find the sta­

bility region. Let u„ = e'n6. 0 < 9 < 2tt. then

(2.15) eikB =  ei{k~l)* + ic^k]=l3k j etik- j]e + £ j=l 3'kje,{k+l~j]6

Solve for b,c, and plot (6, c). we get the following pictures of the stability 

regions of the mixed ABAM methods.

Figure 2.1: The stability region of the ABAM method of first-order, method 
is stable in the left side of the curve

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Figure 2.2: The stability region of the ABAM method of second-order, method 
is stable in the left side of the curve

Figure 2.3: The stability region of the ABAM method of third-order, method 
is stable inside the curve

3 9 -

Figure 2.4: The stability region of the ABAM method of forth-order. method 
is stable inside the curve
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2.3.2 Stability Regions of Backward Differentiation Meth­
ods

The A:-th order backward differentiation method [19] for solving (2.10) is 

defined as follows

{C\ 1 7 \ ~ “j  =0^kJ un+l-j _ J, r .
( - • ! < )  ^  — - ^ j - o  J k j J n - j  +  g n + l

where the coefficients 3k j , 3^  for k = 1..... 5. are given in table 2.2.

Table 2.2: Coefficients for Backward-Differentiation methods
i 0 1 2 3 4 5

3u 1
32i 3/2 .2 1/2
3-.ii 11/6 -3 3/2 -1/3
3m 25/12 -4 3 -4/3 1/4
3si 137/66 -5 5 -10/3 5/4 -1/5
$\i 1
3:. 2 -1

3 -3 1
4 -6 4 -1

& 5 -10 10 -5 1

Similarly to the ABAM methods, we obtain the following figures for the 

stability regions of the backward-differentiation methods.
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-0 1 -

Figure 2.5: The stability region of the ABAM method of fifth-order, method 
is stable inside the curve

Figure 2.6: The stability region of the backward-differentiation method of 
first-order, method is stable in the left side of the curve

-2 9■4

Figure 2.7: The stability region of the backward-differentiation method of 
second-order, method is stable in the left side of the curve

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



2 0

Figure 2.8: The stability region of the backward-differentiation method of 
third-order, method is stable in the left side of the curve

-«0 -4 -4 -4

Figure 2.9: The stability region of the backward-differentiation method of 
forth-order. method is stable in the left side of the curve

jI

i
-10 -• -4 -4 -J 3

Figure 2.10: The stability region of the backward-differentiation method of 
fifth-order, method is stable in the left side of the curve
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2.3.3 Is There Any Higher Order Time-Stepping Pro­
cedure?

We may use the above higher-order methods for temporal discretization 

and finite element methods for space discretization. For example we may have 

M eth o d  2.6. Third-order backward differentiation gauge method with 

Neumann boundary condition

Step 1. <

( ^ o n+I -  3o" + fa"” 1 -  |a " - 2)/A f + (3(uB • V)u" -  3{un~l ■ V)u  

+{un~2 - V ) ^ '2) = Nan' l/Re  + f n+l in fi 

a"+l • h =  0 on T
Zn-rl odOn~l , dOn~2

rrri — l

f = - (  3 ^ - 3 d r + d r

Step 2.
- A o " " 1 = V • a" 

^ i = 0 .  on r
in Q

Step 3. +

Unfortunately our preliminary computational results showed that Method 

6 is not stable when a higher-order finite element method is used for space 

discretization.

Using the forth-order explicit Runge-Kutta method for temporal discretiza­

tion leads to:

M eth o d  2.7: Forth-order Runge-Kutta gauge method with Neumann bound­

ary condition

' an)7 f  + (un - V)u" =  A;Aa"

Stage 1: <

Stage 2: <

A t / 2  1 R e '

<?l) • rc =  0 .a*1) • t —

Ao(1) =  - V - r f ' K  ^  =  0 

u*1) =  a<l) r V o (l)

• V)u<l> =  -s-Aa(1)n^'-a71
A t / 2

a^2) ■ n = 0, aS2) ■ t = — 

_W 2> =  — V • aS2\  ^  =  0
û 2) =  a^2) 4-

, v l >
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Stage 3: <

^  + (u<2) -V)u<2) =  -k±a.i2)

d f

A  t  1 V “  v  “  R e '

a<3> - n = 0.o<3> - f = - ^  

Acp<3> = - V  • a<3>. ^  =  0 

V<2>(3)u<3> =  a*3'

S tage  4:
g ( n +  1

M / 6

) . n =0.aSn+l) ■ t =

+ (u<3> • V)/7<3) =  -^A a(3)

_X0(n-l) =  _ V  . 5(n + l)< 3 0 ^  =  0 

£ ( n + l )  _  - ( n + l j  + y ^ ( n  +  l)

Unfortunately, our preliminary computational results show that this method 

when coupled with high order finite element method for space discretization 

is not stable either.
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CHAPTER 3 

SIMPLE FINITE/SPECTRAL 
ELEMENT METHODS

The Navier-Stokes equations for two dimensional incompressible flow in 

vorticitv-stream function formulation are as follows

( — Ijy- l i ) - anc  ̂ ^ *s t l̂e un*t outward normal direction.
Note that in (3.1) the vorticity function u  and the stream function v  

are coupled together, much confusion and complexity would come if their 

computation still coupled together in a numerical method for solving (3.1).

Also note that there is no explicit boundary conditions for the vorticity 

function, this could cause difficulty when one constructs finite difference meth­

ods, especially for curved boundary problems.

Finite element methods for solving (3.1) seem more promising, since the 

variational formulation of (3.1) has natural enforcement of boundary condi­

tions. There have been some finite element methods for the steady Navier- 

Stokes equations, i.e. the time independent problem, see [1. 2. 4. 18, 30]. But

(3.1)

with the boundary conditions &'|p =  / 2 <§ilr =  h -  where <7 =  =

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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in all the schemes, the convection term is treated implicitly, so the computa­

tion of the vorticity and stream functions are fully coupled.

To avoid this coupling, it is natural to think to treat the convection term 

explicitly. The issue of stability becomes crucial in choosing time stepping 

procedure.

Consider the standard advection-diffusion equation

du du d2u 
( * d t + ° f c  ~ Ud ^ '

If we use the forward Euler method for time discretization, the second-order 

centered difference method for space discretization, and both the convection 

and diffusion terms are treated explicity, then the scheme is stable only under 

the constraint

a1 2v
(3.3)

Then we have 

, , Af 1 v 2 u

Since u =  O ( ^ ) .  we have

(3.5) ^ < 0 {-
Ax / R e

(3.5) is a severe constraint, since ideally we want ^  = 0(1) for Re »  1. 

This stability constraint still remains even if we discretize the diffusion term 

implicitly, keeping the advection term explicit, since at high Reynolds number 

the diffusion term is of very little help. Although such constraint disappears 

if the advection term is also treated implicitly, it is too expensive.

Recently Liu and E discovered an efficient time step procedure, which al­

lows the convection term and diffusion term are treated explicitly and the 

stability is obtained under standard Courant-Fridrich-Lewy(CFL) condition. 

The instability of the forward Euler method is due to the fact that the stability 

region of the forward Euler method does not contain any part of imaginary
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axis. The same is true for the second-order explicit Runge-Kutta methods, 

but not for third- and fourth-order ones. The Fourier symbol for the centered 

difference operator — aD\  + vD\  is C(£) =  Therefore if we

use forth-order Runge-Kutta in time, the stability conditions are

a ^  /  r  /  r
(3-6) 3 7 £ C " a ? S C j '

We see for large Reynolds number problem, the size of At is controlled only 

by the CFL condition.

This time stepping procedure has been proved successful for the case of 

finite difference methods [8. 9]. We know that the linear finite element method 

is equivalent to second order centered difference scheme. We can imagine that 

higher order finite element discretization is equivalent to some kind of centered 

difference scheme.

Recently. E and Liu proposed a simple finite element method, in which the 

nonlinear convection term and the advection term are treated explicitly. The 

key idea is to use higher-order Runge-Kutta methods for the time discretiza­

tion.

Theoretically they proved the stability and convergence for the semi-discrete 

(i.e. keeping time continuous ) scheme. The error estimates, however, may be 

very crude. There is no proof for the convergence of the fully discrete scheme.

We will report the results of some numerical experiments of the simple 

finite element method, checking the order of accuracy for the convergence by 

using artificial exact solution of the Navier-Stokes equations and simulation of 

the canonical driven cavity flows.

We will first briefly review the simple finite element scheme, and the sta­

bility and convergence theorems for semi-discrete case. Then the results of 

numerical experiments will be reported.
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3.1 Sem i-Discrete M ethod

Since div(otju) =  (u j u  • V)0 +  d>div(uju). and also by the incompressibilitv 

condition div(u) =  0. we have div(uju) =  (u • V)u; +  ujdiv(u) = (u • V)cj.

Denote by < ■. • > the inner product in the Sobolev space H q. H 1. then

(3.7) < o, {u ■ V)cu >=< o.div(uiu) > =  — < V o . u j u  >.Vo € Hq.

By using divergence theorem, we have

M ethod 3.1 Variational formulation of vorticity-stream function equa­

tions

{ Find uj e H l. u € H l such that

< <t>. §f > -  < Vo .  uju >= < W>. V uj > + < 6. f i  >. Vo e  Hjj(Q)

< V d ) , V i l J > = - < d r U J > + f r (t)f3ds. V o € H l(Q)

Since u  = Ad». Method 1 can be written as the following more symmetric 

form

M ethod 3.2 Symmetric variational formulation of vorticity-stream func­

tion equations

{ Find uj € H l, w e  H l such that

< V 0 .  > + < Vd.uju >= ^  < V 0 .  V u > - <  o. fi >. Vo € tf0l(n)

< Vd>. V o  > =  — <  <t>. u j  > 4- Jr o f  ids.  Vo 6 H l {Q)

We now give the simple finite element methods based on method 2. Let A'* 

be the standard continuous finite element space with Arth degree polynomials 

on each element of a triangulation 7/,, where h is the maximum size of the 

elements. Denote X ^ h the subspace of A'* with zero boundary values.

M ethod 3.3 Semi-discrete finite element method for vorticity-stream func­

tion formulation

{ Find uJh € X*. and^y, € A'£ such that

< V<p, V ^ -  > +  < Vo,ujuh >= £  < V6. V'jJh > — < o. f  i >. Vo e X ^ h

< Vo, Voh >=  — < o, uJh > +  f r ofsds, Vo € A'*
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and the velocity field can be obtained from the stream function via

(3.8) uh =

The following stability and convergence theorems for method 3 were proved 

by Liu and E [22]

T h eo rem  3.1 (L iu E ) . Let ilh and uih be the approximate solution given 

by Method 3.3. Then

(3.9) + lk/i(--s )lli,rfs =  ll^ (--0 ) ||i .

T h e o rem  3.2 (L iu & E ) Let (ip.w.u) be a solution of the Navier-Stokes 

equation (3.1) and (ti'h-^>h- u/i) be the approximate solution given by Method 

3.3. then we have

||« ~ U/i||i,*((0,rl;L2) +  11̂ ' — ^hlU*((0,T];L2)

<  Ch*_l/2(||ii>||£*((o.ri;Vv‘t+1':’<:) + l |a ; | |^ ((0.r!;^+^ (CTfle(tWI- ^ '^ '- ) -  

where C is a constant which does not depend on h or the numerical solution.

R em ark . The error bound grows exponentially as a function of Reynolds 

number Re and time T. This may be very crude, as we will see some accuracy 

checking later.

3.2 Full D iscrete Scheme

To avoid the coupling of the computation of the vorticity and stream func­

tions. the convection term is treated explicitly. As in the case of the finite dif­

ference methods . we can expect that high order explicit Runge-Kutta method 

for time discretization will lead to a stable method, even with large Reynolds 

number .

Now we describe the full simple finite element method. Given the nth time 

step solution v.’%.uj£, note that uh = V^Wh. the we can produce u£+l.u:r̂ 1 in 

four steps:
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M eth o d  3.4 Simple Finite Element Method:

Step 1. <

Find such that

< Vo, Vii{l) > = <  Vo. Vii'% > -
f  < Vp.wjJVH-j? > -rrfe < Vo. Vatf > - f  < o . / r  >.

VO € A0fc„
< O.uj[1] >= -  < V o.V y[l) > + f r o f 3ds.

Vo 6 A*

Step 2. <

Find (i  ̂ .a;),'4' such that(2) . .(2) 
h •

< Vo. Vo^2) > = <  Vo. Vo£ > — 

f  <  VO.a^V1^  > + M <  Vo.v4‘> > - f <  o . / r j >•
Vo 6 A0*a

< 0.a/j,2) > =  -  < Vo. V t{2) > + f r d>/3ds. 
Vo € A'*

Step 3. <

Find o j^ .a^3' such that

< Vo. Vc.’[3) > = <  V o. V c£ > -

At < Vo. 4 2)V * 4 2> > + # : < Vo. V 4 2) > -A t < o . / ^  >.

<  0 . ,<3>'/i

Vo €  A'o.a
> =  — < Vo. Vc{3) > +  Jr <i>f3ds.

Vo € A*

Step 4. <

Find e^+l.w^+l such that

< Vo. VO£+l > = <  Vo. 5V (-< # + e{l) + 2o‘2) +  f ' 3)) > -
n - r  1¥  < v<j.^3v^43' > + £ k <  v®, v^3) > - f  < o,/r

<  o . ^ h +l  > =  -  <  V O .  V o £ + l  > + Jr o f 3ds.
VO e A'*

>. VO € A*O./i

There are two substeps in each step. The first substep involves solving a 

linear system of which the coefficient matrix is the standard stiffness matrix.
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while the second step is to solve a linear system of equations of which the 

coefficient matrix is the standard mass matrix. These coefficient matrices are 

large sparse symmetric positive definite matrices.

we use the preconditioned conjugate gradient methods to solve the linear 

systems. We choose the trigonometric transforms [31. 34] as the precondition­

ers for the stiffness matrix, while classic Jacobi method for the mass matrix. 

The details about the assembly of the matrix-vector product, assembly for the 

nonlinear term are given in chapter 5.
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CHAPTER 4 

FAST POISSON SOLVERS

The conjugate gradient(CG) method was developed independently and in 

different forms by Lanczos [21] and Hestness and Stiefel [17] in fifties. The 

method was essentially viewed as a direct solution technique and was aban­

doned early on because it did not compare well with other existing techniques. 

For example, in inexact arithmetic, the method does not terminate in n steps 

as is predicted by the theory. This is caused by the severe loss of the orthogo­

nality of vector quantities generated by the algorithm. The paper of Reid [27] 

in 1971 drew the attention of many researchers to the potential of the algo­

rithm as a iterative method for large sparse linear systems. It was a catalyst 

for much of the subsequent work in conjugate gradients.

Lack of robustness is a widely recognized weakness of iterative solvers, 

relative to direct solvers. Both of the efficiency and robustness of iterative 

techniques can be improved by using preconditioning techniques. Precondi­

tioning is simply a means of transforming the original linear system into one 

which has the same solution, but which is likely to be easier to solve with an 

iterative solver.

Now the preconditioned conjugate gradient methods have become the most 

important iterative methods for solving large sparse linear systems of equa­

tions, see e.g. [14, 15, 29], We will use the discrete trigonometric transforms 

as preconditioners for solving discrete Poisson equations, and classic Jacobi
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method for solving discrete heat-like equations.

4.1 The Conjugate Gradient (CG) M ethod

The convergence of the CG method for symmetric, positive definite linear 

systems are proved in many textbooks, see e.g. [14. 15. 29]. Since we are going 

to apply the CG method to symmetric positive semi-definite linear systems, we 

will show that it still converges. And the convergence rate estimate is similar 

to the case of symmetric positive definite system.

Consider the following linear system of equations

(4.1) Ax  =  b

where .4 € R nyn is symmetric, positive semi-definite, b € R".

Given an initial gauss x0r have the following conjugate gradient (CG) 

method:

Compute r0 := b -  Ax0,po =  r0.

For j  = 0.1. ...until convergence Do : 

aj '■= (rj - rj ) / ( APj-Pj)
xJ+l := Xj +  ctjPj

C - i  : =  r j  ~  q j A P j  

3j := (rJ+1. rJ+i)/(r}. r})

Pj+i := rj+i +  3jPj
Enddo

Now we show the convergence of the CG method for symmetric positive 

semi-definite system. Suppose the eigenvalues of .4 are At > A2 > • • • > 

Ar > 0. Ar+1 = • • • = A„ = 0. the corresponding orthonormal eigenvectors are 

• • • . ry. yr+I, • • • . vn. Then the null space .V(.4) of .4 is span{vr-i .  • • ■ . c„}. 

and the range space H(.4) is span{vi.  • • • . ty}.

L em m a 4.1 The sequences rk-Pk are in R(A).

From lemma 4.1. we have
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L em m a 4.2 p* =  0 is equivalent to Apk =  0 or (Apk,Pk) =  0.

Note that CG method could breakdown if either some rk =  0 or pk = 0. If 

r*. =  0, then Xk is a solution. If pk =  0. we will show that r*. =  0. Thus if CG 

method break down then we end up with a solution.

L em m a 4.3 Let the sequences r j .p j . j  =  0. ••• ,k  are generated by the 

CG method, then

( 4 . 2 )  s p a n { r 0. ■ ■ ■ . rk} =  s p a n { p Q, • • • . p k} =  s p a n { r Q. . 4 r 0 , • • • . A kr0}. 

P ro o f. First we point out that r/.p j ^  O.j =  0. ••■k — I. Let us prove

(4.2) by induction method. Assume span{r0. • • • . rm} = span{p0. ■ ■ ■ .pm} = 

span{rQ, Ar0,- ■ ■ ..4mr0}. for some m < k. Then pm+1 — I'm*-1 ~F dmPm €

span{rQ. ••• , rm+l}. and rm+l =  rm -  a mApm € span{r0. Ar0. ■ ■ • . .4m+1r0}. 

Thus, span{p0, • • • .pm+i} C span{r0, • • • . rm+1} C span{r0. ,4r0. • • • . -4m+lr0}. 

Also, rm+i —Pm+i dmPf7j € span{po, • • • .pm-t-i}. thusspon^ro. 

span{p0.---  .pm+i}. By the induction hypothesis .4mr0 6 span{p0. ■ • • .pm}. 

we have .4m+1r0 € .span{.4p0. • • • . .4pm}. Since Apj =  (rJ +  1 — r}) /a  j . we have 

.4pj 6 span{r0. • • • . rjTl}, fory =  0. ■ • ■ m. Thus .4rm+i € .span{r0. • • • , rm+I}. 

the lemma is proved, o

L em m a 4.4 Let the sequences {rj}*=0, {Pj}j=0 are generated by the CG 

method, then

(4.3) (pi.Apj) =  0, i ^  j. i . j  < k.

(4.4) (rt.r}) = 0 . i  #  j . i . j  < k.

P ro o f. We use induction method.

{rj+i,pj)  =  f a  -  atjApj.pj) = (rj .pj) -  (rj . rj ) .  for j  = 0. • • • . k. Since 

p0 =  r0. thus ( r l t r0) =  (n .po) =  0.

(pi..4po) = ( r ! + i0Po.-dpo) =  ( r1..4po)-f(rl . r 1)(po..4po)/(r0.ro) = ( r1. - ( r 1-  

ro)/ato) + (r t, /^(po. .4p0) /( r0. r0) =  0.
Suppose that (p,. .4pj) = 0. (r,, r3) = Q.i ^  j . i . j  < m. Then (rm^ t . rm) -  

(rm. rm) (rm. r m)( Apm. rm)/( Apm. Pm)- But (.4pm. rm) — (.4pm. pm dm_ipm_ i) 

(.4pm,pm). since (.4pm.pm_i) =  0. Thus (rm+l, r m) = 0.
v *  /Q   ( r m + t  I )   ( r m - f l  m-F 1 ~  )   ( r m-?-l » ~ Q rn  Apm  ) __  __( r m-f-1 •Apm )

771 ( r m , r n t )  ( r m / m )  ( f m / m )  ( -^P rn  - P m )

thus
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(Pm+i ,Apm) = (r m+l+ 3 mp m. A p m) = 0. The left thing is to show ( rm+1. r} ) = 

0, (Pm+i, Apj) = 0, if j  < m. (rm+1, rf) =  ( rm -  otmApm, r,). by induction hy­

pothesis, (rm, r j )  =  0. (Apm, r j )  = (pm. A r j )  =  0, since r} € s p a n { r 0. - - -  . r3} = 

s p a n { p Q, ••• . p j } .  Again, when j  < k . { p m+l , A p j )  =  (rm + 1  + 3 mpm. A p } ) =

( rm+x, A p j ) =  0, sincep3 6  s p a n { r Q, • • • . AJr0}. Ap3 6 s p a n { r 0. • • • . AJ'r l ro} =  

s p a n { r o r  •• , r j+ i}. o

From Lemma 4.3 and Lemma 4.4. we can see that if pk #  0. and pk+1 =  0. 

then we have rk+l = 0 , the CG method ends with a solution.

Theorem  4.5 The CG method converges to a solution after at most rank(A) 

steps.

Proof. Since span{rQ, • • • . rfc} C R{A), of which the dimension is rank(A).  

and r0, • • • , rk are orthogonal, r ra„A.(.4 ) =  0  if the CG method does not break 

before this step, o

Note that R" = N (A)® R(A) ,  then the initial gauss x0 can be decomposed 

into the sum of its .V(.4) part and R{A) part. It is easy to see for CG method, 

all iterates x k has the same :V(.4) part as that of xo- Let x* be the solution of 

the CG method started from initial gauss x0, then e0 =  x* — x0. x*—x0 € R{A). 

Since .4 is symmetric positive definite on R(A).  we can define an inner product 

< •, • > on Z?(.4) as < x. y > =  x TAy.

Theorem  4.6 Suppose that x* is the solution of the CG method started 

from initial guess x0, then x k—x 0 is the orthogonal projection of the initial error 

do =  x* — x0 with respect to < - . - >  on the space 14* =  span{p0. ■ ■ • .pk-i}  — 

span{r0, ■ ■ ■ ,.4fc_lr0}.

Proof. Since Ax* =  b. for j  =  0, ....A* —1. < e0 — (x* — x0 ).p; > =  (rk.p}) =

0, by Lemma 4.4 o

Theorem  4.7 Let A[ > • • • > Ar be all the nonzero eigenvalues of A. then 

for the CG method,

(4.5) ||x* -  x*|U < maxi<j<r |g(Aj)||]x* -  x0 |U.V9 * € Pk

where Pk is the set of all polynomials of degree at most k and <7*(0 ) =  1 .

Proof: Note Wk =  span{r0, .... Afc_lr0} = span{A(x* — x °)..... A*_ l(x* —
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i 0)}. By Theorem 4.6. x* — x0 e  is the projection of x m — x0 into 11*. we 

have
I k .  -  *ifc||.4 =  I lk *  -  -To) -  (*fc -  *0)11.4 

=  m i n 9 l€ p)t,9lt(o)=i ||<7*(.4) ( j .  — *o) | | .4

<  m i n ^ g p ^ q ^ o ^ i  m axA .^ o  k i t ( A ) |  • | | * '  -  * o | | , i  o 

From the theorem we have

Ik* — *fc11.4 < min«7fc€Pfc,<7*(0)=l maXAe[A,.Ar] |9A:(A)| • ||*“ — *0 11.4•

By Chebyshev best polynomial theorem, we have

4.2 Preconditioned Conjugate Gradient M eth-

Suppose that .4 is symmetric and positive semi-definite. A preconditioner 

A/ is a matrix which approximate .4 in some yet-undefined sense. It is assumed 

that M  is symmetric positive definite. This is because that A/_ l.4 is self- 

adjoint for the M —inner product,

(4.8) (A/ l .4x, y) — (Ax. y) =  (x, Ay) =  (x. M (M  lA)y) = ( x .M  lA y )iU.

Therefore, an alterative is to replace the usual Euclidean inner product in the 

CG method by the A/-inner product. So the convergence analysis in previous 

section can apply the system

(4.6)

where y = Xi/XT.

ods

(4.7) (x . y ) u  =  (A/*.y) =  (*. My)

since

(4.9) M ~ lAx  =  AI ~ lb
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If the CG method is rewritten for this new product, denoting by rj =  b — 

A i j  the original residual and by zj = M ~ lrj the residual for the preconditioned 

system, the following sequence of operations is obtained, ignoring the initial 

step:
1. ctj : =  (zj .  Zj) \ , / { A / ~ 1 A p j . Pj ) \ i

-■ -Tj + l :== X] "b ajPj
3. rJ+l := rj -  a }Apji

4. cJ + i := M  l rJ+i

4. 3j := (zJ+i.Zj+i)\i/{zj, zj)\[

5- Pj*i := -j+i +  JjPj

Since (zj, Zj)\[ =  (r,. 2j) and (M ~ lAp}.p})st =  (.4pj.p_,).the A/-inner products 

do not have to be computed explicitly. With this observation, we obtain the 

following preconditioned conjugate gradient algorithm:

Compute r0 := b — .4x0. z0 =  A/- l r 0 .p 0 =  fo- 
Fui j  — 0.1. ...until convergence Do :

a j ■= (rj - = j ) / ( A Pj-Pj)  

xJ+l := Xj -F cijPj 

rJ + 1 : =  Vj — ctj Apj  

A/- l rJ + 1  

3j := ~j>i)/(rj ! ~j)

Pj+i '■= ~j~i +  JjPj  

Enddo

From a practical point of view, the only requirement for .1/ is that it is inex­

pensive to solve linear systems M x  =  b. This is because the PCG method will 

require a linear system solution with the matrix M  at each step. In the next 

section we will study the a class of Poisson solvers- discrete trigonometrical 

transforms-as the preconditioners.
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4.3 Discrete Trigonometric Transforms as Pre­

conditioners

We will show in this section that the discrete trigonometric transforms 

are exact direct solvers of the linear systems of Poisson equations on rectan­

gles when discretized with standard second-order difference scheme. It is well 

known that for the Poisson equation on a rectangle, the second-order centered 

difference scheme is equivalent to the standard linear finite element method. 

Since we will use high order finite element methods, so to use the discrete 

trigonometric transforms as preconditioners mean that to use first-order finite 

element methods as preconditioners for high order finite element method.

D efinition 4.1 The D iscrete Sine Transform (DST): Given real x( l  : 

m  — 1 ), compute y (l : m — 1 ) such that

D efinition 4.2 The D iscrete Cosine Transform (DCT): Given real x (0 : 

m), compute y ( 0  : m) such that

If m  is a power of 2 then the FFT-based algorithms for the above transforms 

only require 'l.bmlogzm arithmetic operations, see e.g. [34}.

Now let us first look at one-dimensional Poisson problem

14.10) j m

(4.11)

(4.12)
d?u ,, .—  =  f ( x ) , a  < x < b

for each of the following specific boundary conditions

(4.13) Dirichlet : u(a) =  a . u(b) = 3.

(4.14) Neumann : u’(a) =  a . u'{b) =  3.
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Define a tridiagonal m x m  matrix as follows

- 2  1   0

(4.15)

1 - 2  ' ■

1

0 0  • • •  1 - 2

Let 9 be any real number and for any integer k set ck =  cos(k9) and 

sk =  sin(kd). Then we have

(4.16)

■Si 3 1 0

= —lsin2(9/2)
So

—

0

— I 3 m  — 1 0

3 m ■^m+l

and

(4.17) T TT

Co c0 Cl

Cl Cl 0

C m - 2

=  —Asin2{9/2)

C m - 2 0

Cm — 1 C m - 1 Cm

For the ID Poisson problem let us use a uniform mesh.

a =  x 0 <  Xi <  • • • <  x„ =  b. h =  {b — a)/n.

With the Dirichlet boundary condition, using the standard second-order cen­

tered difference scheme leads to the linear svstem

(4.18) h2Tn-l

Ui h - a / h 2

Uo /a

U n - 2 f n - 2

U n —1 f n - l  3 / h ?

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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T h e o rem  4.8 Let (n — 1) x (n — 1 ) matrix S  =  (sin(kj7r/n)). k. j  =  

1 , n — 1 , and

( 4 . 1 9 )

for j  = I, ••• ,  n — 1 . then

( 4 . 2 0 )

Xj = Sin2̂

5 _1  =  ( 2 / n ) S  

S " l T „ - i 5  =  D

where D =  diag(\[  A„_[).

So we may solve a linear system of the form Tn-\U = g as follows:

u <— Sg 

u <— (2/n )Du  

U i— S  U

The two DST's can be realized through FFT.

W ith the Neumann boundary condition, we introduce two ghost points 

— a — h. xn+i = b +  h. and we still use the standard second-order centered 

difference method to approximate at the grid points, and for the boundary 

constraint we can approximate u '( i0) =  a  an(l u'{Xn) =  3 with

Ui  — di_ i
( 4 . 2 2 )  

and

( 4 . 2 3 )

2  h
=  a .

2 h
=  3

respectively.

Then we have the following linear system

( 4 . 2 4 )
h 2 Tn+l

Uo f o  -F 2 a / h

U l f i

U n  — 1 f n — 1

U n f n  +  2 3 / h

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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where

Tn+i =  Tn+l 4- e0e j  +

and In+i =  [e0 ,e 1, ...,en_1,e ri] is a column partitioning of I n+i.

T h eo rem  4.9 Let (n +  1) x (n +  1 ) matrix C = (cos(kjTr/n)). 0 <  k. j  < n 

and

(4.25) \ j  = - 4  sm 2( ^ )2n

for j  =  0 , • • • . n. then

(4.26) C~lTn+lC = D

where D =  diag(\0..... An).

Note that the matrix C  does not quite define the discrete cosine transform 

that we defined in the beginning of this subsection. We can see that the DCT 

of a vector x ( 0  : n) is given by C x ( 0  : n), where

C  =  C D ~l . D =  diag(2, 2).

We then have C - 1  =  (2/n)C.  and

(4.27) D~lC ~ lf n+iCD  =  diag{X0 A„)

Thus we may solving a linear system of the form Tn+iu = g as follows:

u <- Cg

u <— (2/ n )D ~ lu 

u Cu

The two DCTs can be realized by using FFT [34],

Remark. Note that the first diagonal element of D is 0. this is because 

the Poisson equation with Neumann boundary condition has solutions unique 

upto a constant. Therefore, we can define

D~l = diag(n, 1/A i..... 1 /A„)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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where /j. can be any real number.

Now let us consider two-dimensional Poisson equation with Dirichlet or 

Neumann boundary condition. Given a function /(x , y) defined on

Q =  [a. 6] x [c, d]

and g{x. y) on dQ, we wish to determine u(x. y) such that

(4.28) A u = f .  V (x.< /)eft

subject to each of the following specific boundary conditions

Dirichlet : u =  g on dQ 

Neumann : =  g on dQ

Using uniform mesh and the standard second order centered difference 

scheme will lead to a linear system Mu  =  g. where

( 4 . 2 9 )  M  =  ( / „  0  A) +  (B 0  Im).

A, B  have the form Tm.Tn for Dirichlet problem, and Tm.Tn for Neumann 

problem. Here we use 0  to represent the Kronecker product.

If V'^.-UA = D,\. V g l B \ 'b =  D b . it can be shown that

(4.30) A/ " 1 =  (Vb 0  I ;,)[(/„ 0  Da ) +  (Dg 0  U r ' O g 1 0  U ;1)

Denote a m x n matrix f mxn the right hand side of the linear system 

resulting from the discretization of Poisson equation. Then the solution of 

M u mxn =  / mxn can be obtained as follows:

U m x n  4 I".4 f m x r A  g

U m x n  4 ^ m x n D g

U m x n  * I A ^ m x n ^  B

Since V‘4 and VB are either type of 5  or C  matrices as defined before, so 

the above steps can be realized by using FFT.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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4.4 A Curved Boundary Problem

In this section, we point out that even if the computational domain is 

not an exact rectangle, the discrete trigonometrical transforms are still good 

choices as preconditioners.

Consider the following Poisson equations with Dirichlet boundary condi­

tion:

(4.31) Ail' = / .  (x. y) 6 D  =  (j, y) : 0 < x < 1 . c(x) < y < d(x)

where xb\aD =  0. c(x) = 0 .5 ( l-x 3). d{x) =  1-hr2, /  =  A(sin2(-x)siri2( x )))• 

The image of the domain D is as follows:

Figure 4.1: A curved boundary domain

Let us use third-order finite element method to find a approximate solution 

of (6 .1 ). If we use the CG method without preconditioning for solving the 

resulting linear system, it diverges. If we use the discrete sine transformation 

as a preconditioner, we get clean high order accuracy for the PCG method, 

which is included in the following table:

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e r m is s io n .
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Table 4.1: Accuracy when DST as preconditioner for Poisson equation on a 
curved domain (third-order triangle elements)

ncell Lx  error order L l error order L 2 error order
2  • 2 0 2 1.18E-5 2.46E-6 3.16E-6
2-40* 8.31E-7 3.90 1.55E-7 4.01 1.98E-7 3.92
2  • 80^ 5.47E-8 3.88 9.68E-9 3.99 1.24E-8 3.98

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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CHAPTER 5 

COMPUTATION OF 
INTEGRALS AND 
ASSEMBLY TECHNIQUES

In this Section, we will discuss the computational techniques for the inte­

grals involved in the gauge finite method in this chapter and the simple finite 

element method in next chapter.

Let Th be either a triangulaticn or a rectangulation of the domain S7. All 

the nodes are put in some global order, i.e. each grid point has a global index, 

and also in each cell( i.e. a triangle or rectangle) each grid point has a local 

index. The following parameters and notations will be used. 

ncell— the total number of cells 

n—the total number of grid points 

T|— the Ith cell in T),. for / =  1 ..... ncell 

nsize— the number of grid points in a single cell

indx(l. i)— the global index of the grid point which has local index i in

the Ith cell, for / =  1 . ncell. i =  1  nsize
indb(i)— the global index of the boundary points which has local index i. 

for i =  1 ..... nbdy. nbdy is the total number of the boundary points.

f c ( l . i )— the value of a function /  at the grid point which has local index

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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i on Zth cell, for / =  1 ..... ncell, i =  1 ,..., nsize

f ( i )—the value of a function /  at the grid point which has global index 

i,for i =  1  n

5.1 Assem bly of the Nonlinear Terms

In the gauge method, we need to compute the nonlinear term

(  +  Vfl^rh-)0,dxdy\
(5.1) < { u h - V ) u h. 0 > =  JnV f  dy> 7

for i = 1  n. where where 0t.i = 1. . . . ,  n. are base functions of the finite

element space.

In the simple finite element method, we need to compute the following 

nonlinear term

(5.2) < V o ,,uJhUh. > = /  {V<i)i)TujhUhdxd!j,
J n

i =  l , .... n.
Since the velocity function is given by ult = we will compute <

V0i ,UhVJ-ii'h >. All these nonlinear terms can be computed similarly. Here

we only show how to compute the nonlinear term in the simple finite element

method.

Suppose
n  ri

X'h — ^  ] ^'j0j • C’h —- ^  '
i = l  i = l

then the ith (i =  1 ...... n.) component of the nonlinear term is given by

rh(i) =  < V O i.^ V 'C -/, >

(53) =  - / n ( E ; = i ^ ^ ) ^ ( E Z = i  ̂ ) d x d y +

+ U E U ^ dt ^ ^ d x d y
=  T.lk= ,» lM lnoi % % dxdy -  In ° & % d x d y )
= o ^ d z d y  -  f Ti 6f e ^ d x d y )

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Since the finite element base functions have compact support on the cells 

in which their corresponding nodes are located, only when the ith. j th and Arth 

nodes are on the /th cell. f Tld > j ^ ^ d x d y  #  0. Therefore to form rh(i) we 

simply add together contributions from all cells which has the fth grid point.

Case 1: Triangle elem ent

Suppose the vertices of 7) are (xo, i/o), yi)-(x?,y-i)- Let T  be the ref­

erence triangle with vertices (0,0). (1.0). (0,1). Then we make the following 

transformation:

(5.4)

where J  is the Jacobian matrix given by

(5.5)

Then

Let
T

(5.6)

then

V(t>i<ibs(\Jt\)dxdy

Define

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .
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C - ddk dd, coef(i . j .  k. 1 ) =  V

f* d@
coef(i. j , k, 2 ) =  J  Oj dxdy

dxdycoef{i.j .  k. 3) = J  d} 

coef{i, j. k. 4) = ~ZTdxcly

: dd, ddk 
5’? dy Ox 
- do, ddk 

dx dy 
do, ddk 
dy dy

for i . j . k  = 1  nsize. Then

i 0 1j ^ j p - d x d y  = ^  f hn .  coef( i . j .  k. m).
t, dx  dy

Therefore

/ - gx I t, ° j  i & l f c dxdy ~  It, ° j  i t  ~ § y d x d y

■= f .  ( r n p f l i  i h  m \ — r n p f ( k  i i. mi l
/  j  m  —  j  ^  t  H i  V  J  \  -  ) j   ̂ - t  . /  \  5 u  '  / /

We make two arrays. coef{ 1 : nsize. 1 : nsize .1 : nsize). factor (I : 

ncell. I : 4) to store those coe f{ i . j , k ,m ) . f [m. Then assembly for the non­

linear term can be written as the following pseudo FORTRAN code:

Do 1 = 1. ncell 

Do i = 1. nsize 

temp = 0  

Do j  = 1 . nsize 

Do k = 1. nsize

temp = temp +  ujc(l.j) * xbc(l. k)*

(Hm=i factor (I. m) * (coef{ i . j . k. m) — coef(k.j .  i. m )))

Enddo

Enddo

rh(indx(l. i)) = rh(indx(l. i)) -+- temp 

Enddo 

Enddo

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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Case 2 : R ectangle elem ent

Suppose the vertices of cell 7) are {x0, y0). (xi, y0). (x0. y\). {x^. iji). Let 

T  be the reference rectangle with vertices (0.0). (1.0). (0.1). (1.1). Then we 

make the following transform:

Q -C h '" '
where J  is the Jacobian matrix given by

• T i  —  X n  0
j, = :

0 i/i -  yQ

Then

C J  \ y - y o t
It is easv to check that

= J,

/- f  Ovkdvi [ 2  3<Pk3<it
' o l 0 )  j T; ^ ^ d ld y  = l i d l d s

Define

C - dOi dOk 
coef( i . j .k .  1 ) =  J * j i r § F d*dy

f  - dot dOk
c < x w j , k , 2 ) =  y

for i . j .  k =  1 ,.... nsize. 

Then

I t, dy Ite'dxdy f Ti Oj ar* -^j-dxdy
=  ( coe f ( i . j .k . l )  -  coef( i . j .k .2 ))

(5.11)

The assembly for the nonlinear term can be written as the following pseudo

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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FORTRAN code:

Do 1 = 1 , ncell 

Do i =  l, nsize 

temp =  0  

Do j  = 1. nsize 

Do k =  1, nsize

temp = temp +  ujc(l.j) * uc(l, k)* 

((coef{i, j . k . 1 ) -  coef(i, j,  k. 2 ))

Enddo

Enddo

rh(indx{l, i)) = rh(indx(l. i )) + temp 

Enddo 

Enddo

5.2 Unassembled Stiffness M atrix

The stiffness matrix is defined as A  € R nxn. where atJ = (Vo,, VOj). i .j.  = 

1 , .. .,n.  Since we will use preconditioned conjugate gradient (PCG) method 

to solve the derived linear systems of equations, 5  needs not to be formed 

explicitly. Instead, only the matrix vector production will need to be com­

puted. For that purpose, we only compute the unassembled stiffness matrix 

S  € K ncelt:<nst:exnsi:e which is defined as follows:

for I =  1 ,.... ncell, i . j  = 1 ..... nsize where Oj, <t>j are the ith. j th  base functions 

corresponding to the ith. j th  nodes on the Ith cell. As before, we will compute 

above the integral by mapping the Ith cell Ti onto the reference cell T.

Case 1: Triangle elem ent

Suppose the vertices of T  are (x0, y0). {xi, yi). (x2. y?)- As before, we have 

the transformation (5.4):

(5.12)

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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We have o (x . y) = o(x, y). and VO =  JL TV d  then 

Skij =  f Ti(VOi)TV 0 jd x d y

(5.13) = f f ( J - TV 0 i)T( J r TVd>j)abs(\Jil)dxy

=  hiVo^iJr'J^zWlJilWOjjdxi j

Denote I  a i i j _  t  t ^ e n

\ bt ci J

r dfa do,  , f  d 6 l d i j  ddtdOj f d o t dOj«» =a' Jt~&i if y + ‘Jt dilti + C‘li^i)dldy + Jt  &
For i . j  =  1..... nsize. let

coe/(i .j .  i) = Jt%d-§ididy 
c o ' H i . j . * )  -

coef(i. j.  3) = /  ■^r-^r-dxdy

f  dx dy dy dx 
ddi do.  . 
dy dy

then

(5.14) snj =  at * coef(i . j .  1) 4- bt *coef{ i . j /2)  + ct * coef( i . j .3)

for I =  1  ncell. i . j  = 1 ..... nsize.

C ase 2: R ec tang le  e lem ent

Suppose the vertices of 7) are {xQ, y0). (xQ, y\), (xi. y0). (xx. yi). As before, 

we have the transform (5.9).

We have d{x.y)  =  o(x.y) .  and V o  =  ./,_ rVp then

s(i] -  JTl(Vd,)JV0jdxdy
= j t {J^TV0i)T{Ji~TV4>j)abs{\Ji\)dxy 

= fciVOtfiJ^J^absiVMVd^dxy

(yi ~.y° o \
Il-X° ] =  a6 s(| J/|) Jt lJ, . then

0  /jn-iro >

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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$lij
*/i — 2/o f  d<pi ddj . . . .  xi_  y\ -  vo f  

X \  —  X q J fiT dx dy 

For i . j  =  1 . . . ..nsize.  let

dxdy +
i -  x 0 f  dcz>, ddj .

y i
-  Xq r do,
-  .Vo 7 t  #2/

—dxdy

then

(5.15)

/* do, do,  
c o e m j . l )  =

coef{i.j . 2 )
do, doj - - z - r d x d y  

r  dy dy

Vl ~ Vo r/ ■ 1 \ , X1 “  ft ■ n\Slij =  7  — * coef(i . j .  1) +  -  — * coefyi.j.  2)
X i  -  x0

for I =  1 ,.... ncell. i . j  =  1 ..... nsize.

y l “  Vo

5.3 Unassembled Mass M atrix

Similarly to the stiffness matrix, the mass matrix B  =  (6 i;) 6  R nxn needs

only be computed in unassembled form, where 6^ = Jn o,o}dxdy. i . j  =  1  n.

the indices of the base functions are global.

The unassembled mass matrix is defined as

(5.16) M = (mUj)  € B.neeUxnaisexnai3e.

where mi,j =  f T o,03dxdy. I =  1 ..... ncell. i . j  = 1  nsize. the indices of the

base functions are local. Again we make the same mapping as before, define 

coef( i . j )  =  J f  d,Ojdxdy. i. j  — 1  nsize. then we have

(5.17) muj = a6s(|7/|) * coef{i. j)

for / =  1 ___  ncell. i . j  = 1 ..... nsize.
The above formula holds for both triangie and rectangle elements.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e r m is s io n .
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5.4 Assem bly of M atrix-Vector Product

Suppose we have an unassembled matrix A  =  (a*.^). and we are going to 

use PCG method to solve Ax  = 6, where the ith component of j  is solution 

corresponding to ith node points. In PCG method, the major computation is 

the matrix-veccor product v = Au. We have the following pseudo FORTRAN 

code for the product:

Initialization v =  0 

Do k = 1. ncell 

Do i =  1. nsize 

temp = 0  

Do j  =  1. nsize

temp = temp  -F a(k. i . j )  * uc(k.j)

Enddo

vUndxik. i)) =  viindxik.  i)) 4- temp 

Enddo 

Enddo

In the case of the solutions on the boundary are known, we need to set the 

product on the boundary to zero: v(indb(i)) =  0 , i =  1  nbdy.

5.5 Evaluation of the Gradient Terms in Gauge 

M ethod

Given <? in (k -f l)th  order finite element space A'£'rI. we explain how to 

V o in kth order finite element space A'*.

Suppose e f ^ . i  = 1 nfc-ri. are base functions of c f . i =  1 nk.

are base functions of A"*. Suppose o =  then | |  =  E ^ | ld f+ iavj T .

On the other hand, let where Xi is the value of | |  a t the ith

grid point in the Arth order mesh. Then . thus we

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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have

Solve this system, we can get the values of on the A;th order mesh.

Note that the coefficient matrix of the above linear system is the mass 

matrix, of which the unassembled form has been discussed before. Now let 

discuss in more details the computation of the right hand side. We would like 

to point out that we can find by using divergence theorem that the right hand 

side of Neumann problem in the step 2 in gauge method has similar structure 

as in (5.18).

To simplify the notation, let us assume that k =  3. So we use mixed 

3rd/4th finite elements in the gauge method.

As before we will first compute the integral by mapping the cells to the 

reference cell, then we will use local assembly techniques to form the right 

hand side.

Case 1: Triangle elem ent

Suppose the vertices of T  are (x0 .yo)- (xi.j/i). (x2. y2). As before, we have 

the transform (5.4).

Note ii'{x.y) = v(x .y ) .  denote that

(5.19)

then
It, i f f  Uj dxdy
= / i  f t  i f t t f d x d y  +  f 2 f t  ^fj-ujdidy.

T, Ox ’"j

= h  f t  i f t t f d x d y  + / 4 f f  ^ njdxdy .

therefore, if we define

coef{i, j A )  = f f  ^-tl ' jdxdy  

coef(i, j .  2 ) = f t  ibjdxdy

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .
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then we have the following pseudo Fortran code for the local assembly of the 

right hand sides:

initializationrhx(i) =  0 . rhy(i) =  0 , i =  1 ,.... node3 

Do k = 1, ncell 

Do * = 1, nsize3

tempi  = 0 . temp'2 =  0  

Do j  = 1 , nsize4

tempi  = tempi  +  phic(k.j)  * ( f 2 * coef( j , i. 1) + f i  * coef{j. i. 2 ))

temp2 = temp2 + phic(k.j)  * (/4 * coef(j, i, 1) + * coef{j. i. 2))
Enddo

rhx(indx3{k. i)) = rhx(indx3(k. i)) + tempi

rhy{indx3(k. i)) = rhy(indx3{k.  *')) + temp2

Enddo 

Enddo

C ase 2: R ec tan g le  e lem en t

Suppose the vertices of 7} are ( j0. t/0). (x0. i/i). (xi. f/o)- (^ i-Ui)- As before, 

we have the transform (5.9).

We have 6{x.y) = o(x,y) ,  and V<z> =  7(- r Vo denote that

/ i  =  -  Jo- f i  = yi — yo

then

Jr, T & v f a d y  
= A / f  l ifrVjdxdy

therefore, if we define

coef( i , j ,  1 ) = f t  Ujdxdy

coef( i . j ,  2) = Jf  vjdxdy
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then we have the following pseudo Fortran code for the local assembly of the 

right hand sides:

initialization: rhx(i) = 0 , rhy(j) =  0 . i = 1 .......node3

Do k  = 1, ncell 

Do i =  l ,ns i:e3

tempi  =  0 , ternp'2 =  0  

Do j  = l.n.size-1

tempi = tempi +  phic{k.j) * / 2 * coef{j. i. 1 ) 

temp2 =  temp'2 4- phic(k.j)  * f \  * coef(j . i. 2)

Enddo

rhx{indx3{k, i)) = rhx(indx3(k%«)) 4- tempi  

rhy{indx3{k, i)) = rhy{indx3(k. i)) 4- temp2 

Enddo 

Enddo
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CHAPTER 6

NUMERICAL EXPERIMENTS

6.1 Accuracy Check for the Gauge Finite/Spectral 

Element M ethods

Our first experiment is to check the convergence order of accuracy. Choose 

the following exact solution of the Navier-Stokes equation:

(6 . 1)

ul(x .y . t )  =  —cos(t)sin2{irx)sin('2iTy) 

u2(x. y. t) =  cos(t)sin(2~x)siri2(-y)

0(x,y , t )  = cos(t)( 2 + cos{~x))(2 +  cos(~y))/A

Corresponding forcing terms are added to ensure that (6 .1 ) is an exact 

solution.

We first use mixed 3rd/4th order gauge finite element method, that is. we 

use 3rd order piecewise polynomials to approximate a. u. and use 4th order 

piecewise polynomials to approximate <z>.

We choose Re =  1. Af = (h)%. where h is the minimum side of the triangles. 

The absolute errors and the convergence orders are reported in the following 

table.
The second example is to use mixed o th /6 th spectral rectangle element 

method. Here we use rectangle elements, and the zero points of Gauss-Lobetto-
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Table 6.1: Errors for Backward-Euler Gauge Finite Element Methods (mixed 
3rd/4th order triangle elements), Re=1000, t= l

Gauge FEM ncell L°° error order L l error order L1 error order
2 102 4.60E-4 1.27E-4 1.53E-4

P 2 202 1.07E-4 2.10 3.53E-5 1.84 4.08E-5 1.90
2 302 4.61E-5 2.07 1.64E-5 1.89 1.87E-5 1.92
2 10- 2.20E-3 5.37E-4 7.02E-4

ul 2 202 5.51E-4 2.00 1.29E-4 2.05 1.70E-4 2.04
2 102 2.45E-4 2.00 5.70E-5 2.02 7.48E-5 2.02
2 10- 2.20E-3 2.00 4.97E-4 2.02 6.62E-4 2.02

u2 2 202 5.51E-4 2.00 1.17E-4 2.08 1.58E-4 2.06
2 302 2.45E-4 2.00 5.15E-5 2.03 6.94E-5 2.03
2 10- 1.49E-2 1.29E-3 2.30E-3

div 2 202 3.56E-3 2.06 7.33E-5 4.13 1.96E-4 3.55
2 302 1.57E-3 2.02 1.44E-5 4.02 4.93E-5 3.40

Table 6.2: Errors for Crank-Xicholson Gauge Finite Element Methods (mixed 
third/forth-order triangle finite elements). Re=1000. t= l

Gauge FEM ncell Lx  error order error order L~ error order
2 • 202 7.27E-3 2.62E-4 4.46E-4

P 2 • 402 6.13E-4 3.56 2.59E-5 3.34 4.33E-5 2.47
2 • 602 1.77E-4 3.07 9.52E-6 2.47 1.41E-5 2.77
2 • 20'J 1.21E-5 1.52E-6 2.34E-6

ul 2 • 402 8.09E-7 3.90 1.12E-7 3.76 1.65E-7 3.82
2 • 602 1.97E-7 3.48 2.64E-8 3.56 3.83E-8 3.60
2 • 202 1.20E-5 1.60E-6 2.40E-6

u2 2 • 402 8.08E-7 3.89 1.21E-7 3.72 1.75E-7 3.78
2 • 602 1.99E-7 3.45 2.87E-8 3.55 4.12E-8 3.57
2 • 202 1.50E-3 1.17E-4 2.13E-4

div 2 • 402 1.93E-4 2.96 1.33E-5 3.14 2.33E-5 3.20
2 • 602 5.82E-5 2.96 3.79E-6 3.09 6.48E-6 3.14
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Legendre polynomials, see e.g. [20], are used as grid points. Again Crank- 

Nicholson method is used for time discretization. Re =  l .A t  =  /i2°. The 

absolute errors and convergence orders are reported in the following table.

Table 6.3: Errors for Crank-Nicholson Gauge Spectral Element Methods 
(mixed 5 th /6 th  order rectangle elements), Re=1000. t= l

Gauge SEM ncell L x  error order L l error order L2 error order
-•v ■■■ 0" 1.54E-4 2.63E-5 4.09E-5

P 82 2.76E-5 3.67 3.55E-6 4.27 5.61 E-6 4.22
102 9.26E-6 4.89 1.11E-6 5.20 1.76E-6 5.20
o~ 1.47E-6 1.72E-7 2.98E-7

ul 82 1.61E-7 4.70 1.60E-8 5.08 2.91E-8 4.95
102 4.38E-8 5.84 3.96E-9 6.20 7.56E-9 6.05
52 1.47E-6 1.72E-7 2.99E-7

u2 82 4.43E-5 4.70 3.48E-6 5.08 7.32E-6 4.95
102 4.38E-8 5.84 3.97E-9 6.20 7.57E-9 6.05
52 2.94E-4 3.61E-5 6.79E-5

div(u) 82 4.43E-5 4.03 3.48E-6 4.97 7.32E-6 4.74
102 1.50E-5 4.84 1.09E-6 5.19 2.27E-6 5.24 |

In the above tables, the square numbers are the numbers of element cells. 

u is the velocity, p is pressure, and div(u) is divergence of u. Ord refers to 

the order of convergence, and L 1 .L 2 ,£0C are norms of the errors . The plots 

of errors for the case of Crank-Nicholson gauge spectral element method are 

given in the pictures 6.1-6.4.

6.2 Accuracy Check for the Simple F inite/Spectral 

Element M ethods

Our first numerical experiment is to check the convergence accuracy of the 

simple finite element method by choosing the following exact solution of the
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Figure 6.1: Error of the first component of velocity for Crank-N’icholson gauge 
spectral rectangle element method of mixed oth/6th order. Re=1000. t= l .  cell 
nurnber=52

■ »o*
'C„

Figure 6.2: Error of the second component of velocity for Crank-N’icholson 
gauge spectral rectangle element method of mixed 5th/6th order. Re=1000. 
t= l  . cell number=52
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Figure 6.3: Error of pressure for Crank-Nicholson gauge spectral rectangle 
element method of mixed 5th/6th order. Re=1000. t= l  . cell number=5J

Figure 6.4: Error of divergence-free property for Crank-Nicholson gauge spec­
tral rectangle element method of mixed oth/6th order. Re=1000. t= l  . cell 
number—52
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Navier-Stokes equations:

{v  =  cos{t)sin2(7rx)sin2(7ry).
ui =  27:2cos{t)(cos(2/n-x)sin2(ny) +  cos(2iry)sin- {~x))

where (x, y) € Q =  (0,1) x (0.1), t € (0.1). the force term and boundary 

conditions are determined by ib and <p. The initial value is the exact solution.

We use finite element method(FEM) and spectral element method(SEM) 

for our computation. We use triangle elements for the case of FEM and rect­

angle element for the case of SEM.

We choose Re = 10000, A t  =  h /4, where h is the minimum side of all the 

triangles (or rectangles). The comparison of the numerical solution and the 

exact solution at time 1 and the order of accuracy is reported in the following 

tables. The first table gives the results when the third-order FEM is used. 

The second table gives the results when the fifth-order SEM is used.

Table 6.4: Errors for Simple Finite Element Methods (third-order triangle 
finite element method), Re=1000, t= l

Simple FEM ncell Lx  error order L l error order L2 error order
2-20 2 2.62E-5 5.33E-6 7.45E-6

ib' 2 • 402 1.15E-6 4.52 2.55E-7 4.38 3.65 E-7 4.35
2 • 802 4.47E-8 4.68 6.80E-9 5.23 9.82E-9 5.21
2 • 202 0.20 6.44E-3 1.51E-2

UJ 2 ■ 402 3.76E-2 2.41 4.11E-4 3.97 1.94E-3 2.96
2 • 802 9.00E-3 2.06 4.02E-5 3.36 3.30E-4 2.56

The second table is the results obtained by using spectral element method. 

We also plot the errors for the vorticity and stream functions.
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Table 6.5: Errors for Simple Spectral Element Methods (fifth-order rectangle 
elements). Re=1000, t= l

Simple SEM ncell Lx  error order L l error order I 2 error order
52 5.31E-6 1.02E-6 1.45E-6

ip 102 5.77E-8 6.53 8.02E-9 7.00 1.26E-8 6.84
202 1.77E-10 8.35 3.23E-11 7.96 4.47E-11 8.15
-■>0* 9.60E-3 7.12E-4 1.41E-3

UJ 102 2.51E-4 5.26 9.33E-6 6.27 2.49E-5 5.82
202 1.03E-6 7.93 4.21E-8 7.79 9.04E-8 8.10

Figure 6.5: Error of the stream function in 5th-order simple spectral element 
method. Re=1000, t= l  . cell number=102

Figure 6.6: Error of the vorticitv function in 5th-order simple spectral element 
method. Re=1000. t= l .  cell number=102
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6.3 Simulations of the Driven-Cavity Flows

Our second example is the simulation of the classic driven cavity flow 

problem, see e.g. [8, 9, 13]. The flow domain is [0.1] x [0.1], with the no- 

slip condition imposed. The upper boundary moves with smooth velocity 

Ub(x) =  16x2(l — x )2 and initial data: Vo(x, y) = (y2 -  y3)ub(x). We have also 

tried the more conventional and difficult discontinuous boundary condition 

ub(x) =  1. The results are presented in the following pictures.

3« 02 93 04 )l 90 07 91 CO

Figure 6.7: stream function, time=5. Re=1000, smooth boundary condition. 
5th order simple spectral rectangle element method, cell number=152

01 92 93 04 OS 00 07 91 90

Figure 6.8: stream function. time=10, Re=1000, smooth boundary condition. 
5th order simple spectral rectangle element method, cell number=152
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at ax 03 04 at  o* or a t  ot

Figure 6.9: stream function. time=15, Re=1000, smooth boundary condition. 
5th order simple spectral rectangle element method, cell number=152

Figure 6.10: vorticity function. time=5. Re=1000, smooth boundary condi­
tion, 5th order simple spectral rectangle element method, cell nuinber=152

9 9 1 0 2  0 3  0 4  0 9  0 0  3 7  0 9  0 *

Figure 6.11: vorticity function, time=10, Re=1000, smooth boundary condi­
tion, 5th order simple spectral rectangle element method, cell number=152
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Figure 6.12: vorticity function. time=15. Re=1000, smooth boundary condi­
tion. 5th order simple spectral rectangle element method, cell number=15J

31 0 2  os o« os o« or oi o»

Figure 6.13: stream function, tim e= l, Re=100000. smooth boundary condi­
tion. 5th order simple spectral rectangle element method, cell number=252

Figure 6.14: vorticity function, tim e= l, Re=100000, smooth boundary condi­
tion, 5th order simple spectral rectangle element method, cell number=252
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9 i Of 0 10 t c; as 04

Figure 6.15: steady state of stream function.Re=1000. discontinuous bound­
ary condition. 5th order simple spectral rectangle element method, cell 
number=152

3
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9 91a a 2 0 4 07 ai Of

Figure 6.16: steady state of stream function. Re=7500. discontinuous bound­
ary condition. 5th order simple spectral rectangle element method, cell 
number=‘252
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at 9 2  9) a« 91 ot or at  a t

Figure 6.17: steady state of stream function. Re= 10000, discontinuous bound­
ary condition. 5th order simple spectral rectangle element method, cell 
number=252

Figure 6.18: steady state of vorticity function. Re=1000. discontinuous
boundary condition. 5th order simple spectral rectangle element method, cell 
number=152
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Figure 6.19: steady state of vorticity function. Re=7500. discontinuous
boundary condition. 5th order simple spectral rectangle element method, cell 
number=252

Figure 6.20: steady state of vorticity function. Re=10000. discontinuous 
boundary condition. 5th order simple spectral rectangle element method, cell 
number=25‘
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APPENDIX A

MAPLE CODES FOR THE 
COMPUTATION OF SOME 
INTEGRALS ON THE 
REFERENCE TRIANGLE

1. coefficients for the nonlinear term by using forth-order triangle 

elem ents.

bas4:=arrav(1..15);

coeft :=array (1.. 15.1.. 15,1.. 15,1..2);

ll:=x;

12:=y;

I3:=l-x-y:

bas4[l]:=32/3*13*(13-l/4)*(13-l/2)*(13-3/4): 

bas4[2]:=128/3*U*l3*(13-l/4)*(13-l/2): 

bas4[3]:=64*13*ll* (11-1/4) *(13-1/4); 

bas4[4]:=128/3*11 *l3*(ll-l/4) *(11-1/2); 

bas4[5]:=32/3*ll* (11-1/4) *(11-1/2) *(11-3/4): 

bas4[6j:=128/3*12*13*(l3-l/2) *(13-1/4); 

bas4[7]:=128*ll*12*13*(13-l/4);
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bas4[8]:=128*ll*12*13*(ll-l/4);

bas4[9]:=128/3*U*12*(ll-l/4)*(ll-l/2);

bas4[10]: =64*12*13* (12-1/4) *(13-1/4);

bas4[ll]:=128*U*12*13*(12-l/4);

bas4[12]:=64*ll*12*(ll-1/4) *(12-1/4);

bas4[13]:=128/3*12*(12-l/4)*(12-l/2)*13;

bas4[14]:=128/3*U*12*(12-l/2)*(12-l/4):

bas4[15]:=32/3*12*(12-l/4)*(12-l/2)*(12-3/4):

with(linalg);

for j from 1 to 15 do

for k from 1 to j do

for i from 1 to 15 do

grad 1:=grad (bas4 [i]. [x.y ]);

u 1:=expand (gr ad 1 [ 1 ] * bas4 [j ] * bas4 [k]);

u2:=expand(gradl[2]*bas4[j]*bas4[k]);

coeft[i,j,k,l]:=int(int(ul.y=0..1-x),x=0..1):

coeft[i.j.k,2]:=int(int(u2.y=0..1-x),x=0..1):

od:

od:

od:

for j from 1 to 14 do 

for k from j-f-1 to 15 do 

for i from 1 to 15 do
coeft[i.j,k,l]:=coeft[i.k.j.l];

coeft[i,j.k,2]:=coeft[i.k.j,2];

od;

od:

od;

precision:=double: 

fortran(coeft. filename=templf);
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2. coefficients for the evaluation of th e  gradients by using m ixed  

3 rd /4 th  order triangle finite elem ents

bas3:=array( 1.. 10); 

bas4:= a r  r ay (1.. 15): 

coeft:=array(1..10,l--15,1..2): 

ll:= x ;

12:=y;
I3:=l-x-v;

bas3[l]:=9/2*(13-2/3)*(l3-l/3)*l3: 

bas3[2]:=27/2*ll*13*(13-l/3): 

bas3[3]:=27/2*U*(U-l/3)*13: 

bas3[4]:= 9 /2* ll* (ll-l/3 ) *(11-2/3); 

bas3[5]:=27/2*12*13*(13-l/3); 

bas3[6]:=27*ll *13*12: 

bas3[7]:=27/2*ll*12*(ll-l/3): 

bas3[8]:=27/2*12* (12-1/3) *13: 

bas3[9]:=27/2*U*12*(12-l/3): 

bas3[10]:=9/2*12*(l2-l/3) *(12-2/3): 

bas4[l]:=32/3*13*(13-l/4)*(13-l/2)*(13-3/4): 

bas4[2]:=128/3*11 *13* (13-1/4) *(13-1/2): 

bas4[3]:=64*13*ll* (11-1/4) *(13-1/4): 

bas4[4]:=128/3*11 *13*(11-1/4) *(11-1/2): 

bas4 [5 ]:= 32 /3* ll* (ll-l/4 )* (ll-l/2 )* (ll-3 /4 ): 

bas4[6]:=128/3*12*13*(13-l/’2)*(l3-l/4): 

bas4[7] :=128*11 *12*13*(13-l/4); 

bas4[8] :=128*11 *12*13*(11-1/4); 

bas4[9]:=128/3*11 *12* (11-1/4) *(11-1/2); 

bas4[10]:=64*12*13* (12-1/4) *(13-1/4): 

bas4[l 1] :=128*11 *12*13* (12-1/4); 

bas4[12]:=64*ll *12* (11-1/4) *(12-1/4): 

bas4[13] := 128/3*12*(12-l/4) *(12-1/2) *13;
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bas4[14] :=128/3*11 *12*(12-l/2) *(12-1/4);

bas4[15]:=32/3*12*(12-l/4)*(12-l/2) *(12-3/4):

with(linalg);

for i from 1 to 15 do

grad 1: =grad (bas4[i]. [x.yj) ; 

for j from 1 to 10 do

ul:=expand(gradl[l]*bas3[j]);

u2:=expand(gradl[2]*bas3[j]);

coeft[i,j,l]:=int(int(ul.y=0..1-x).x=0..1);

coeft[i.j.2]:=int(int(u2.y=0..1-x),x=0..1):

od:

od;

fortran (coeft. filename=nfort43.f);
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APPENDIX B

MAPLE CODES FOR THE 
COMPUTATION OF SOME 
INTEGRALS OF HIGH 
ORDER SPECTRAL 
ELEMENT METHODS ON 
THE REFERENCE 
RECTANGLE

bas5:=array(1..36); % base functions of 5th-order spectral elements in 

% 2D

bas6:=array(1..49): % base functions of 6th-order spectral elements in 

% 2D
phi5:=array(1..6): % base functions of 5th-order spectral elements in 

% ID

phi6:=array(1..7): % base functions of 6th-order spectral elements in
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% ID

v5:=array(1..6): % Gauss-Lobetto grid points of 5th-order polynomial 

% for interval [-1,1]

v6:=array(1..7); % Gauss-Lobetto grid points of 6th-order polynomial

% for interval [-1.1]

x5:=array(1..6);

x6:=array(1..7):

y5( 1 )= -l .0000000000000

v5(2) =-0.76505532392946

y5(3)=-0.28523151648065

y5(4)=0.28523151648065

v5(5)=0.76505532392946

y5(6)=1.0000000000000

y 6 (l)= -l.0000000000000

y6(2)=-0.83022389627857

y6(3)=-0.46884879347071

y6(4)=0.

y6(5) =0.46884879347071

y6(6)=0.83022389627857

y6(7)=1.0000000000000

% relations of base functions in 2D and ID:

% for i from 1 to 6 do 

% for j from 1 to 6 do 
% ;o.n_n*=i-/ V  . w  • ,  -J.

% bas5[k]:=phi5[i]*phi5[j];

% od:

% od;

% similarly for the base functions of 6th-order elements 

% Locate the Gauss-Lobetto points for interval [0.1] 

for i from 1 to 6 do

x5[i]:=0.5*(l+y5[i]);
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od;

for j from 1 to 7 do

x6[i]:=0.5*(l~fy6[i]);

od;

% the following are base functions in ID 
f5:=(x-x5[l])*(x-x5[2])*(x-xo[3])*(x-x5[4])*(x-x5[5])*(x-x5[6]): 

for i from 1 to 6 do

phi5[i]:=f5/(x-x5[i]): 

x;=xo[i]; 

e:=phi5[i]; 

x:=”x” ;
phi5[i];=phi5[i]/e:

od;

fB:=(x-x6[l]) *(x-x6[2])*(x-x6[3])*(x-x6[4])*(x-x6[5])*(x-x6[6])* (x-x6[7]): 

for i from 1 to 7 do

phi6[i]:=f6/(x-x6[ij): 

x:=x6[i]; 

e:=phi6[i]: 

x:="x":

phi6[i]:=phi6[i]/e;

od;

with(linaig):
com pute th e  coefficients coef(1 ..36 ,1 ..36,1 ..2) for the stiffness 

m atrix for 5th-order elem ents, sim ilarly for 6th-order elem ents

for i from 1 to 6 do 

for j from 1 to 6 do

u:=phi5[i]*phi5[j]:
v:=diff(phi5[i])*diff(phi5[j]):

c[i.j]:=int(u.x=0..1):

d[i.j]:=int(v.x=0..1):

od;
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od;

for i l  from 1 to 6 do 

for j 1 from 1 to 6 do 

for i‘2 from 1 to 6 do 

for j2 from 1 to 6 do 

i:= il+ (jl-l)*6 ; 

j:=i2+G2-l)*6;
coef[iJ.l]:=d[il.i2]*c[jl.j2]: 

coef[i.j,2]:=d[j I.j2]*c[il.i2]:

od:

od:

od:

od:

com pute the coefficients for mass m atrix o f 5th-order elem ents, 

sim ilarly for 6th-order elem ents

for i l  from 1 to 6 do 

for j 1 from 1 to 6 do 

for i2 from 1 to 6 do 

for j2 from 1 to 6 do 

i:= il+ (jl-l)*6 ; 

j:=i2+(j2-l)*6; 

coef[i.j]:=c[il.i2]*c[jl.j2]:

od;

od;

od;

od:

com pute the coefficients for the right hand side for the evaluation  

of the gradient of the gauge variable

% Define f5d6[7.6], f65[7.6] as 

for i from 1 to 7 do 

for j from 1 to 6 do
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u:=diff(phi6[i])*phi5[j]; 

v:=phi6[i]*phi5[j]; 

f5d6[i.j]:=int(u. x=0..1); 

f65[i.j]:=int(v. x=0..1):

od;

od;

for il from 1 to 7 do

for j l  from 1 to 7 do

for i2 from 1 to 6 do

for j2 from 1 to 6 do
i:= il+ (jl-l)*7 : 

j:=i2+(j2-l)*6:

coef[i.j.l]:=f5d6[il.i2]*f65[jl.j2]:

coef[i.j.2]:=f5d6[jl.j2]*f65[il.i2]:

od:

od;

od:

od:

com pute the coefficients for the nonlinear term  of 5th-order ele­

m ents
define two a rray s  f55d5(6,6,6), f555(6,6,6) 

for i from 1 to 6 do 

for j from 1 to 6 do 

for k from 1 to 6 do

u:=phi5[i]*phi5[j]*diff(phiofk]): 

v:=phi5[i]*phi5[j]*phi5[k]; 

f55do[i,j,k]:=int(u.x=0..1); 

f555 [i.j .k] :=int (v.x=0.. 1):

od;

od;

od:
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% form the coefficients 

for il from 1 to 6 do 

for j 1 from 1 to 6 do 

for i2 from 1 to 6 do 

for j2 from 1 to 6 do 

for i3 from 1 to 6 do 

for j3 from 1 to 6 do 

i= il+ (jl-l)* 6  

j= i2+(j2-l)*6 

k=i3+(j3-l)*6

coef[i.j,k,l]:=f55d5[il.i2.i3]*f555[jl.j2.j3]:

coef[i.j,k.2j:=f55d5[jl.j2.j3j*f555[il.i2.i3]:

od:

od;

od;

od;

od;

od;

R em ark : Since the size of the coef[l..36,1..36.1..36.1..2J is very 

large, we can only form the arrays "fooo'’ and "fo5d5". then in the 

FORTRAN or C programs form the array "coef\
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