The push-block dynamics [B-Ferrari 'O8]

Each particle jumps to the right with rate 1. It is blocked by
lower particles and it (short-range) pushes higher particles.

o Left-most particles form TASEP
e Right-most particles form PushTASEP

Previously studied asymptotics thus yields detailed information on
large time behavior of these (2+1)d AKPZ and (1+1)d AKPZ models.
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Macdonald polynomials P, (s, ) e Qg t) Ixy, ., x5 labelled
by partitions )\ =(N,20,2 .22 20) form a basis in symmetric
polynomials in N variables over QQ(q,t). They diagoma({ze

@i=i<ﬂbﬁ Y T’X ﬂ(oc ac63>T Z ﬂ %x _x,
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with (generically) pairwise different eigenvalues (‘1;{)(2)4(?2)
E-l) P ‘1/ 'l:N 2 + ‘1/)“> _P} :

Macdonald polynomials have many remarkable properties that
include orthogonality, simple reproducing kernel (Cauchy identity),
Pieri and branching rules, index/variable duality, simple higher

order Macdonald difference operators that commute with Dy, ete.



Single level distributions
As in the Schur case, one can define probabilitg measures via
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These are time ¥ distributions of the Markov chain with jump rates
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with @, given by the Pieri rule (they are O or 1 for Schur)
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This is a (g,t)-analog of the Dyson Brownian Motion.

Representation theoretic object: Quantum Random Walk.



The (g.t) Chbbs property
We define stochastic links A n-1 between N-tuples and (N - :L) tuples

of integers using the branching rule A it aun
P xi) o Xn- 1>1> ZA ) P (DQ, .y Ly- D.
yx ML N-4 P (i> ") -) ’

Def. Random interlacing arrays N, 2@, )
have the Macdonald-Gibbs property iff
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For t=0 the links are AN_A <9‘ &j*)



Macdonald processes
An (ascending) Macdonald process is a distribution on AN NN -

that is (q,t)-Gibbs (once can also use (a.,Q.,..) instead of (1,1, ...)).

1)

Example 1: Decompositions of Llem’ corvespond to the

“Plancherel specialization' (consistency with Gibbs is nontrivial).

Example 2: Jc——-c;e__>i7 a, =t 4o j>1, “principal specialization'.

Single level measures converge to general p =20 Jacobi ensembles

So S,
c,on,sjc- J;]S \%5)—1&-‘% D '8& (4—1dg,> Olol/-” Yo € (07 i).
Example 3: Plancherel specialization, t=0. Leads to local 2d

dynamics, g-TASEP, q-PushASEP, random polymers in (1+1)d.

Wil be our focus.




Macdonald operators

Macdonald's g-difference operators diagonalized by B are
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where ¢e,(%,, z,...)= > Z,-2,. Using ED)Ll = > 4, Pabdi=Ed,

L< - Ll &d-i

with these operators gives many observables with explicit averages.

Example 1: For the Jacobi ensembles q \%a—}ﬁ\% ﬂ ‘as (4-1(1")81
this gives averages of the powers sums > yk and of their products.

Example 2: For t=0 this gives averages of products of c;a“ﬂ”’”"ﬂ”"*f




Integrals and scaling limits

Voo ¥(x-4)

For t=0 and Plancherel specialization (decomposition of e ),

.

v=q

turning Macdonald operator D, into a contour integral gives
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The RHS has a clear limit as g=€—1, ¥=const-£, 2)s unchanged.

J

This leads to a LLN 3\3_“‘,\, cj”-);ej‘ and Gaussian fluctuations of size £ .

A less obvious limit (s 9, ' sl, ¥=T £ z = lveny for 1l
-1 _

Then the RHS behaves as o ¢ ¢ **™ £.:L. integral

This suggests the following scaling behavior:
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Theorem |B-Corwin '11] As Ci/: ej?'——» 1, ¥=T-¢ ?', under the scaling

(N) - -
Oy = TEZ - (N+g-2)) feb 4 T

J

the t=0 Macdonald process with Plancherel specialization weakly converges
to a probability distribution on real arrays {T;'} (the Whittaker process).

Is there a probabilistic meaning behind the Whittaker process?



Back to Markov dynamics
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nearest neighbor Markov dynamics v\ L) V28 NS

Jth Pax&"fie has just moved

that preserve Gibbs measures and

coincides with (q,t)-DBM on each level is (as for Schur) equivalent

to a linear system of equations of the form [B-Petrov '13]
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For t=0, the quantities A- and E)J are local:
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Q-TASEP, 9-PushTASEP, and 2d dynamics
There are many solutions. Imposing no pulling/pushing over
distances >1 leads to the 2d local dynamics of [B-Corwin '11]:

(k-1) () mn
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) J DR Simulation
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Projecting to left-most particles of each row yields q-TASEP:
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and further [OV‘OJecth\g to right-most particles yields q-PushTASEP:

Imposing almost sure jump propagation €,+r.sj_ and w.z{
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Semi-discrete Brownian directed polymers
Whittaker scaling on q-PushTASEP (and q-TASEP) yields

N N-1 N
d—l—ﬂ. :O!BN-\- e:“ Tidt) NZL)
with independent Brownian motions B, B, . (same for {-T{},.)-
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Theorem [O'Connell '09], [B-Corwin 11| = Zbesgee N el
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with integration over nonintersecting paths from
(1,...,k) to (N-k+1,...,N). The measure is symmetric £( >: & (R* 7 )- whike noise
with respect to the flip {TY <= - St f ¢
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q-TASEP moments
We now focus on left-most particles (Q-TASEP)  xox®  #r5  xd

—‘Q;OVO S

Theorem [B-Corwin '11], [B-C-Sasamoto '12], |[B-C-Gorin-Shakirov ' 13]
For the g-TASEP with step initial data {x,(0)=-n]

n2 1

E: (XN(£\+N,)+...+(x,\,k({)+Nk)_ U& k(-1 g§ 2,2, ﬁea—nfzj 12

(N2 N, 2N ) w0t (T e, e

Proof. Consider the Macdonald process with Plancherel

and wish to study the asymptotics as N gets large.

specialization and apply k first order Macdonald operators

in N, N,,..,N, variables.

Another proof via Quantum Integrable Systems will be given in Lecture 3.




Polymer moments via nested integrals

By (formal) limit transitions:
B,(s) +(B,(S)-B,50) ... + (By(D) - By (Su))
For Z(No) = e
0<S, & &S <T

20 2000]) - £ § 0L 15

dsi“'dsm—i

Ny2NC2 2N @ ABCk”
S G
(@G ey D
‘3‘5/2‘: QA2 _ 4 A _
For Z.(X Jc)’ e g xp- {g \r\l\(s %(s\)als} dé %%g:: T 2 ax —+ W2 SHE
Brownian 1 T2 m .
i{;;*&g%%cﬁ;?; 2 hite notse Tt 2 ext Qfax\'y\’\' KPZ

o+ 1% oyt Loo dyt Lo

3 2
D ZhT Ze N L2y
doio  dpmieo  dy-iee | S ASBSh d

ol > ol 4 > Zoly, + (1)

OCii‘JCzé s'.)CK

s this sufficient for determining the distributions of Z's?



Intermittency

Polymer partition functions Z are intermittent. Higher moments

are dominated by higher peaks and do not determine the distrib.
E Z2f(4)
.

This is measured by moment Lyapunov exponents GP: é‘i’{} b
%— # ConSt means intermittency [Zeldovitch et al. '87].

By steepest descent in nested integrals one shows:

Semi-discrete: ¥, HP (20), where (for N=T) 2, is the trit. point of

2
[B-Corwin '12] H.(2)= 5 + p2- &8( [‘%g@) on (o0,+e0).
Continuous: XF Y The speed of growth of Lyapunov
[KanC{V‘ 'Q 7}) [Bertim'—Camcw’m’ lqs] exp's does not predict fluctuation

exponents!



Replica trick

In its simplest incarnation, ignoring intermittency, replica trick

analytically continues mow\emts oFF positive mtegers and uses

fog Z = Lim 2” lm 2 = o fom €721 L B

p->o P—=o t-oe t P p—o P
to predict the almost sure belxxav:or. This gives correct LLN values:

o R _ [
Semi-discrete: {f% % ( £ipe- &)GQ ’;’(_"‘C_g) _ 2 (gogi (2)), toke velue ot

) erit. /:ooat on_ [0,+e0)

Proved: [O'Connell-Yor '01], [Mow’artg ~O'Connell 'O7]

ontinuous: L PPt
Continuous: (i, 5 Ff =34

Proved: [Amir-Corwin-Quastel '10], [Sasamoto-Spohn '10]

More elaborate treatment of moments gives limiting fluctuations
[Dotsenko '10+], [Calabrese-Le Doussal-Rosso '10+]. WHY?



q-TASEP mowments and contour deformation
The distribution of Cf'” for g-TASEP particles is NOT intermittent.
We can find the distribution and then take the limit to polymers.

But nested contours are not suited for very large moments.
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This formula plays a key role in spectral analysis of Quantum Integrable Systems

in Lecture 3. The dets are similar to inverse squared normes of Bethe eigenstates.



Laplace transforms

bk
0 ’ ’ 0 N S
[t is convenient now to take the generating function % ‘E(‘f ) Kl

Replace the sum over ordered cluster sizes by that over unordered

unrestricted integers n,,m,,.. (removes the combinatorial factor),

and use the Me(h’m—Bames transform R {—\\\
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The result admits direct term—-wise [imit to polymers:
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Limit theorem

Theorem [B-Corwin '11, B-Corwin-Ferrari '12] For any 2@ >0

N =l Mg (cN)
&WL _P { Z(N,eN) — N I ot
{\/‘_7 Co %(X./\/U?) GUE :

oY

The proof is by steepest descent analysis of the last expression.
The Tracy-Widom GUE distribution arises as
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(o eloBar) gyt

_ : _ 93 ,3 b.—a .




Back to the replica trick

q-Laplace transform
for g-TASEP

Generating series
of(q-TASEP W\omemts

\l/ C,om/e/r%eé demes Me/rges Converge
Laplace transform Generating series
of polymer partition function ofﬁ)lymer momem&@

Y'ef()/uca {:ncf(,

The bona fide argument on the g-level is the only currently
available explanation of why the replica trick works in this case.
This will be extended in Lecture 3.
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(1+1)d integrable KPZ systems

@scmte time q—TASEP)

@@—C Push@ log ~Gamma discrete
polymer

Macdonald

PVOCZSSQS

seml —dlSCV@t@ Brownian

KPZ/SHE/continuous Brownian p@

J

@ersa( [imits (Tracy-Widom distributions, Airy pro@

Aiming at accessing other integrable KPZ systems and more general initial

polymer

conditions, Lecture 3 will present a different approach.



