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        Probabilistic objectives

We wish to establish law of large numbers and fluctuations
behaviour for a (growing) variety of integrable probabilistic 
models that have an additional algebraic structure, like

Random matrix ensembles with rotational symmetry•

Exclusion processes in (1+1)d: TASEP, ASEP, PushASEP, q-versions, etc.•

Special directed random polymers in (1+1)d•

Special tiling (or dimer) models in 2d•

Random growth of discretized interfaces in (2+1)d•

Universality principles suggest that same fluctuations hold in 
broad universality classes (Wigner matrices, KPZ, general dimers)

      



Example 1: Semi-discrete Brownian polymer

              are independent Brownian motions

Theorem [B‐Corwin '11, B‐Corwin‐Ferrari '12]    For any 

Tracy-Widom limit distribution 
for the largest eigenvalue of large 
Hermitian random matrices

     conjectured in [O'Connell-Yor '01], proved in [Moriarty-O'Connell '07]  •

[Spohn '12] matched the result with (1+1)d KPZ scaling conjecture•

      



Example 2: Corners of random matrices

Theorem  As       
Fluctuations
Gaussian (massless)
Free Field on

GUE: Implicit in [B-Ferrari, 2008], related to AKPZ in (2+1)d

GUE/GOE type Wigner matrices : [B, 2010]

General beta, classical weights : [B-Gorin, 2013]

spectra height 
function

liquid region 

      



There is a large family of observables whose averages are 
explicit and asymptotically tractable;

•

There is a natural Markov evolution that acts nicely.•

Integrable probabilistic models typically share two key features:

Two characteristic properties

Representation theory is helpful in identifying both. 
Let us illustrate on lozenge tilings.

      



From probability to representation theory

Lozenge tilings are… dimers on hexagonal lattice

nonintersecting Bernoulli paths stepped surfaces

interlacing particle configurations

But they are also labels for 
Gelfand-Tsetlin bases of 
irreps of          or 

      



Finite-dim representations of unitary groups (H. Weyl, 1925-26) 

A representation of U(N) is a group homomorphism T:U(N)   GL(V).
It is irreducible if V has no invariant subspaces. 
Every (finite-dimensional) representation is a direct sum of irreps.

Fact:  T  is uniquely determined by the (diagonalizable) action of 
the abelian subgroup H of diagonal matrices.

      



Finite-dim representations of unitary groups (H. Weyl, 1925-26) 

Theorem  Irreducible representations are parametrized by their 
highest weights                               The corresponding 
generating function of all weights has the form  

These are the characters of the corresponding representations, 
also known as the Schur polynomials. 

Vandermonde det.

      



Branching and lozenges

Reducing the symmetry group from U(N) to 
U(N-1) may lead to a split of an irrep into 
a direct sum of those for the smaller group.
This is encoded by Schur polynomials:

where      interlaces     :                                       ,

or pictorially:  

      



Gelfand-Tsetlin basis

Reducing the symmetry all the way down the tower
                  U(N)    U(N-1)    . . .    U(2)   U(1)
yields a basis in      labelled by lozenge tilings of specific domains:  

An example:

[Gelfand-Tsetlin, 1950] used this basis to explicitly write down 
the action of generators. 

      



Back to probability

Consider the uniform measure on tilings.
How to describe its projection to a 
horizontal section of the polygon?
Equivalently, how to decompose a known
irrep of U(N) on irreps of U(k)   U(N)? 

This is a problem of noncommutative harmonic analysis. In terms 
of characters (Schur polynomials):

      



Classical harmonic analysis
The (abelian) group     acts on        by shifting the argument. 
The irreps are all 1-dim of the form        multiplication by

For 

there are (at least) two ways to extract information about    . 

Inverse Fourier transform:                                         (hard)

Differential operators:                                             (simple)

      



The observables

If

and                       then

The Casimir-Laplace operator (generates circular Dyson BM)

As

A q-analog: Replace        by                  . Then 

    

   

      



Correlation functions
First correlation function:

Higher correlation functions require products
If       factorizes 

For the n-point correlation function the integral is 2n-fold.

    

   

      



Asymptotics
For `infinitely tall polygons' (corresponding to characters of U(  ), 
example on next slide),      indeed factorizes, and steepest descent
yields limit shapes, bulk (discrete sine), edge (GUE, Airy, Pearcey), 
and global (free field) fluctuations [B-Kuan '07], [B-Ferrari '08].

For ordinary polygons in our class, the factorization 
is only approximate, yet same formulas can be used 
to prove similar results [Petrov '12], [Gorin-Panova '13]. 

More general limit shapes were obtained by [Kenyon-                  
Okounkov '05], who also conjectured the rest. 

      



Markov evolution

We focus on           
This corresponds to a limit of hexagons: 

On a fixed horizontal slice, the coordinates
of vertical lozenges are distributed as

This is time t distribution of the Markov chain with generator

which can also be viewed as k conditioned 1d Poisson processes. 

      



The Gibbs property

Uniformly distributed tilings obviously enjoy the 
Gibbs property: Given a boundary condition, the 
distribution in any subdomain is also uniform. 

Apply to bottom k rows:

# of height (k-1) tilings with top row

# of height k tilings with top row

These stochastic links intertwine `perpendicular' Markov chains 
along (k-1)st and k-th rows with generators           and        

      



Two-dimensional Markov evolution: Axiomatics

Inspired by two ad hoc constructions (RSK and [O'Connell '03+]; 

`stitching' of intertwined Markov chains [Diaconis-Fill '90], [B-Ferrari '08]),

we look for Markov chains on tilings that satisfy:

For each k   1, the evolution of the bottom k rows I.
is independent of the higher rows. 
For each k   1, the evolution preserves the Gibbs property on the 
bottom k rows:

II.

For each k   1, the map              is the time t evolution of the 
Markov chain with generator 

III.

      



Nearest neighbor interaction
Each particle jumps to the right by 1 independently, with exp. 
distributed waiting time; rate           for j-th particle on level k.

•

A move of any particle may instantaneously trigger moves of its  •

  top-left (pulling) and top-right (pushing) neighbors.  

`No-nonsense': (a) If a particle is blocked from the bottom, its jump 
rate is 0, and when pushed it donates the move to its right neighbor; 
(b) If a particle is blocked from the top,      

      



Classification of nearest neighbor dynamics 

Theorem [B-Petrov '13] A nearest neighbor Markov evolution satisfies I-III 
(independence of bottom rows, preservation of Gibbs, horizontal sections 
evolve according to        ) if and only if for any k    1 and any j    0 such that
(j+1)st particle on level k is not blocked from the bottom, 
                            

with nonexisting parameters at edges set to 0.

There are many solutions, all act the same on the Gibbs measures!
-                                  gives row RSK
-                                  gives column RSK 
-                       gives push-block dynamics

Many other possibilities, e.g. 

   no Vandermondes!

   

      



The push-block dynamics [B-Ferrari '08]

Each particle jumps to the right with rate 1. It is blocked by 
lower particles and it (short-range) pushes higher particles.

In 3d, this can be viewed as adding directed columns

Column deposition - Animation

      


