Macdonald processes

Alexei Borodin

Asymptotic Representation Theory Vershik-Kerov 1970s+, Olshanski 1980s+, Okounkov, Borodin 1990s+ Probability Representation Theory Integrable Probability Lectures 1 and 2 Lecture 3 Quantum Integrable Systems Integrable Systems

<u>Probabilistic objectives</u>

We wish to establish law of large numbers and fluctuations behaviour for a (growing) variety of integrable probabilistic models that have an additional algebraic structure, like

- Random matrix ensembles with rotational symmetry
- Exclusion processes in (1+1)d: TASEP, ASEP, PushASEP, q-versions, etc.
- Special directed random polymers in (1+1)d
- Special tiling (or dimer) models in 2d
- Random growth of discretized interfaces in (2+1)d

Universality principles suggest that same fluctuations hold in broad universality classes (Wigner matrices, KPZ, general dimers)

Example 1: Semi-discrete Brownian polymer

$$F_{t}^{N} = \log \int e^{B_{1}(0, s_{1}) + B_{2}(s_{1}, s_{2}) + \dots + B_{N}(s_{N-1}, t)} ds_{1} \dots ds_{N-1}$$

$$B_1, ..., B_N$$
 are independent Brownian motions
 $B_k(\alpha, \beta) := B_k(\beta) - B_k(\alpha) = \int_{\alpha}^{\beta} B_k(x) dx$

<u>Theorem</u> [B-Corwin '11, B-Corwin-Ferrari '12] For any $\mathscr{L} > 0$

$$\lim_{N \to \infty} \mathbb{P} \left\{ \frac{F_{xN}^{N} - f_{x}N}{g_{x}N''^{3}} \leq r \right\} = F_{GUE}(r) + \frac{F_{xN}^{N}}{g_{x}N''^{3}} \leq r \right\}$$

Tracy-Widom limit distribution for the largest eigenvalue of large Hermitian random matrices

• free conjectured in [O'Connell-Yor '01], proved in [Moriarty-O'Connell '07]

• [Spohn '12] matched the result with (1+1)d KPZ scaling conjecture

Example 2: Corners of random matrices

• GUE: Implicit in [B-Ferrari, 2008], related to AKPZ in (2+1)d

- GUE/GOE type Wigner matrices : [B, 2010]
- General beta, classical weights : [B-Gorin, 2013]

<u>Two characteristic properties</u>

Integrable probabilistic models typically share two key features:

- There is a large family of observables whose averages are explicit and asymptotically tractable;
- There is a natural Markov evolution that acts nicely.

Representation theory is helpful in identifying both. Let us illustrate on lozenge tilings.

From probability to representation theory

Lozenge tilings are...

nonintersecting Bernoulli paths

interlacing particle configurations

dimers on hexagonal lattice

But they are also labels for Gelfand-Tsetlin bases of irreps of U(N) or $GL(N, \mathbb{C})$. Finite-dim representations of unitary groups (H. Weyl, 1925-26)

- A representation of U(N) is a group homomorphism T:U(N) \rightarrow GL(V). It is irreducible if V has no invariant subspaces.
- Every (finite-dimensional) representation is a direct sum of irreps.
- <u>Fact:</u> T is uniquely determined by the (diagonalizable) action of the abelian subgroup H of diagonal matrices.

Finite-dim representations of unitary groups (H. Weyl, 1925-26)

<u>Theorem</u> Irreducible representations are parametrized by their highest weights $\lambda = (\lambda_1 \ge \dots \ge \lambda_N) \in \mathbb{Z}^N$. The corresponding generating function of all weights has the form

$$\sum_{\text{Weights of } T_{\lambda}} z_{1}^{k_{1}} \cdots z_{N}^{k_{N}} = \operatorname{Trace}\left(T_{\lambda}\left(\begin{bmatrix}z_{1} & z_{N}\end{bmatrix}\right)\right) = \frac{\det\left[z_{i}^{\lambda_{j}+N-j}\right]_{i,j=1}^{N}}{\det\left[z_{i}^{N-j}\right]_{i,j=1}^{N}}.$$
Wandermonde det.

1.1

These are the characters of the corresponding representations, also known as the Schur polynomials.

Branching and lozenges

Reducing the symmetry group from U(N) to U(N-1) may lead to a split of an irrep into a direct sum of those for the smaller group. This is encoded by Schur polynomials:

<u>Gelfand–Tsetlin basis</u>

Reducing the symmetry all the way down the tower $U(N) \supset U(N-1) \supset \ldots \supset U(2) \supset U(1)$ yields a basis in T_{λ} labelled by lozenge tilings of specific domains:

[Gelfand-Tsetlin, 1950] used this basis to explicitly write down the action of generators.

Back to probability

Consider the uniform measure on tilings. How to describe its projection to a horizontal section of the polygon? Equivalently, how to decompose a known irrep of U(N) on irreps of U(k) \subset U(N)?

This is a problem of noncommutative harmonic analysis. In terms of characters (Schur polynomials):

$$\Upsilon(\mathbf{z}_{1},...,\mathbf{z}_{k}) = \sum_{\boldsymbol{M}=(\boldsymbol{M}_{1}\geq...\geq\boldsymbol{M}_{k})} \operatorname{Prob}\{\boldsymbol{M}\} \frac{S_{\boldsymbol{M}}(\mathbf{z}_{1},...,\mathbf{z}_{k})}{S_{\boldsymbol{\mu}}(1,...,1)}, \quad \Upsilon(\mathbf{z}_{1},...,\mathbf{z}_{k}) = \frac{S_{\boldsymbol{\lambda}}(\overline{\mathbf{z}_{1},...,\mathbf{z}_{k},1,...,1)}}{S_{\boldsymbol{\lambda}}(1,...,1)}$$

Classical harmonic analysis The (abelian) group \mathbb{R} acts on $L^2(\mathbb{R})$ by shifting the argument. The irreps are all 1-dim of the form $p \mapsto multiplication$ by $\overline{e^{ipx}}$. For $\chi(x) = \int_{\infty}^{\infty} e^{-ipx} m(dp)$

there are (at least) two ways to extract information about M.

Inverse Fourier transform:

Differential operators:

$$\frac{m(dp)}{dp} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipx} \chi(x) dx \quad (hard)$$
$$\int_{-\infty}^{\infty} p^{n} m(dp) = \left(i \frac{d}{dx} \right)^{n} \chi(x) \Big|_{x=0} \quad (simple)$$

<u>The observables</u>

If $\Upsilon(z_1,...,z_k) = \sum_{\substack{M=(M_1 \ge ... \ge M_k)}} \frac{\Pr(z_1,...,z_k)}{S_\mu(1,...,1)}$ and $DS_\mu = d_\mu S_\mu$, then $D\chi|_{z_1=...=z_k=1} = \sum_{\substack{M}} d_\mu \operatorname{Prob}\{\mu\} = Ed_\mu$.

The Casimir-Laplace operator (generates circular Dyson BM) $C_{2} = \frac{1}{\prod_{i < j} (z_{i} - \overline{z}_{j})} \circ \sum_{i=1}^{k} (\overline{z}_{i} \frac{\partial}{\partial \overline{z}_{i}})^{2} \prod_{i < j} (\overline{z}_{i} - \overline{z}_{j}).$ As $S_{\mu}(\overline{z}) = det[\overline{z}_{i}^{\mu_{j}+k-j}] / \prod_{i < j} (\overline{z}_{i} - \overline{z}_{j}), \int C_{2}S_{\mu} = \sum_{i=1}^{k} (\mu_{i}+k-i)^{2} \cdot S_{\mu}.$ A q-analog: Replace $(\overline{z} \frac{\partial}{\partial \overline{z}})^{2}$ by $(\overline{T}_{q}f)(\overline{z}) = f(q\overline{z})$. Then $C_{S_{\mu}}^{(q)} = \sum_{i=1}^{k} q^{\mu_{i}+k-i} S_{\mu}.$

Correlation functions

For the n-point correlation function the integral is 2n-fold.

<u>Asymptotics</u>

For `infinitely tall polygons' (corresponding to characters of $U(\infty)$, example on next slide), γ indeed factorizes, and steepest descent yields limit shapes, bulk (discrete sine), edge (GUE, Airy, Pearcey), and global (free field) fluctuations [B-Kuan '07], [B-Ferrari '08].

For ordinary polygons in our class, the factorization is only approximate, yet same formulas can be used to prove similar results [Petrov '12], [Gorin-Panova '13].

More general limit shapes were obtained by [Kenyon-Okounkov '05], who also conjectured the rest.

Markov evolution

We focus on
$$\chi(z_1, ..., z_k) = \prod_{i=1}^k e^{\pm(z_i-1)}, \quad t \ge 0.$$

This corresponds to a limit of hexagons:

On a fixed horizontal slice, the coordinates of vertical lozenges are distributed as $\operatorname{Prob}\left\{(x_{1},...,x_{k})\in\mathbb{Z}_{\geq 0}^{k}\right\}=\operatorname{const}\left[\prod_{i< j}(x_{i}-x_{j})^{2}\prod_{i=1}^{k}\frac{t^{x_{i}}}{x_{i}!}\right]$

which can also be viewed as k conditioned 1d Poisson processes.

The Gibbs property

Uniformly distributed tilings obviously enjoy the Gibbs property: Given a boundary condition, the distribution in any subdomain is also uniform.

Apply to bottom k rows:

$$\begin{aligned} & \operatorname{Prob}\left\{ y \mid x \right\} = \frac{\# \text{ of height } (k-1) \text{ tilings with top row}}{\# \text{ of height } k \text{ tilings with top row } \mathcal{X}} \\ &= (k-1)! \quad \frac{\prod_{1 \leq i < j \leq k-1} (y_i - y_j)}{\prod_{1 \leq i < j \leq k} (x_i - x_j)} =: \int_{-k-1}^{k} (x \setminus y) \end{aligned}$$

These stochastic links intertwine `perpendicular' Markov chains along (k-1) and k-th rows with generators $L_{Poisson}^{(k-1)}$ and $L_{Poisson}^{(k)}$

<u>Two-dimensional Markov evolution: Axiomatics</u>

Inspired by two ad hoc constructions (RSK and [O'Connell '03+]; `stitching' of intertwined Markov chains [Diaconis-Fill '90], [B-Ferrari '08]), we look for Markov chains on tilings that satisfy:

I. For each $k \ge 1$, the evolution of the bottom k rows $(\mathcal{X}^{(1)} \prec \mathcal{X}^{(2)} \prec \dots \prec \mathcal{X}^{(k)})$ is independent of the higher rows.

II. For each $k \ge 1$, the evolution preserves the Gibbs property on the bottom k rows:

 $m(\lambda^{(k)}) \bigwedge_{k=1}^{k} (\lambda^{(k)} \setminus \lambda^{(k-i)}) \cdots \bigwedge_{1}^{2} (\lambda^{(2)} \setminus \lambda^{(i)}) \xrightarrow{\text{time } t} \widetilde{m}(\lambda^{(k)}) \bigwedge_{k=1}^{k} (\lambda^{(k)} \setminus \lambda^{(k-i)}) \cdots \bigwedge_{1}^{2} (\lambda^{(2)} \setminus \lambda^{(i)})$ III. For each $k \ge 1$, the map $m \mapsto \widetilde{m}$ is the time t evolution of the Markov chain with generator $\bigsqcup_{Poisson}^{(k)}$.

Nearest neighbor interaction

- Each particle jumps to the right by 1 independently, with exp. distributed waiting time; rate $w_j^{(k)}(x^{(k-1)}, x^{(k)})$ for j-th particle on level k.
- A move of any particle may instantaneously trigger moves of its top-left (pulling) and top-right (pushing) neighbors.

blocked

`No-nonsense': (a) If a particle is blocked from the bottom, its jump rate is O, and when pushed it donates the move to its right neighbor; (b) If a particle is blocked from the top, $\Gamma_j = 1$.

<u>Classification of nearest neighbor dynamics</u>

<u>Theorem</u> [B-Petrov '13] A nearest neighbor Markov evolution satisfies I-III (independence of bottom rows, preservation of Gibbs, horizontal sections evolve according to $\mathcal{L}_{R_{isson}}^{(k)}$) if and only if for any $k \ge 1$ and any $j \ge 0$ such that (j+1)st particle on level k is not blocked from the bottom,

$$\sum_{j+1}^{(k)} + l_j^{(k)} + W_{j+1}^{(k)} = 1$$
 no Vandermondes!

with nonexisting parameters at edges set to 0.

There are many solutions, all act the same on the Gibbs measures
-
$$l_j \equiv 1, v_j \equiv 0, w_j = \begin{cases} 1, j \equiv 1 \\ 0, j > 1 \end{cases}$$
 gives row RSK
- $l_j \equiv 0, v_j \equiv 1, w_j = \begin{cases} 1, j maximal \\ 0, otherwise \end{cases}$ gives column RSK
- $l_j = r_j \equiv 0, w_j \equiv 1$ gives push-block dynamics

Many other possibilities, e.g.

The push-block dynamics [B-Ferrari '08]

Each particle jumps to the right with rate 1. It is blocked by lower particles and it (short-range) pushes higher particles.

In 3d, this can be viewed as adding directed columns

<u>Column deposition – Animation</u>