
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a  complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9" black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



][ Temple University 
Doctoral Dissertation 

Submitted to the Graduate Board

Title o f  Dissertation: Regularity o f  a Class o f  Weak Solut ions  to the 
(Pleasetype) Monge-Ampere Equation

Author:
(Please type)

David Hartenstine

Date o f Defense: May 18, 2001
(Please type)

Dissertation Examining Committee:(pie*se type) 

C ris t ian  E. Gutierrez__________
Dissertation Advisory Committee Chairperson

Peter S. Riseborough 

S h i f  Berhanu 

Eric Grinberg

Read and Approved By: (Signatures)

S .

C ris t ian  E. Gutierrez
Examining Committee Chairperson

Date Submitted to Graduate Board: ^ / /  ? / g

Accepted by the Graduate Board of Temple University in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy.

Date
(Dean of the Graduate School)^

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



R E G U LA R ITY  OF A CLASS OF W E A K  SOLUTIONS TO THE  
M O N G E-A M PER E EQ U A TIO N

A Dissertation 
Submitted to 

the Temple University Graduate Board

in Partial Fulfillment 
of the Requirements for the Degree of 

DOCTOR OF PHILOSOPHY

by
David Hartenstine 

August, 2001

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



UMI Number: 3031529

Copyright 2001 by 
Hartenstine, David Ashley

All rights reserved.

_ _ __®

UMI
UMI Microform 3031529 

Copyright 2002 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United S ta tes Code.

Bell & Howell Information and Learning Company 
300 North Z eeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



iii

©
by

David Hartenstine 

August. 2001 

All Rights Reserved

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



A BSTR A C T

REGULARITY OF A CLASS OF WEAK SOLUTIONS TO THE 

MONGE-AMPERE EQUATION

David Hartenstine 

DOCTOR OF PHILOSOPHY

Temple University. August. 2001

Professor Cristian Gutierrez. Chair

In this dissertation we examine the regularity properties of Aleksandrov so­

lutions to the Monge-Ampere equation det D2u =  /i. where the Borel measure 

fj. satisfies a weak condition. D(. on the sections of u. The condition referred to 

is actually a family of conditions, indexed by e 6 (0.1]. The case e = 1 corre­

sponds to a doubling property. The doubling condition implies Dt for every e. 

We show that when the function u is globally defined and its Monge-Ampere 

measure Mu  is D(. then Mu  is actually doubling, so that the conditions are 

.■'quivalent in this case. We then explore the regularity properties of functions 

u defined on bounded domains for which Mu  is D (. These results are an ex­

tension of the regularity theory available when 0 < A < n < A to a wider class 

of measures.
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CHAPTER 1 

INTRODUCTION

This dissertation is concerned with determining properties of convex solu­

tions to the Monge-Ampere equation. In its classical formulation, this is the 

fully nonlinear equation det D2u =  / .  where D'2u is the Hessian of the func­

tion u : Q C Rn —> R. When /  is non-negative, it makes sense to consider 

convex solutions, since if tx is C 2 and convex, then det D2u > 0. For every 

continuous function tx we can construct a Borel measure, called the Monge- 

Ampere measure associated with tx, see Theorem 2.1.2. This idea allows us 

(following Aleksandrov) to define a notion of weak solution for the Monge- 

Ampere equation. Given a Borel measure v on Q C Rn. we say that the 

convex function tx € C(S2) is a weak (or Aleksandrov) solution to det D 2u =  v 

if the Monge-Ampere measure associated to tx. denoted Mu.  equals u. Notice 

that these weak solutions are always convex, and so automatically possess cer­

tain properties. In this dissertation, we are primarily interested in establishing 

what further properties are satisfied by convex functions whose Monge-Ampere 

measures satisfy a specific condition.

This condition is actually a family of conditions, indexed by a parameter 

e € (0.1]. When e = 1. this condition becomes a doubling property. When 

this condition is satisfied by a measure /x. we write /x is D( or // € D(. If 

the measure fi € Deo. then € D( for all e < e0. In particular, if /x € D t . 

then /x is D( for all e. The definition of Df is stated in terms of properties
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satisfied by the cross-sections of the function u (see Definition 2.2.1). and the 

normalized distance to the boundary of a convex set. The cross-sections (or 

simply sections) of u are the level sets of u{x) —l(x) where l(x) is a supporting 

hvperplane to u. These sets are convex. The idea of studying these sets in 

order to analyze u is due to Caffarelli. and is described and further developed 

in [1]. [2] and [3]. among others. The notion of normalized distance to the 

boundary of a convex set was introduced by Jerison in [5] and appears below 

as Definition 2.3.1. In spite of the fact that it seems like we may be considering 

many conditions, it turns out that the actual value of e for a given measure is 

largely irrelevant. Xone of the results we prove are dependent in a qualitative 

way on the value of e.

Let fi C Rn be a bounded convex domain. Suppose u € C(ft) is a weak 

solution of det D2u =  fi. where 0 < A < /j. < A. and is zero on <9ft. Then u is 

strictly convex and is C l,Q for some a  in the interior of ft. For proofs of these 

statements see [1]. [2] and [3]. We show that these results also hold with the 

weaker hypotheses of Dc.

We conclude this Introduction with a summary of the main results and an 

outline of what follows. Chapter 2 contains background material and prelimi­

nary results needed for the statements and proofs of the main results that are 

in Chapter 3. The first section of Chapter 3 compares the doubling condition 

and D(. We prove that if u is defined on all of Rn and satisfies the De condition 

for some 0 < e < 1. then the doubling condition is also satisfied, so in this case 

the conditions are equivalent. An example shows that this is not true if the 

domain of definition is bounded. The rest of the dissertation is concerned with 

properties of solutions satisfying the D( condition on bounded convex domains. 

The next section contains the proof of strict convexity for nontrivial solutions 

to the Dirichlet problem with zero boundary data. This is a consequence of 

a Caffarelli-type extremal points theorem (Theorem 3.2.1). The situation of 

non-constant boundary data is also analyzed in this section. Section 3.3 is 

devoted to a rather technical selection or compactness result (Lemma 3.3.1) 

for functions whose Monge-Ampere measures satisfy the De condition. This
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lemma is employed in the proof of a useful property about sections with base 

point lying at least a certain distance from the boundary of the domain. As a 

consequence of this property, we obtain a result first claimed by Jerison in [5]: 

if u «z C{9.) is convex, zero on d9. and Mu € Dt , then u is C l-Q in the interior of 

fi. Both of these results are discussed in Section 3.4. Finally, in Chapter 4. we 

show that analogs of Jerison’s estimates (which are used repeatedly in proving 

the results mentioned above) are true for parabolicallv convex solutions of the 

parabolic Monge-Ampere equation — ut det D*u =  /  on bowl-shaped domains.
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CHAPTER 2 

PRELIMINARY MATERIAL

2.1 Weak Solution

The weak solution considered for the Monge-Ampere equation det D2u(x) = 

f{x)  is that of Aleksandrov, and requires the notions of the normal mapping 

of a function u : Q -» R. where Q C Rn . and the Monge-Ampere measure 

associated to u. We begin by explaining these topics. This material comes 

from Chapter 1 of [3].

D efinition 2.1.1 The normal mapping (or sub-differential) of u is the set­

valued function du : Cl -> P(Rn). whose value at a point x0 is the set

du{j 0) =  [p € Rn : u(x) > u{x0) + p ■ (x — x 0), x  G fl}.

If  E  C Q. the normal map of E  is du(E)  =  U xe£^u (x )‘

Given a function u. du(x0) is the set of points p that determine supporting 

hyperplanes (affine functions l(x) such that /(x0) =  u(x0) and l{x) < u(x) for 

all x  e  Q) to u at x0. It is possible for du(xQ) to be empty. Indeed, if u is 

strictly concave on fi then the normal mapping will be empty at every point 

of the domain. When the function u is convex. du(x) is nonempty at every 

point. If u is differentiable at x0 and #u(x0) ^  0 then du(x0) = Du(x0). Since 

convex functions are differentiable at almost every point, the normal mapping 

provides a substitute for the gradient for these functions.
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T h eo rem  2.1.2 (Theorem 1.1.13 in [3]) I fQ  is open and u € C(Q) then the 

family of sets

S  =  {E C Q : du(E) is Lebesgue measurable} 

is a Borel a-algebra. The map Mu : S —> R defined by Mu(E)  =  \du(E)\

sure, finite on compact subsets, called the Monge-Ampere measure associated 

with the function u.

We are now in a position to define the weak solution.

D efin ition  2.1.3 Let u be a Borel measure defined in fi. an open and convex 

subset o f W . The convex function u G C{ Q) is an Aleksandrov or weak solution 

to the Monge-Ampere equation det D2u = u if  the Monge-Ampere measure Mu  

associated with the function u equals u.

This notion of weak solution is reasonable, since if u € C 2(Q) is convex 

and is a classical solution of det D2u(x ) =  f (x ) ,  then

holds for any Borel set E  C Q. This means that u is an Aleksandrov solution 

of det D2u = f(x )  dx.

We now state a lemma that will be useful in some of the convergence 

arguments below.

L em m a 2.1.4 (Lemma 1.2.3 in [3]) I f  Uk are convex functions in Q such that 
Ujt —> u uniformly on compact subsets ofQ then the associated Monge-Ampere 

measures MUk converge to M u weakly. In other words,

(where the notation |S| indicates the Lebesgue measure of the set S) is a mea-

Mu{E) = f  det D2u(x) dx = J f ( x )  dx

for every f  € Cg(fi).
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Note that these solutions are always convex. The main objective of this 

thesis is to determine what further regularity properties are satisfied by so­

lutions when the measure on the right-hand side satisfies a certain condition 

explained below.

Before introducing this condition, we state the fundamental existence and 

uniqueness result for Aleksandrov solutions of the Monge-Ampere equation.

Theorem  2.1.5 (Theorem 1.6.2 in [3]) IfQ is open bounded and strictly con­
vex. fi is a finite Borel measure on Q. and g € C(dfi). then there exists a unique 

u € C(Q) which satisfies Mu = p in Q and u =  g on dQ.

Finally, to end this section, we mention a comparison principle that will 

be exploited in a barrier argument in the proof of strict convexity of solutions 

to the Dirichlet problem with nonzero boundary data.

Theorem  2.1.6 (Theorem 1.4-6 in [3]) Let u. v 6 C(fl) be convex functions 

such that for every Borel set f C  fi.

\du(E)\ < \dv(E)\.

Then
minfu — i’} =  min{u — t>}. n 1 ‘ an

2.2 Cross-Sections and Normalization

The approach to studying regularity of solutions to this equation involves 

analyzing the properties of the sections of the solution u.

D efinition 2.2.1 The sections of u are the (convex) sets

S(x0.p.t)  = {x e Q : u{x) < u(xo) +  p • (x — x0) +  £}.

where p € du(xo) and t > 0.
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These sets are formed by taking a supporting hyperplane to u at x0. sliding 

it up by a height of t, and looking at the values of x G for which the 

graph of u lies below this raised hyperplane. Roughly speaking, the main 

idea of this approach is that if the properties of these sections are known, this 

should provide valuable information about the function u itself. We make the 

assumption that the sections of u are bounded sets. This means that the graph 

of u does not contain any rays. Furthermore, when the function u is defined on 

a bounded set Q. we only consider values of the parameter t for which either 

S(x0,p.t)  C  fi or if S{x0.p . t0) DdQ #  0. then S(x0,p.t)  C  Q for t < tQ.

We now introduce some notation and terminology. For any bounded convex 

set 5. its center of mass will be denoted c(S), and this point is given by

c(5), =  f  x, dx for i — 1, . . .  n.
Pi J s

Secondly. a S  for a  > 0 refers to the dilation of 5  with respect to c(S) by 

a factor of a. In other words.

a S  =  {a(x -  c(S)) 4- c(S) : x € 5}

Various conditions can be imposed on the measure appearing on the right- 

hand side of the equation. One case is to consider those measures that are 

bounded between two positive constants, i.e. A|F| <  p (E ) < A|E|. In this 

case, many regularity results are known: see [1]. [2] and [3]. This thesis is 

concerned with two generalizations of this condition, which are stated in terms 

of properties satisfied by the sections of u. The first is a doubling condition: 

The measure p is said to be doubling on the sections of u if p(S) < Cp(^S)  for 

all sections S  and some positive constant C. If A < p < A, then p  is doubling, 

since

MS)  < A|S| = 2 \ \ | i s |  = 2"^A |is| < 2 " ^ ( jS ) .

The second generalization of the measure being bounded between two con­

stants requires a little more background, and will be introduced in Section 2.3 

below.
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D efin ition  2.2.2 A convex set fi is said to be normalized if  c(Q) = 0 and 

BaJ 0 )  C Q C Bi(0), where a n is a dimensional constant.

The following result of Fritz John plays a critical role in many of the argu­

ments below.

T h eo rem  2.2.3 Let Q C Rn be open bounded and convex. Then there exists 

an invertible affine transformation T  such that T(Q) is normalized.

The proof of this theorem uses the following result concerning ellipsoids of 

minimum volume.

Lem m a 2.2.4 (Lemma 1.8.1 in [3]) Let S  C Rn be bounded and convex. 

Suppose also that S  has nonempty interior. Then:

(a) Let xq € S. Consider the class Fq of ellipsoids centered at x0 that 

contain S. Then there exists Eq € Fq such that |£o| < |£ | Ior °ll E  €  Fq. We 
say that Eq is an ellipsoid of minimum volume for S  centered at xQ.

(b) Consider the class F[ of all ellipsoids that contain S. Then there exists 

E i € F\ such that |iTi| <  \E\ for all E  € F\. E\ is called an ellipsoid of 

minimum volume for S.

We conclude this section with a useful formula for changing variables by 

an affine transformation (See p. 47 of [3]). Let T  be an invertible affine 

transformation. Tx — Ax + b for some nonsingular matrix .4 and some b 6 R". 

Suppose u : Rn —> R and v(y) =  A~lu(T~ly) where A > 0. The affine function 

l{x) =  u(xo) + p ■ (x — j 0) is a supporting hyperplane to u at if and only if 

l ( y )  = v(Tx0) + \ ~ l(A~l)tp-(y  -  T x q ) is a supporting hyperplane to v at T x 0. 

This means that if S  =  Su( j0,p. t) is a section of u, then T{S)  is a section of 

v. More precisely. T(5) =  Sv(Tx0. \ ~ l (A~l)lp. \).  This also implies that

j ( A - lY (du (E ))= dv(T E ) .

and hence that

Mv{TE)  =  ^ r |d e t .4 -1|A/u(F) (2.1)
A
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for any Borel set E. From this formula and the fact that for any section 5. 

T(aS)  = aT(S).  we get that if M u  is doubling (or Dc introduced in the next 

section), then so is Mr.  with the same constant.

2.3 Normalized Distance to the Boundary

Given a bounded open and convex set S. we can define, following Jerison 

(p.31 in [5]). a dimensionless. normalized distance from an interior point to 

the boundary of 5.

D efin ition  2.3.1 The normalized distance from x  € S  to the boundary of the 

convex set S  is
S{x. S ) =  min ^  Jl ^

|x — x2|
where xi and x> are in dS and the three points x. X[ and x2 are collinear.

In other words, consider a line through the point x.  This line intersects 

dS  in exactly two points x t and x>. We can then form the fraction appearing 

in the definition. Then take the minimum over all lines passing through x. to 

determine S(x. S).

Note that this quantity is always less than or equal to 1. Other properties 

of the normalized distance appear below.

We are now ready to define the second condition that will be imposed on 

the measure on the right-hand side of the equation. This condition was first 

considered in [5].

D efin ition  2.3.2 Let e satisfy 0 < e <  1. The measure p. is said to be De or 

p € Df . if J  S(x. S ) l~ldp < Cp

for all sections S.

Notice that the doubling condition is included in this family of conditions, 

and corresponds to e =  1. Since d(x. S) < 1 for any x and any 5, if the measure
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H is doubling, then it satisfies D( for any e. More generally, if fj. 6 Dt0. then 

fj. E Dt for every e < e0. When we need to specify the constant appearing in 

the definition of D(, we use the notation fj € De(C ) to denote that /x satisfies 

the Dt condition with the constant C.

Two important properties of the normalized distance £(•. ■) are contained 

in the next result.

L em m a 2.3.3 (a)The normalized distance is invariant under affine transfor­

mations. I f T  is an affine transformation, then 5(x. S) = S(Tx.T(S)) .

(b) When the set S  is normalized. S(x.S)  ~  dist(x.dS).

R em ark  These properties taken together provide a justification for calling 

<)'(•. •) the "normalized distance to the boundary”. Let S  be any open, bounded, 

convex set in Rn. By Theorem 2.2.3. there exists an affine transformation T

that normalizes 5. L’sing the two properties listed above, we see that S(x. S)  =

6(Tx. T(S))  % dist(Tx.dT(S)).

P ro o f  To see why (a) holds, simply notice that for any affine transformation 

T.
|xi — x| _  \Txi — T x |
|x2 — x| \Tx -2 — Tx  | '

and recall that T  maps straight lines to straight lines.

The proof of (b) requires a little more work. Let S be a normalized convex 

set. In addition to the usual notion of dist(x .dS)  we also consider the radial 

distance from x  ^  0 to the boundary dS.  This is given by |x — cx\, where c > 0 

and cx € dS.  We denote this radial distance by distr (x,dS).  We will show 

that S(x.S) > Cidist(x.dS)  and that S(x.S)  < C2 distr(x.dS)  for all x 6 S. 

The claim will then follow since dist(-.dS)  ~  distr(-.dS).  For any x 6 5. we 

have that

S(x.S) = min > dlf {x' dSJ  > ±dist(x.dS).
|x — x21 diam(S)  2
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Now given x € 5  ( i  ^  0), let c i  6 dS  be the point for which |x — cx| = 

distr(x.dS).  Let x denote the antipodal point to ex. In other words, x 6 dS  

and the three points x. cx and x are collinear. Then

i-T — CXId(x. S) <
|x x|

The segment from x to x contains the segment from 0 to x which is larger 

than a n since BQn(0) C 5. Therefore. S(x.S) < ^ d i s t r(x. S).
The claim will follow if the radial distance to the boundary and the usual 

distance to the boundary are comparable. Clearly. distr(x .dS)  > dist(x.dS).  

Let dist(x.dS) = t and suppose dist(x.dS)  /  distr(x .dS) .  Then Bc(x) C S. 

Construct a line I through cx and any point y € d S . where dist(x .dS)  is 

attained. We now construct two similar triangles. The first one has vertices 

x. y and cx. The second has vertices at 0 and at cx. the angle at 0 is the same 

as the angle at x for the first triangle, and the third side of the second triangle 

is the line I. Note that by convexity, the third vertex of the second triangle 

lies outside of 5. so q >  a n. where a  is the length of the side of the second 

triangle that connects 0 to the line I. This side corresponds to the side of the 

first triangle that connects x to y. Then, by similarity.

|cx — x| |cx — x| |cx -  0| |cx| 1 , ,  1— -  < — cx < — .
|x -  y\ € a a  a n an

Therefore. |cx — x| < a ~ le = a~ ld is t (x .dS ). and these two notions of distance 

to the boundary are comparable with constants depending only on dimension. 

This completes the proof. □

Lem m a 2.3.4 Let S  be a bounded convex domain. The normalized distance 

to the boundary 5(x, S) is continuous.

P ro o f Fix x 6 S. In a neighborhood of each point of dS.  the boundary is 

the graph of a Lipschitz function. Cover the compact set dS  with finitely 

many of these neighborhoods. Let K  be the largest of the Lipschitz constants 

associated with these neighborhoods, and let e < • Let x 6 Bt (x), and
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let I be any line through x. Denote the points where I crosses OS by Xi and 

x2. Now translate I in a parallel fashion until it passes through x. Call this 

line I. and denote the points where I  intersects dS  by x t and x2. Then since 

the boundary of S  is locally Lipschitz and dist(l.l) < e. k i  — Xi| and lx2 — x2| 

are both smaller than Ke.

Then we have the inequalities:

|x -  xi| < |x — x| -F |x — X!| +  |xi -  Xi| < |x — x L| 4- (A’ +  l)e

and

k  ~ -T>l > k  — Tal — ka — -c-xl — |x: — .r| > |-r — xr21 — (A' + l)e. 

Therefore, we see that

|x — Xi| | x - Xi | 4 - ( A ' + l ) e  
jx — x2| — |x — x2| -  (A' + l)e

It follows that

|x -  Xi! _  |x -  Xtl (A' + l)e + k  -  x t j _  |x -  J il 
|x — x21 k  — -Pal “  k - ^ l  -  (A' + l)e k  — x2 |

_  (A' +  l)e(|x -  -r-il + k  “  ^ll) < +  l)cdiam(S)
|x — x2|2 — (A* +  l)e|x — x'il ~ dist(x,dS)(  1 — (A' +  l)e)

Hence, we observe that for any line / and any x € B((x), the quantity

k ~ x il _  k ~ x il 
k  — x2| |x — x 2 1

can be made arbitrarily small by choosing e small enough, i.e. J(x. 5) is con­

tinuous. □

2.4 Three Important Estimates

Two pointwise estimates play a crucial role in what follows. Both describe 

a relationship between the size of u at an interior point of the domain and the
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"distance " the point lies from the boundary of the domain. A third estimate 

establishes a connection between a function's minimum and the integral of the 

normalized distance to the boundary of the domain over the whole domain 

with respect to the Monge-Ampere measure.

T h eo rem  2.4.1 Aleksandrov’s Estim ate (Theorem 1-4-2 in [3]) If  Q C 

Rn is bounded, open and convex and u G C(fi) is convex and u |an =  0. then

|u (jo)|n < C(n)(diamQ)n~ldist(xo. dQ)Mu(Q)

for all Xo G Q.

When Mu  G D( for 0 < e < 1. Mu{Q) can be infinite, making this estimate 

not useful, but there is a substitute:

T h eo rem  2.4.2 Aleksandrov-Jerison (Lemma 7.3 in [5]) If Q is convex 

and normalized, u G C(f2) is convex and u|<jn =  0. and 0 < e < 1.

|u(xo)r <C(n.c)<y(jo.n)‘ [  S{x.9.)1-* d.\Iu
J n

for all Xo € Q.

P ro o f  Without loss of generality, multiply u by a positive constant so that 

u ( j0) = —1. Choose positive constants s and 3 small enough so that 3n < e 

and U tL is* -  2 w^ere sk = s'2~kd. Let A denote t)(x0. H)f f n S(x. 9 ) l~ldMu(x).  
We need to show that A > C  =  C(s). since s depends on e.

Let Qk —  {x G f i  : u(x) < A* =  — l+ s 1-t-S2 H l-s*} and Sk =  dist(Qk‘dQ)
for k =  0. 1. . . .

We claim that 6k 0 as k —> oc. If this is not true, then we could 

select a sequence {t/*} with y* G Qk- such that dist{yk.dQ) —> 0. From this 

sequence we can choose a convergent subsequence, also denoted {y*}. Then 

0 =  limfc_.oc u(l/fc) 5: +  a clear contradiction.
Hence there exists a smallest k for which djt+i > j Sk■ Let xjt € dQk be a 

point closest to dQ. i.e. dist(xk.dQ) = Sk.
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Then we have that dist(xk, dQk+i) < To see this note that the segment 

L from x k to dQ with length 6k intersects at some point, say x*+i- Then

dist(xk+i.dQ) > dist(dQk^.i.dQ) = 6k+ . Now

h  =  l-rjt -  x*4.i| + / > |x* -  x*+i| + dist(xk+i .dn)  > |x* -  xjb+i| +

where / is the length of the rest of the segment L (not the part from x k to 

x k^i). Therefore. ^6k > |x* - x*+i |  > dist(xk.dQk+i).
The next step is to apply Jerison’s Lemma 7.2 (compare with Theorem

2.4.1) to the function u(x) -  Xk+i on the set Qk±i. For completeness, we

include the proof of this lemma at the end of the argument.

L em m a 2.4.3 (Lemma 7.2 in [5]) Let E be an open convex set and suppose 

u € C(E) is convex and is 0 on dE. Then there exists a dimensional constant 

C such that

|u(x)|B < CS(x. £ ) |£ '|.\/u (E ).

This gives

\u(xk) -  < c<y(x*.nfc+l) |n fc. i | . \ / u ( n ^ i )

since u(xjt) =  Xk. u(xk) — =  —sk^i. Then we see that

snk+l < C5(xk. n k+l)\nk^ \ M u ( Q k+l). (2.2)

Note that is convex. It is a section of u of height | min u | +  Xk^i with 

base point at the minimum of u with slope 0. Let L now be a shortest segment 

from x k to dClk^\ and let c be the endpoint on <912*+1- Since Qjt-i is convex, 

the hyperplane FI through c and normal to L is a support plane for fljt+i- Let 

p =  \L\ =  jx/t — c|. Let II' be the support plane parallel to FI on the opposite 

side of fifc+i (so that 12* + 1 is contained in the slab between FI and II') and let 

r =  rfisf(II. IT). Then since fi*+i C Bi(0). there exists a dimensional constant 

such that |f2*+i| < Cr.
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Let T  be an affine transformation normalizing Qk+i• Then <i«si(r(ri). 7(11')) 

% 1 and. by a similar triangle argument. dist(T{xk)• T(IT)) % £.

On the other hand, by Lemma 2.3.3,

S(xk. Qk*\) = S(T(xk).T{Qk+i)) < Cdist(T{xk) .T(Qk+l)) 

< Cdist{T(xk) .T{n)) < C - .
r

Inserting this into (2.2). we get

•sJt+i 5: 0 ,-|Qfc+i|.\/u(Ojt+1) < CpMu(Qk+i) < CSk+iMu(Qk^i). 
r

By the choice of k. < 5k < 2~k6o < C2~k6(x0.Q). where t)0 = 

dist{Q0.dQ) < dist(x0 .3Q). Therefore. 

6k+lM u{nk+l) = 6tk+l6je-\  [  d.Mu(x) =  Sk+l f  Slkl \dMu(x) .  (2.3)
•'fU + l

For even- x  € 9 k+1. we have that 5{x. fi) > Cdist(x. dQ) > Cdist(Qk+i.dQ) = 

CSk+1. so that 

(2.3) < 6'kM [  CS(x.Q)l~(dMu(x)  

< C2~k(6{x0. n y  f  S(x. Q)l~(dMu{x) = C2~kfA.

Hence =  s'»2_r,(*+1)d < C2~ktA. Since 3n < e, we get that sn2_f(A:+l) < 

C2~ktA. implying that sn < CA.  where C  depends on e. This completes the 

proof of the theorem. □

Proof of Lemma 2.4.3 Let T  normalize E. and let v(y) = u(T~ly). By 

Theorem 2.4.1 applied to v in T(E)  and using Lemma 2.3.3 and (2.1),

|u ( j ) r  =  \v(Tx)\n < C n(diamT(E))n~ld is t(Tx,dT{E))Mv(T(E))  

< Cndist{Tx. 8T(E))Mv(T(E))  < CnS{Tx. T{E))Mv{T{E))  

= CnS(x.E)Mv(T{E))  = Cn6(x. E ) \d e tT ~ l \ \ Iu(E)  

< CnS{x.E)\E\Mu(E).

where the last inequality holds because | det T ~ l \ =  < C \E \ .  □
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There is an example (see [5]. pp. 44-45) showing that if e =  0. there is 

no way to estimate the size of u at a point in terms of its distance to the 

boundary. This is the reason for requiring that the exponent appearing in the 

definition of Dc is strictly less than 1 .

To conclude this section, we prove a useful relationship between the min­

imum of a function a and the integral of the normalized distance over the 

domain that holds under certain conditions. This is the analog of Proposition

3.2.3 in [3].

P ro p o sitio n  2.4 .4  Let Q be open convex and normalized, u € C(fi). convex 

and u\an = 0. Suppose Jn 6(x.Cl)l~cdMu < C M u (^ fi). Then there exist two 

constants Ci =  Ci(n.e) and Co = C2(n,e.C) such that

Ci | min u|" < J  S(x. Q)L~(dMu < C o |m inu |n.

P ro o f  The first inequality follows directly from Theorem 2.4.2 and the fact 

that S(x. Q) < 1 . In fact, for this inequality the hypothesis concerning the 

integral is not needed. For the second inequality,

L
6{x.Q)1 *dMu < CA/(t(^Q) < C lm inul" 

n 2 o

where the second inequality is a consequence of the following lemma and the 

fact that since fi is normalized. dist(^fi.dfi) > C(n).  □

L em m a 2.4.5 (Lemma 3.2.1 in [3J) Let Q C  R" be a bounded convex and 

open, and 6 a convex function in Q such that d) < 0 on dd.  I f  x  G and

l(y) =  o(x) + p • (y — x) is a supporting hyperplane to d> at the point (x, <£>(x)) 

then

Ip I < dist(x. dQ) 
More generally, if Q0 G Q. then
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Proof. The claim is clearly true if p = 0. so assume p ^ O .  We have o(y) > 

o(x) + p-(y - x )  for every y € Q. If 0 < r < dist{x. dQ) then y0 =  x  +  € Q

and 0 > o(yo) > o(x) -F r|p|. Hence |p| < ~°r(J> for any r G (0. dist(x. dQ)). 
This proves the first statement. For the second, notice that for any x  G Qq. 

-o{x)  < maxn0( —o) and dist(x.dQ) > dist(Q0. dQ). □

2.5 Hausdorff Metric

The Hausdorff metric introduces a topology on the set of nonempty com­

pact subsets of R". This metric is the proper framework to analyze the con­

vergence of sections of solutions of the Monge-Ampere equation, and plays an 

important role in the proofs of the regularity results appearing below. The 

basic definitions and results come from the book [7]. Let K n denote the set of 

nonempty compact subsets of Rn .

D efinition 2.5.1 For K .L  € F\n. the Hausdorff metric is defined by 

dff(K. L) = max {max min |x — y). max min |x — y|}.
y€/. IC.L y£K

or equivalently by

d„{K. L) = min {A > 0 : A' C L + ABd'O). I  C A' +  Afl^O)}.

We also define the Minkowski support function of a closed convex set K.

D efinition 2.5.2 Let I\ C R" be closed, nonempty and convex. The Minkowski

support function is the map h(I\. ■) : Rn —► R given by

h{K. u) =  sup{< x. u >}.
xefi

We quote the following result establishing the connection between the 

Hausdorff metric and the support function.

T heorem  2.5.3 (Theorem 1.8.11 in [7]) For any convex bodies K  and L. 

d f{ (K .L )=  sup \h(K. u) — h(L. u)|.
u 6 S n_1
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We now collect some properties of the Hausdorff metric that will be used 

later. First we present the following theorem due to Blaschke.

Theorem  2.5.4 (Blaschke Selection Theorem) From each bounded se­

quence of convex bodies, one can select a subsequence converging (in the Haus­

dorff metric) to a convex body.

For our purposes, we will not need the full strength of this result, but will 

need only the following special case of this theorem. We include the proof 

for this case: the argument is contained in the proof of the Selection Lemma 

(Lemma 5.3.1) in [3].

Theorem  2.5.5 Let {A'„} be a bounded sequence of convex bodies. Suppose 

additionally that there is point x and a number e > 0. such that B((x) C K n 

for  all n. Then there is a subsequence K nj converging to a convex body K.

P roof o f Theorem  2.5.5 Without loss of generality, take x = 0. Let F,(x) be 

the function whose graph is the cone in Rn+l with vertex (0 . - 1 ) and passing 

through the set dKj  x {0}. Then = {x 6  R" : Fffx) < 0}. Note that Fffx) 

is convex.

Ifp € dFj(I\ j )  = dFj(0).  then |p| < Let R  > 0 be such that K} C B/j(0) 

for all j . Then for any j .  — 1 <  Fj(x) <  C  in B 2 r ( 0). where C  =  C(n.e).  This 

holds because the slope of any ray in a cone emanating from the common 

vertex is uniformly bounded. Therefore, the functions (F,(x)} are uniformly 

bounded and equicontinuous in B 2 r ( 0). So by Arzela-Ascoli. there exists a 

uniformly convergent subsequence, which we also denote F3. converging to say 

F(x). Since F  is the limit of convex functions, it is convex. Define the set K  

to be {x 6  Rn : F(x)  < 0}. A' is convex because of the convexity of F.

We now show that K3 —> K  in the Hausdorff metric. We first demonstrate 

that given e. C K  +  eB^O). for all j  sufficiently large. If this is not true, 

there exists an e > 0 and a subsequence K]k such that K Jk <£ K  + eBi(0). 
In other words, there is a point xJk € K ]k such that x]k £  K  + eBi(0). This
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will mean that B l ( x JIc) f t  K  =  0. Since {xJfc} is bounded we may assume that 

x]k —> x. Then:

\FJk(xJk) ~  F(*)\ < ~ F{rj>)\ + \F(rjk) -  F(x)\.

Both of the terms on the right go to 0 (by uniform convergence and by the 

continuity of F  respectively). Hence FJk{xJk) —> F(x). but since xJk 6  I\ Jk, 

FJk(xJk) < 0. implying that F(x)  < 0. so x € K.  but B l ( x JIc) n  A' =  0. This 

is a contradiction.

The next step is to show that I\ C Kj +  e.6i(0) for all j  > J(e) . Let 

x  £  A'. Then F(x)  < 0. VVe need to show that if j  > J(e). there exists 

Xj 6  Kj  for which \x} — x| < e. If not. there exists e > 0  and a subsequence 

for which I\Jk D B t (x) =  0. This implies that > 0. In particular.

Fjk(x) > 0. but FJk(x) —> F(x) .  The only way this is possible (since x  £ K)  is 

if F{x)  =  0. i.e. x  € dl \ .  Xow choose a sequence {«/*} converging to x.  such 

that xjk G B l ( x )  fl int(K).  Then F{yk) < 0 so we must have FJk(tjk) < 0 for k  

sufficiently large, but A /Je^x) > 0- This is a contradiction, and therefore, for 

all e > 0. there is J  = J{e) such that K  C Kj  +  eBi(0) for all j  > J.  □

The next lemma connects convergence in the Hausdorff metric with point- 

wise convergence of characteristic functions.

L em m a 2.5.6 Suppose {A"n}. a sequence of compact convex sets converge 

to K  in the Hausdorff metric. Then x k A x ) Xk (x ) pointwise for every 

x  £  OK.

P roof o f Lem m a 2.5.6 By Theorem 2.5.4. K  is compact and convex. First 

suppose x £ K.  Then dist(x ,K)  — p > 0. Hence x  £  I\ -I- £Bi(0). By the 

convergence of K n to K.  this means that x g  K n for all n sufficiently large. 

Therefore. \Kn(x ) =  0 =  \ k (x ) for all n > .V.
Now- suppose x  € int(K).  Let 0 < p < dist (x.dK).  Then B ^ x )  C K.  

Change the coordinates by a translation so that in the new coordinates x =  0. 

From now on K„ and K  represent the translations of the original sets in
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question. For any v E Sn l. I\ is contained between the parallel planes

{c 6  R" :< c > =  h{K. r)} and {z E RB <  =. v >= h(K.  —1»)}-

Since Bp{0) C A\ h(K,v)  > p for all v E Sn~l. For n > -V(p), we have 

that |A(u.A'„) — h(u. K)\ < $ for all u E S n~l. Therefore. h (u .K n) > $ for 

any unit vector u. so that B&(0) C K n for any n large enough. This shows 

that IJ E h’n for such n. and translating back to the original coordinates, we 

get that j  E K n for all n > .V for some .V. proving the claim. □

We now prove if a sequence of convex bodies {A'n} converges to A', then 

the sequence {^A'n} converges to |A'.

L em m a 2.5.7 If  Kn —> K  in the Hausdorff metric, then \ K n —» ^A’. where 

jA'„ is the dilation of I\n (respectively ^ K )  with respect to its center of mass

By Theorem 1.8.16 in [7]. the volume map is continuous in the Hausdorff 

metric. In other words, if Sn —► 5. then |S„| —> |S|. We now show that the 

center o f mass map is also continuous with respect to the Hausdorff metric 

on the class of convex bodies. To prove this we need to demonstrate that 

f K x, dx  —> f K x t dx. Since {K n} converges, there exists an R  > 0 such that

as n —> oc. since A'„ —> K,  so by Lemma 2.5.6. \K n Xk almost everywhere.

C { k ’n) .

P ro o f  We have the following formulas:

AT. K n C Bft(0) for all n. Then:

/ x,dx -  /  x tdx < / |x ,|d x +  / |xj|dx
IJ  K n J K  J K n n K c J K r . K '

< R(\Kn n A c| +  | A  n  A'^l) 0
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Now let e > 0. Then there exists N  such that n > N  implies that K  C A'„+ 

tB\,  K n C K + t B \ .  and |c(A'„) -c(A ')| < t. We need to show that there exists 

.V' such that if n > .V'. the following two inclusions hold: jA ' C \ K n + eB\ 

and ^ I \n C jA ' 4  t B x.

Let x  G \K .  Then x  =  ^(c(A') + y) for some y G A'. We want to show 

that for n sufficiently large, x G \ K n + eBx. In other words, we need to find a 

point :n G ^A'n such that |x — z„| < e.
For each n > .V. there is a point zn G A'„ such that |c„ — y\ < e. Let 

zn = \{c{Kn) + ~n) e ^ K n. Then:

|x -  = |i(c(A-) + y ) ~  iw A '„ )  + ;„)| < j(|c(A ') -  c(A'„)| + |j, -  ;„|) < e.

The other inclusion is proved by contradiction. If the claim is not true, then 

there exists e > 0 and a subsequence A'„; such that \ K nj <£ \ K  +  ei?i(0). This 

means that we can find a sequence of points {xnj} such that x U] G 5 A a n d  

dist(xnj, ^ K )  > e for all points in the subsequence. Write x Uj =  |(c(A 'nj)+x„; ) 

where x nj G F\n]. By passing to another subsequence, we can assume that 

x nj x. Then bv letting j  —>■ oc. we see that x nj also approaches a limit, 

namely ^(c(A') + x ) . Theorem 1.8.7 (b) in [7] states that if A'„ —> K  and 

{xnj} converges to x .  where x nj G K nr then x G A'. This theorem implies 

that x G K  and therefore {x„; } converges to a point in ^A'. However, this is 

impossible if dist{xnj. \ K )  > e. □
The last two results in this section concern the convergence of the normal­

ized distances to the boundaries of convex sets converging in the Hausdorff 

sense, and the continuity of sections in the parameter t respectively.

L em m a 2.5.8 Let {S7 } be a sequence of convex bodies converging in the Haus­

dorff metric to the convex body S. Then for every x  G S.  5(x.Sj )  —*■ S(x.S) .  

In fact, the functions f }{x) =  d(x.Sj) converge uniformly to f (x )  =  6(x, S) 

on compact subsets of S.

P ro o f  Let x  G S. Then dist(x.dS)  =  p > 0. Since S7 —> S.  Lemma 2.5.6 

implies that x  G Sj for all j  sufficiently large (depending on p). Then for
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these j .  S(x.Sj) is defined. Let I be any line through x. Let xi and x> be 

the endpoints of the segment I n  S. Let x( and Xo be the endpoints of the 

segment / n  5r  with x{ being in the same ray (emanating from x) as xi. We 

make the claim that r{ -*X | and xJ2 —>• x2 "uniformly" in the sense that this 

convergence does not depend on /.

Then:
|r{ — x| | x i — x|
|x2 -  x| l-r-2 -  x|

and this implies that S(x.Sj)  —► d'(x.S).
We prove the claim by considering two cases. First, consider the case that 

|x-{ -  x| > |xi — x|. Let u be the unit vector from x along /. pointing in the 

direction of X[. Let n  be a support plane to 5  at x ; ; let v be its unit normal 

(away from 5). Let IT̂  be the plane parallel to FI that supports S} at some 

point. Let Rj =  dist(n. 11̂ ). Let 9 be the angle between u and i\ Then 

|xi -  x (| < RjSec9. Construct a right triangle with one vertex at x. The

angle at x is 6. and the sides intersecting at x are given by the rays emanating

from x with directions u and v. The second vertex .4 is the point in dS  where 

the ray starting at x in the direction v hits dS.  The third vertex is the point 

B  lying in the ray from x with direction a that lies in a plane parallel to LI 

through .4. Then

cos# =  ~-p-{ > P > 0 .
|x — B\ diam(S)

Hence, there is a number M  for which sec# < A/. Therefore, |x( — x t | < MRj.  

By Theorem 2.5.3. R} < d^{Sj.  S) —► 0. This is because the number Rj is 

h(v,Sj) -  h(v.S) ,  where h(-. •) is the Minkowski support function. This shows 

that x{ -> x t at least for those j  such that |r{ — x| > |x t -  x|.

We now consider the other possibility, that |xi — x| > jx-J — x|. As before, 

let u be a unit vector from x along I pointing in the direction of x ^  Let n , be 

a support plane to S} at x{ and let vj be its unit normal (pointing away from 

Sj). Let n ' be parallel to fl7 and support S  at some point. Denote by R} the 

distance between the parallel planes II, and II'. Let #, be the angle between
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u and vj. Then |x{ — X[| < Rj sec 0}. For each j  we construct a right triangle 

with vertex x and sides intersecting at x given by the rays starting at x  with 

directions u and vr  The second vertex of the triangle, Aj  lies at the end of 

the side with direction Vj and is in the boundary of Sj.  The third vertex. B}, 

is found by intersecting the side with direction a with the plane parallel to n ; 

that passes through .4; . Then

cos9, =  t - i j  > - i l l -  > o.
\x -  Bj\ diam(S)

Then, as in the first case, x-} —> Xi for those j  for which |xi — x| > |x{ — x|.

For both of the cases considered, the same arguments show the correspond­

ing result for x>. Combining the two cases, we get that x^ —> X[ and x!, —> x2. 

Notice that the convergence does not depend on the particular line /. This 

allows us to conclude that 6(x.Sj)  —» S(x.S)  pointwise for every x € int(S).  

The claim about uniform convergence on compact subsets follows since the 

only property of the point x needed in the above argument was its distance 

from the boundary of 5. Therefore, if K  <s 5. dist(x. dS) > p > 0 for all 

x € A' for some p. Then we car apply the above argument to deduce the 

uniform convergence. □

L em m a 2.5.9 Let u be a convex function defined on a domain fi. Let S  = 

5(xo,p. t) be a section of u. such that S  fi. Let p > 0. Denote by S p the 

section 5 (x 0 )p, t — p), and the section S{xQ.p , t  + p) by S p. Then

lim S p = lim Sp = S.p—* o p—+ o

where the limits are in the Hausdorff metric.

P roof

Let l(x) =  u(x0) + p • (x — x0) -+-1 be the affine function defining S, i.e. 

5  =  {x € Q : u(x) < /(x)}. First we show that limp_>0 ‘S’p =  S.  For every p, 

S  C S p. so we only need to prove that for every p0 >  0,

Sp C S  + pqB i (0)
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for all p sufficiently small. If this is not true, then there exists p0 > 0 such that 

for each n E N. there exists er, < £ and a point xn E dSfn fl (5 +  p0 .£?i(0))c. 

This implies that dist(xn.dS) > po. But this leads to a contradiction. Choose 

a s u b s e q u e n c e  xn> —► r. Then:

u(xHj) =  u(xo) + p  ■ (xUj -  x0) +  t +  enj 
I  |
u( x )  =  u ( x 0) -h p  ■ ( x  -  X0) +  t.

This means that x E dS. but dist(x.dS) > po. This is a contradiction.

Now we prove that S p —> S, as p -» 0. Since S p C S  for all p. we only need 

to show that for all p0 > 0 .

S  C Sp + p0 Bi(0)

for all p sufficiently small. Again, the proof of this inclusion is by contradiction. 

If this does not hold, there exists a p0 > 0 such that for all n. there exists

e„ < £ such that 5  ?! S tn +  poiMO). In other words, there is a point x n E S
such that x n 0  S tn -t-p0 5i(0), meaning that dist(xnjd S en) > po- Then we can 

choose a subsequence xnj —> x  E S. Each x n] £  S (ni , so

li-Crij) -Crij < Uo(xnj) < f a n , ) -

Let j  —> oc to conclude that l ( x )  < u0 ( x )  < l ( x ) .  This means that x  E dS. 

We have the inequality:

d i s t ( x .  dS lni ) < | j  — x nj | + d i s t { x n j , d S *n>) and

This implies that \dist(x. d S enJ) — dist(xn]. dS tnj )| <  |x — xU] |. We also have 

that |.f — xnj | —> 0 and dist(xnj. dS fn>) > p0. This implies that dist(x . d S (ni ) > 

^  for all j  large enough. Therefore. Be.a(x) Pi Sf"̂  =  0 for large j .  However, 

since x  E dS.  there is a point z  E Bea.{x) such that z  E S.  This means that 

u0 (c) <  /(c). so uo(-) < /(^) — fnj for j  large enough, implying that 2  E  5 £nJ. 

This is a contradiction. □
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CHAPTER 3 

REGULARITY PROPERTIES

3.1 Comparison of D \  and D t

The following theorem shows that the two conditions. Dc and doubling, 

are equivalent for convex functions defined on the whole of R". The converse 

of this theorem is a trivial consequence of the fact that S(-. •) < 1 .

Theorem  3.1.1 If u : R" —► R is convex and Mu  G Dt for some e 6  (0,1). 

then Mu is doubling.

The proof of this result uses the characterization of doubling Monge-Ampere 

measures on R” due to Gutierrez and Huang:

Theorem  3.1.2 (Theorem 3.3.5 in [3]) Mu  = ji is doubling on R" if and 

only if there exist constants 0 < ~. A < 1. such that for all x0 and t > 0. 

S(x0.p. rt) C AS(xo.p.t).

P roof of Theorem 3.1.1 : Let 5  =  Su(x0 ,p, t) be any section of u. Let 

T  be an affine transformation that normalizes S. T x  = Ax  +  b for an in­

vertible matrix A. and denote T{S)  by S ' .  Define v(x) = u(T~lx). Then 

T{Su{x0.p. Xt)) =  Sv(Tx0.q.Xt) for any A > 0. where q = (A-1)^ . We also 

have T{XS) = XT{S) = A S'.
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Let u’(x) =  v(x) — l ' ( T x 0 ) -  q ■ (x — T x0) — t. Then dv'  =  dv -  q. and by 

the translation invariance of Lebesgue measure Mu'  =  Mv.  Also, c'las- = 0. 

Let y G S*\AS*. where A < 1 is to be chosen, close to 1 .

Since S '  is normalized, dist(y.dS') < ( 1  — A) implies that S(y.S ')  < 

Cn(l — A). Then by Theorem 2.4.2 and Proposition 2.4.4:

Therefore v'(y) > - C ( l  — A)*f. meaning that

v(y) -  v(Tx0) — q • (y — T x 0) > ( 1  -  C(1 -  A)*)t.

Choose A so that the term on the right hand side is positive. Then choose 

0 < r < 1 — C(1 — A)™. Therefore.

so y £ S L,{TxQ.q.rt) .  This implies that Sv{Tx0.q.rt)  C  AS*. By applying 

T~K we get the inclusion S u(x0.p.rt)  C  XSu{x0. p.t). So by Theorem 3.1.2. 

Mu  is doubling. □

For functions defined only on bounded domains in R". the two conditions 

are not equivalent. A simple example of a function whose Monge-Ampere 

measure is D\ but not doubling on sections is presented next.

E xam ple  Define the function u : [0.1] —> R by

This function is continuous on [0.1], convex and satisfies Mu  =  A dx.

Since u is zero on the boundary (i.e. u(0) =  u(l) =  0), the interval (0.1) 

is a section. By considering this section, we see that the measure cannot be

< C ( 1  — A)e|min5 . i>*|"

= c(i -  xytn.

v(y) > v(Txo) + q - ( y -  Txo) +  Tt.

xlogx 0  < x  < 1 , 

0  x  =  0 .
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doubling, because

' l dx 
'o
f  dx

Mu{(0.1)) = /  — = oc. but
J o 1

A/u(A(0.1)) = ^ * dT i n—  = In 3 < oc. 
x

A

This means that there is no constant C  for which A /u((0.1 )) < C M u ( \ ( 0 . 1 )). 

Therefore, the measure is not doubling on sections.

D i means that, for any section (a. b) C (0.1).

f b i dx _ , r .1 . , ,,  _ ~  dx f  3b + a \
J  <C. \ l u { - ( a . b ) )  =  C T = C l B ( — b) .

Here
( f f f  a < x <

6(x. [a. 6 ]) = <

I S  ^  < -r < 6.

To show that Mu  € D i .  four cases will be considered:

1 . a.b > Ci > 0 .

2 . 0  < a < Ci. b > C-2a. where C2 >

3. 0 < a < Ci. b < Coa.

4. a = 0 .

C ase 1 . When a . 6 > C i . l < } < ^ - .  On sets of this form Mu  is comparable 

to Lebesgue measure, so Mu  is doubling and hence satisfies Di_.

Case 2 . We write

f b r  a \ l-d x  \ /x  -  a f b \ / b  -  X r  t t/  d(x. fa. 6  ) - — = / — r- ■ - d x / —  dx = I  + I I .
Ja x  Ja I \ / b  -  X J±$!> X s / x  -  a

We consider integral I  first:

r ^ ~  dx \/2 dx _  2y/2 (  j a  + b
— Ja J x \/b  — x ~ \Jb — a Ja sfx yjb — a I V 2 /
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2\/2 / la + b \  ,  la 4- b . / 26
< - = =  = - \    < 2,--— -----— r- = 2 ,

s / i T ^ \ V  2 J  “ V b - a  -  " y  6 (1  - c 2- 1) ~ y i - c 2- 1'

We now turn to / / :
/ 2 Z*6 v /6 ^ x  2\/2 f 6 -------

/ /  < \ / -   /   <ir <   —  /  \/6 — x Jx
\ b - a j ^ ± 6  x [a 4- 6)v6 — a J±±*

< — ~ y^
(a 4- 6) \/b — a V 2 \  2 J a 4- 6

Therefore. /  4- I I  < 2 y /(l_^._ry 4- 1.

The right-hand side for the Di condition is

( “ ± £ ' j  > m f =  ln . 33a 4 -6 / y 6 ( ^  + i)y  J

Choose C  such that 1 + 2 ^ ^ ^  < C ln ^ j_ ^L ^ . For the term on the right 

to be positive (so that the choice of C  is possible). C2 must be > | .

Case 3. Let 6  = a 4- h. where h < (C> — l)a. We want to show that the 

following inequality holds:

[ a+<5 s/x -  a f b \/b -  x
/ — . -  d x +  —  dx — I + 11

J a  x\/b — x Ja+$ X \ / x - a

sc ln ( ^ ) = cl"(ic 4 r ) -  (31»
Since I I  < I  (see below), it is enough to prove the estimate for I. We have 

that:

‘ - L  =lD(1 + ^ ) ^ T a

For the right-hand side of (3.1).

-SO ■ «
where C <  1 is chosen so that ln(l 4- x) > Cx.  for all x  6  [0. Then the

last inequality in (3.2) holds since < 2(C3~l)a =  The claim will hold

if C  can be chosen such that:
h - 2h 4a

— < C - -  or equivalently C <
2a 4a 4- h ' 4a 4- h
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Now
4a 4a>

4a +  h (3 -+■ Co)a 3 -F Co

Hence, take C =  5^ 7 . Then

, h ^  '2h C , f  -la + 3 h \  / l  \I  < —  < C     < — In I —------— J =  C M u  I - ( a .b) ) .
2  a 4 a + h C  \  4 a + h J  \  2  J

Case 4. When a =  0. the right-hand side is In 3. Therefore we just need to 

dominate the left-hand side bv a constant. The left-hand side is

f 1 'Z*  ,  f  v b  -  x/ — — dx +  = -  dx = I  + IF.
Jo x  s / h - x  J>L Xy / X

Note: Again I I  < I. so it is enough to estimate I. This is done as follows:

Therefore, the desired inequality also holds in Case 4.

We now prove that I I  < I. For any interval, (a. b) C (0. 1),

f  6(x.[a.b})* —  = f  6(x,[a.b])i— + f  6(x, [a.6])^—  = I  + II.
J a  x  J  a x  J  ̂  x

Then a -*-6
2  f ~  1

r > ----- - I S(x. [a. 61) 2 dx = and
a + b Ja

I I  < [  5{x. [a. 61)2 dx = IV.
~ a +  b L

Now notice that V =  IV  since in this setting 6  has the symmetry property: 

6{x. [a. 6]) = 6(x. [a. 6 ]). where if x  = a -f- e. then x = b — e. for 0  <  e <

Since the four cases considered above exhaust all possibilities for sections, 

this completes the proof that Mu  € D 1 , but is not doubling. □
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3.2 Extremal Points and Strict Convexity

This section contains the analog for D( of Caffarelli's theorem concerning 

extremal points in the case A < Mu < A. The proof in the case of De follows 

the same outline as in the book of Gutierrez (Theorem 5.2.1 in [3]). Before 

stating and proving this theorem, we introduce some terminology and basic 

facts of convex geometry. For a more detailed description of these topics see

["]•

D efin ition  The point x0 € d r  is an extremal point of T C  R" if it is not a 

convex combination of other points in f .

R em ark  Let E  be the set of extremal points of T. a bounded convex subset 

of Rn . Then the convex hull of E  equals f .

L em m a Let T ^  0 be a closed, convex and bounded subset of Rn. Then the 

set E  of extremal points of T is not empty.

T h eo rem  3.2.1 Let Q C  R” be open. bounded and convex, and let u € C(fi) 

be convex. Suppose Mu  € D(. Assume a > 0 and let T =  {x € Q : u(x) =  0}. 

/ /  T 7  ̂ 0  and contains more than one point, then T has no extremal points in 

Q.

Proof: The proof is by contradiction. Suppose x0 € Q is an extremal point 

of T. Since u > 0. T is convex. We apply the following result.

L em m a 3.2.2 (Lemma 5.1.4 in [3})Let r 0 be an extremal point of Q. Then 

given 6 > 0 there exist a supporting hyperplane l(x) at some point of dQ (not 

necessarily x q ) .  and eo > 0  such that

(a) l(x) > 0 }.

(b) diam{x € Q : 0 < l(x) < e0} < d. and

(c) 0  < l(xQ) < eo-

This result is applied to the the set T with S =  p < ^dist(x0,dQ). Let xi  be 

the point at which l(x) is a supporting hyperplane.
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Define

S  = {x € T : 0 < l(x) < e0}.

LL = {x : l(x) =  e0}.

n2 = {x : /(x) = 0}.

For e, > 0. define the convex set

r , , = { x 6 f i :  u(x) < ei(e0 -  l{x))}.

Notice that S  C 1%, for all ei > 0. Therefore 5  C n <t>o claim that

we also have that ("If, >0 ^ 1  c  If x € T{,. the non-negativity of u implies 

that l(x) < e0. and if x  € for all > 0 . then we must have that u( x)  =  0 . 

and hence x  € T and l{x) > 0. Since d i a m ( S )  < p < \ d i s t ( x o.dQ) and 

Xq € S. S  C int(Q). Because the Te, decrease as ti —> 0. and S = n ci>o 

Tu C int(fi) for all et sufficiently small.

We point out that Tfl is the closure of a section of u in Q. The set Ttl 

is the set of points in D for which the graph of u lies below the graph of the 

hyperplane l(x) =  e^eo — !■{■£))■ Let q0 be the largest value of q for which

{x £ Q : u(x) < I(x) — q} is not empty. By continuity there is a point £ 6  ft

where u(£) =  /"(£) — q0. Then Tei is a section of u with height q0 with base 

point £. W hat this amounts to geometrically is lowering the plane I  until the 

graph of u lies above it.

Now slide n2 in a parallel fashion away from fli until it touches dTn at a 

point x(l and let n3 denote the resulting plane, i.e..

n3 = {x : l(x) = —Pei}• -Cf, € n3. rfl C {x : - p (l < l(x) < e0}.

with pCl > 0 .

Let uei(x) = u(x) —fi(co — /(x)). This function is convex, and infrei uei < 0. 

This second assertion can be seen from considering the point x0. We have that 

0  < /(x0) < e0. and that u(x0) = 0  < ei(to — I(-to)) for all fi so x0 € Tei for 
every et . Then ut l (x0) =  0 — ei(e0 — /(x0)) < 0. The set Tfl is a section of ufl 

in the set Q. Note also that u^lar,! =  0.
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We have that:

^  ^  v d i s t ( U o . n i )  Pi,
d i s t ( U 2. n 3 ) =  p( l . d i s i ( n ! . n 2 ) =  e 0 . SO ~ =  — .

a z * T ( l l p  i l o )  £ q

Since the Tei shrink to 5  as ei —> 0. ptl -> 0 as -> 0.

Now consider the quantity

i infr,, u*,r

We have that

u u ( x i )  =  u ( X i )  -  f i (e0 -  1 ( X \ ) )  =  0 -  Ci(e0 -  0) =  - e ^ o  <  0. and 

uM(x) = u(x) -  el(e0 -  /(x)) > inf u -  fi(e0 -  /(x))
r«t

for all x 6  r (1. Then since infrtl u =  0. we get that

ufl(x) > —ei(e0 -  f(x)).

This implies that

inf ue,(x) > inf[-et (e0 -  f(x))] =  -su p c^co  - f (x) )  = -e t(e 0 +  P*i)- 
r-i i r(l

Therefore.

t i n f p n  « e i ( c i ( c 0 +  P a )  f o + p £l

as —>• 0  since pei —> 0 .

We conclude that liminff._o . 11 =  1.IJ infr.j uM
Let r ei normalize Tei and u*t(x) = u ^ T ^ x ) .  Then .l/u^  € D( and u*t is 

zero on <917̂  where =  T(l(Tei).
Then, as above.

1[Ue*l ! r t l J l ) l1 > C t > 0  
Uafr;, “f*J

for ei sufficiently small. This implies (by Proposition 2.4.4) that
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^ C T I j n f ^ r ^ c /  S i x . r j ' - ' d M u ^ .  
rM -/r;,

(3.3)

We now explain why Proposition 2.4.4 holds in this ease. Using (2.1) we obtain 

that:

.u < , ( i r ; , )  = (Ir(r„))  = . u < ( r ( i r „ ) )

= | d e t r - , |.'/u<1( i r „ )  = !d e t7 -1|.Uu( i r . 1).

The following is also true (again by (2.1) and Lemma 2.3.3):

[  S i x . r j ' - *  dMu;t = [  d (x .T {r tl ))l~i d.Mu(i 
j  r;, JT{ r.,)

= f  j ( r y . r ( r ei))I- ' | d e t r - l | d \ i u ci = f  *5(y.rei) l- ei d e t r - M  d U u tl
J r,t dr,,

= [  S(y. r e. )1 - * | det T _l | d.\[u.
J  rM

Since r e, is a section of u and Mu  6  D(.

[  6 ( y . r t l )l - (d M u < C M u ( l- r (l ).
Jr.t

Therefore, by canceling the factor | det T “ l| we see that we have the inequality

f  d(x. < c . v u;,( ir; ,)
J  r;,

which is what we need to apply Proposition 2.4.4. so (3.3) holds.

The next step is to show that d is t iT^x i .dT^)  —> 0 as tq —> 0. Let II* 

denote TflLI, for i = 1 . 2 and 3. We first prove that as ei —> 0.

dist( i t .  rig)
dist( n*. rij) o.

We have that dist(U\.  ILi) < d i s ^ r i in r ^ . I T n r ^ ) < 2 since T^ is normalized. 

Then
dis^rio .n^) _  dis#(n2.n3) _  p(l 
d is til* . IT) d i s t i l ! .n 2) e0 

as ei ->■ 0 . and hence disf(lT . II3) —► 0.
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Now let dr.] C dr*t be that portion of the boundary lying between the 

planes II] and II]. Let Pn € dr.] be the point such that the line through 

Tu x x € II] and Plx is normal to II]. Then dist(Tu x x. d f ^ ) < dist(T(xx i.dT]) <

This implies that 6(Ttlx x. > C.  but dist{Tu x x. d r mt l ) —> 0. However, since 

T'j is normalized. S(T(lx x. r*t ) % dist(Tf{.ri. d T 'J . This is a contradiction. □

C oro llary  3.2.3 Let 9. c R n be open, bounded and convex. Suppose u € C(Q) 

is convex and zero on dQ. Then i f  Mu  € D(. either u is strictly convex or 

identically zero.

P ro o f  Suppose u is not strictly convex. Then the graph of u contains a line 

segment, say L. If (x0.u(x0)) € int(L). then any supporting hyperplane l{x) 

to u at j 0 must contain L.
Apply Theorem 3.2.1 to the function u(x) — l(x). This function is non­

negative on Q. and the set T = {x € Q : u{x) = l(x)} contains more than 

one point. Therefore. T has no extremal points inside Q. so all of its extremal 

points are in dQ.

Write j 0 =  "'here the j ,  € dQ are extremal points of T. A, > 0.

and A, = 1 . Then u(xo) = l(x0) =  ^ A ,/( j ,)  =  A , t z ( ) =  0. since 

u{xt) = 0. Then because x0 is an interior point of Q and u ( j0) =  0. u =  0 by 
convexity. □

T h eo rem  3.2.4 (Compare with Theorem 5-4-7 in [3]) Let Q be bounded, open 

and convex, and let u G C(Q) be convex. Suppose M u  G Dt for some e. and 

M u  > A > 0. Then if u =  /  on dQ. where f  €  C lJ (dQ) for 3 > 1 — ~ 

(n >3 ) .  then u is strictly convex.

!L ,J I  -  Ptil <  d i s t (U m>. n ])  0.

On the other hand, bv Theorem 2.4.2 

From (3.3) above.
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P ro o f  Suppose u is not strictly convex. Then the graph of u contains a 

line segment, say from {x0.u(x0)) to (x i,u(xi)) for some x0 and X[ in Q. 

Let l(x) be a supporting hyperplane to u that contains this segment. Let 

E  = {x G Q : u(x) -  l(x) =  0}. The segment from Xu to X[ is contained in E. 
Therefore, by Theorem 3.2.1. all of the extremal points of E  (denote this set 

by E ’) are in dQ. Since E ’ generates E. there exist two points cq and Z\ in 

E '  such that n  E  ^  0. By a translation and rotation, we can assume that 

the segment from Co to ri lies on the Xi coordinate axis, and its midpoint is 

the origin. Let u’ represent the values of u — l after this change of coordinates, 

and let / ’ denote the new boundary values. VVe then have that Co =  ana

=  —t0e\ for some t0 > 0. Then u* > 0 for all x G Q and is 0 along the x 1 

axis. M u’ G Dt . and M u ’ > A.

Write x = (t. x') for t € R and x' =  (xo. . . . ,  x ;;). Now construct a thin 

cylindrical tube 7P with axis x' =  0. and radius 2p. for p small. We will 

introduce a barrier function B  =  B(t .x' )  such that B > u’ on dTp. M B  = 

A < Mu',  and £(0 .0) =  0. Therefore by Theorem 2.1.6. B  > u ’ in Tp. so that 

u*(0) < 0. but this is a contradiction, and hence u is strictly convex. Define

B(t.x') = K(an- lt2 + - \ x ’\2)
a

for constants I\ and a to be determined.

Let (t,x r) G Tp. We first claim that 0 < u’(t.x') < C i|x '!1+d. We can write 

(t. x') = &:‘Q + (I -  &)z[ for some ^  and in Tp n  dQ, and we can choose Zq 

and such that they lie on the same straight line parallel to x' =  0. Then by 

convexity.

0 < u’(t. x') < du’ (z') +  (1 -  Q)u’{z\) = d f ’(z'Q) +  (1 -  B )f’ (z[). (3.4)

We have that / ‘(r,) =  u’(zt) =  0 for i = 0. 1. Since u* >  0 on Q, this 

implies that /* has a minimum at so that D f ’ (zi) = 0. By the assumed 

regularity of f ’ .

n  4 )  -  / • ( -» )  =  D f (.-„) • + 0 (1 4  -  =  0 (1 4  -  z„i1+3).
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Since dQ is Lipschitz. |c(, — £0| < C\x '\ (We can parameterize dQ near Co bv

a Lipschitz function of x'. say p. Then |cg — c0| = I p ^ )  -  p(0)| < C |x'|).

Similarly. / '{ :[)  < C |j ' |1+'3. Inserting these estimates into (3.4). we obtain 

the claim.

The next step is to compare the values of u* and B  on dTp. VVe first 

consider the lateral side (i.e. dTpnQ).  Here we have that |j ' |  =  p. Therefore. 

B(t.x ')  > A '£ . From the last claim, u'(t .x ')  < Cipl+li. In order to guarantee 

that B  > u*. we need that
2

K — > C lPx+3. (3.5)
a

We now deal with the rest of the boundary. TpDdQ. Since is Lipschitz. 

jf| % t0. so that there is a constant Co such that |f| > Co^o- Then B(t.x')  > 

K a n~lt2 > KC'jan~lt%. and again we employ the estimate u(t.x') < Cxp lJr3. 

Therefore we require that

K C h n- lt20 > C xp1̂ 3. (3.6)

We now compute M B. M B  =  (2K)n. so if A' is chosen smaller that ( | ) " . 

we get M B  < Mu' .
To determine an appropriate value for a. we let a =  where 7  is a large 

constant to be chosen shortly. From (3.5) we get that ~/Kpx̂ 3 > C xpx~3: so 

we take ~K > Cx.

From (3.6). we see that

 —  > c ^  ■r

or equivalently.
AC-jf 5 1^d+(3 _1)(ri_l)
C,7n~l P

The left hand side of the last inequality is now a fixed quantity, so in order to 

make such an estimate possible (for small values of p) we need the exponent 

to be positive. This will happen precisely when 3 > 1 — □

We remark that Theorem 3.2.4 is sharp. There are examples (due to 

Pogorelov. see pp. 81-84 in [6 ]) of functions whose Monge-Ampere measures
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are bounded between two positive constants (and hence doubling and Dt ) and
I 1 •are C ' * on the boundary, but are not strictly convex.

3.3 Selection Lemma

The following compactness result is crucial for proving further regularity 

results and has independent interest. Compare with Lemma 5.3.1 in [3].

Lemma 3.3.1 (Selection Lemma) Let {n ,}^  be a sequence of normalized 

convex domains, and let Uj G C{flj) be convex, t/jlao; = 0. with M u} € 

D((C) for all j .  Assume also that M u} is absolutely continuous with respect 
to Lebesgue measure for each j .  Then if X < | inf^  u}\ < A for all j, there 

exist:
(a) a normalized convex domain Qq,

(b) uq G C((Iq), convex. with Mu0 G D((C), \ f u 0 absolutely continuous with 

respect to Lebesgue measure, u|an0 =  0 and X < | infuo|  5: A; and a subse­
quence of the Uj that converges uniformly on compact subsets to uo-

If, in addition, for each j ,  there exists x} G Q} with distfxj, dQ.}) > e'. and 

lj(x) a support plane to u} at Xj such that Sj = {j  G Qj : Uj{x) < /j(x) + j}

{x G Qj : u,j(x) < —CY}. then there exist:

(c) a point xQ G fto such that dist(xQ.dQo) > e'. and

(d) a support plane Iq to u0 at xQ such that Sq =  {x G Qo : u0(x) = /o(x)} (f_

{x G flo • uo(-£) < — CY} = T).

R em ark  A The boundedness condition on the minima of the Uj is necessary 

(and restricting just the £>c constant is not enough) to guarantee the existence 

of a uniformly convergent subsequence as the following example demonstrates. 

For each .V G N we can uniquely solve the problem (provided SI is strictly 

convex)

{ det D2u =  Ndx  

u|an =  0-
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Then for any section S \  of u_\, M u\(S .\)  =  -V |S .v | and . \ / u , v ( ^ S .v )  =  

.VI^S.vl = 2rT-V|Sy  | . Therefore. M u \  is doubling on the sections of u.v for all 

.V  with the same doubling constant. If Q is normalized. Proposition 2.4.4 tells 

us that | minn u \ \ n ^  :V. From this, one sees that the sequence {minn«.v} is 

unbounded, and therefore. {u;v} cannot have a uniformly convergent subse­

quence.

Remark B If a measure p € Dt. it is possible for p to have singular part 

with respect to Lebesgue measure. There is an example of a measure that is 

doubling on intervals in R. which is totally singular with respect to dx .  See 

[8] (p.40) for details.

Proof o f Lemma 3.3.1 The domain Q0 can be produced by the special case 

of the Blaschke Selection Theorem. Theorem 2.5.5. {Qj} is a sequence of 

compact, convex sets. Denote also by {Q,} the subsequence guaranteed by 

this result, and let Q0 be the limiting set. Take Q0 = int(Q0). Then given 

p > 0, for all j  sufficiently large, we have that:

Qj C flo 4* pB\ (0) and Qo 4* p B i (0).

Since each Qj is normalized, these inclusions imply that fi0 is as well. This 

demonstrates (a).

The proof of the rest of the theorem will be done in stages.

Step 1 The first step in proving (b) is to show that for every compact K  <s= 

there are positive constants ja(K)  and c(A') such that

K  C  { x  <= Qj : d i s t ( x .  dQj) > c(A')} (3.7)

for all j  > jo{K).
Let dist(K. dQ0) = p > 0. and let x  € A'. Translate the coordinates so 

that x  is now 0. Let Q} =  Q} — x. and Q0 = Q0 — x. Since Q} —> fioT there 

exists J  such that if j  > J. then dH(Q}.Qo) < £. Since dH is invariant under 

translations. dniQj.Qo) =  dH{Q}.QQ). By Theorem 2.5.3, for any u € 5 n_l, 

df{(Qj, Qo) > |h(Qj,u) — h(Q0,u)\. We have that h(Q0.u ) > p for all unit 

vectors u. since Bp(0) C Do- Therefore,
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£ > |/i(Q,, u) -  h(Q0. u)\> p -  \h(flj. u)|.

This implies that h(Q}.u) > £. Therefore. 5^(0) C fly. translating back we 

obtain that Be(x)  C Qj for all j  > J. Since x  G K  was arbitrary, we have 

that dist(h'.dQj) > % for j  sufficiently large.

S tep  2 Now we show that for every compact K  <= Qo. there is a constant 

C(A') such that for every x € K  and every p G duj{x).

\ u j ( x ) \  + \p \< C (K ) .  (3.8)

By assumption, we have that the {u; } are uniformly bounded. Also by virtue 

of the last step, p > 0 can be chosen so that

K p — {x : dist{x. K) < p} <s fij

for j  > jo(h'). Let 0 #  p € diij(h') for any j  > jo(h'). say p G duj(x),  where 

x € A'. Then

LLj ( x )  >  U j ( I )  4- p  ■ ( X  — X)  

for all x G Qj. In particular, this is true for x =  x 4- pu:. where |o;| =  1. Then

u.j(x -h pu) > Uj(x) +  p|p| implying max Uj > min +  p|p|.K p K

and therefore.
maxK Uj -  minK u3

\p\ <  p— ------------- L < oc
P

since by hypothesis the are uniformly bounded.

Step 3 We now produce the function uo- To begin, we demonstrate that given 

K  Q0, the {uj} are uniformly Lipschitz on K.  for j  large enough, i.e. we 

show that |uj(x) — Uj{z)| < C(A')|x — z\ for all x, r G K  and for all j  > jo(K).  

The proof of this claim is as in the proof of Lemma 1.1.6 in [3]. Let x G K  

and p G duj(x). Then by Step 2. |p| < C(A'). For any z G A'.

Uj(z) > Uj(x) + p • (z — x) or Uj{z) — Uj(x) > — |p] \z — x| > — C{K)\z — x |.
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Therefore, |uj(x) — Uj(z)\ < C(A')|x -  z\ for all j  > jo(K).  In particular the 

{uj} are equicontinuous on K.
Therefore, by Arzela-Ascoli. there exists a uniformly convergent subse­

quence in K.  Write D0 = Aj U A' 2 U A 3 U • • •, with A'; 'f  A' 2 <s • • •. By 

a diagonal process, we can extract a subsequence of the that converges 

uniformly on compact subsets of Do- Define tto(x) to be the limit of this 

subsequence.

Because u0 is the limit of convex functions, it is convex. If x G Do- then 

x G Q} for j  large. Then since u.} \q = 0. Uj(x) < 0. By letting j  —> oc. we 

get that uoW < 0. Also, since A < |m inuj| < A for every j .  we have that 

A < | min u0| <  A.

Step 4 The next step is to show that u0 G C(D0) and u0 |ano = 0- To this end. 

we first show that for every r) > 0 , there is a number jo(77) such that

{x € Q} : dist(x, dQj) > //} C {x 6 Q0 : dist{x,dQ0) > (3.9)

for all j  > jo(ri). This can be shown by an argument similar to that in Step 

1. For j  > Ji.  we have that dH(Q.j. D) < Let j  > J\ and let x  G Qj 

satisfy dist(x.dQ} ) > rj. Define Qj =  D_, — x. and D0 = Do -  x- This 

change of coordinates takes x to the origin, and. as before, we have that 

dn(Qj,Q0 ) =  d//(D_,.n0). Then for any u G Sn_l (by Theorem 2.5.3):

\  >dH(n].nQ) > \h(Clj.u) -  h(Qo,u)\.

Since Bn(0) C Q}, h{Cl},u) > rj. Hence. h(Cl0.u) > so Ba(0) C Do- This 

last inclusion is equivalent to Ba(x) C D0 and (3.9) holds.

We now show that

(x  G D0 : tz0(x) < ~p}  <s D0 

for each p > 0. By Theorem 2.4.2 and Proposition 2.4.4,

|Uj(x)|" < Cd{x.  Dj)e f  5{y. Dj ) l- edMuj < C \ 6 { x . D < Cdist{x.  D_,j£.
J n,
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— H
This implies that |uj(x)|? < Cdist(x.Qj).  so if Uj(x) < then ( | ) ' < 

Cdist(x,dQj).  In other words the following inclusion holds:

{x € Qj : Uj(x) < - £ }  C {x € Qj : dist(x,dQj) > C p 7 }.

Then by (3.9). for j  large enough (depending on p)

C
{x G Qj : dist(x. dQj) > C p 7 } C {x 6 Qo : dist(x.dflo) > —p 7 } =  A'(p). 

Therefore.

(J { x  e Qj  : Uj{x) < -^} C  K ( p ) .

This implies that {x € Qo : u0(x) < - p }  C A'(p). This is because if x e  Qo. 

then x € Q_, for all j  large enough (by Lemma 2.5.6). and if u(x) < -p . then 

Uj(x) < -% for all large j.  This proves that

lim U n i x )  =  0.

S tep  5 Now we will produce the point x0 and the supporting hyperplane with 

the desired properties. By hypothesis.

Sj = {x €  Qj : Uj(x) < lj(x) 4- j }  $2 {x 6 Qj : Uj(x) < -CV } =  Ty

Then there is a point y} € SjDTf .  Then u,(pj) < /j(t/j)4- y and we can assume 

itj(Pj) =  - C d . By (3.9). Xj 6 Qo and

ef
dist(xj. dQo) > — for all j  > jo{e'). (3.10)

By Theorem 2.4.2 and Proposition 2.4.4.

CV" = |uj(yj)|n < CnS{yj. P.jY f  S i y M j ^ d M u j  < C(n.  \ )S(yj ,  Qj)£.
J n,

This implies that dist(yj.dQj) > CY?. so by (3.9), dist(yj,Q0) > C{n.e'.  A) 

for j  large enough.

Therefore, for all j  sufficiently large, {xj} and {i/j} are contained in a com­

pact subset of Q0. By passing to subsequences, Xj —> xq € Q0 and yj —> yo €

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Qo. Furthermore. dist(xo.dQo).dist(yQ,dQo) > C(e'). This shows statement

(c) of the theorem. Let pj G R" define /j(x). i.e. lj(x) =  Uj (Xj ) + p} • (x — Xj). 

Then since the Xj are away from dfl0• the pj are bounded (Step 2). Choose 

a subsequence so that p} —> p0. Now Uj(x) > iij(xj) 4- p: • (x — Xj) =  lj(x) 

for all x G Qj. Let j  -> oc to get uo(-f) > uo(-^o) + Po ' — ^o) for all

x  G fi0. This means that /0(x) = u q ( x 0 ) + p0 • (x — x0) is a support plane to 

uQ at x0. Now u.j(yj) = —Ce' for all j  implying that uo(f/o) = —CV. Also. 

uj(Vj) < Ijiyjj + j- Let j  -y oc and get u0(yo) < Mdo) so that uQ(y0) = l0(y0). 
Therefore. y0 G 5o fl T q . This proves (d).

S tep  6 It remains to show that M uq G Dt(C). To prove this, it must be 

demonstrated that for any section 5  of u0.

J  S(x. S ) l~tdMu0 < CMuq  ( ^ S

To prove this inequality, two cases will be considered: the case where S  <= Qo- 

and the case where S (~l <9Q0 ^  0.

C ase 1 S <s Qo. The idea is to approximate S  by {S7}. a sequence of sections 

of Uj. with the property that Sj —► 5 in the Hausdorff metric. Once the pos­

sibility of this approximation is demonstrated, we will show that this implies 

that

. \fu} Q s ,  )  -> Mu0 and (3.11)

J  6(x .S j ) l- ' dMt t j -> J  6{x .S) l~edMu0. (3.12)

This will establish the claim, since we have for all j  (Muj  G Df (C))

J  S(x. S j ) l~fdMuj < C M u j

Let S be such a section for u0. S = S(x0,p. t)  d  Q0. Let l{x) = u0(x0) -F

p • (x — xQ) + t. Since l{x) < 0  for all x G Qo and Q; —> Q0. f(-r) < 0 for all

x G Qj. for j  > J0.
Then l(x) determines a section Sj of Uj in Qj at some point (slide l(x)

down until it touches the graph of u} at one point, this will be the desired

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

base point), with some parameter (equal to the distance that /(x)  must be 

lowered). In other words. Sj = { j  €  Q ,  : u; (x) <  l(x)}.

By the uniform convergence, for any p > 0. there exists J\  such that for 

all j  > ./,.

u0(x) -  p <  Uj{x) < u0{x) +  p.

for every x  €  U.  where S  C  U <s Qq. Take p small enough that Sp =  

S(x0,p, t + p) <s U.  and t -  p > 0. Define S p = S (x Q,p, t -  p).  Then we have

Sp C  Sj  C  Sp for j  > max(J0. J\).

Now by Lemma 2.5.9 in Section 2.5. we have that

lim S p = lim S p — S ,p—i o p—* o

implying that lim^oc S} = S, and we are able to approximate the section S  

as claimed.

The next step is to prove (3.11). Since S} -> S  in the HausdorfF metric. 

^ S } —> ^ 5  by Lemma 2.5.7. Also, since u} —> u0 uniformly on compact subsets, 

the measures Mu} converge to M u 0 weakly (by Lemma 2.1.4). Since Mu} is 

absolutely continuous with respect to Lebesgue measure, and Muj  —> Mu0 

weakly. M u 0 is absolutely continuous with respect to Lebesgue measure at least 

away from SQq. Let p > 0. We need to show that \Muj(^Sj)  — .V/uo(jS)| < p 

for all j  > J(p).

Let /  6 Cq (5). 0 < /  < 1. /  =  1 on ^5 be such that

I.f{x)  dMuo -  M uq( -S) < p.

Then by the weak convergence, there exists =  Ji(p) such that if j  > 

then | f s  f{x) dMuj  -  f s f (x )  dMu0\ < p. Therefore.

| J  f (x )  dMuj  — M u 0 Q s ) <

| J  f {x ) d \ I u j  — J  f (x)  d Mu 0 + \Jjix) dMuo ~ A/u0 Qsj < 2  p
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and the claim will follow if \Muj( \Sj )  — Js f {x)  d M u j | < p for all j  sufficiently 

large. We estimate this quantity in the following way:

|Uuĵ Sj)- Jj(x) dMuj|
< | - Muj(^S) \  + |.U uj(^5) - J  f ( x )  d.\Iuj\ = 1 + 11.

We begin by examining integral I :

I < j  IXiSjM -  Vis(x )\ = J  f j  dMuj.

We want to show that linx,-^ f  d.Muj =  0. We have that f j  —> 0 pointwise 

a.e. (with respect to A/uo; here is where the absolute continuity is needed) 

and \fj\ < 1 for all j.  Since —> \ S  and ^5 d  Q0. there exists a set .4 such 

that \Sj .  \ S  C .4 d  Qq. for all j  > Jo. By Egorov's theorem, there is a set E , 

with M u 0(E) < p. such that f j  —> 0 uniformly on .4 D E c. Since /, can take 

on the values 0 and 1 only, this means that f j (x)  =  0 for all j  > J$ and all 

x  G .4 fl Ec. Then

f  f j d M u . ] =  f  f j d M u j =  f  f j d M u j +  f  f J dMuJ < M u }(E) + Q.
J  J. \  J e  J  An e c

By the weak convergence, if j  > J .t. |A /uj(£’) — A/uo(£)| < P> implying that 

Muj(E)  < 2p. Therefore. I  < 2p for j  > max(./i. J 2. J 3 , J.\).

We now consider the second integral:

1 1 =  f  f{x) dMUj -  Muj  ( ^ S )  =  f  f {x)  dMuj.
J s  \ -  J  J s n ^ S '

Let j  ~+ oc. By the weak convergence, the left-hand side of the equation 

becomes

[  f ( x )  dM u0 -  M u0 ( ^S  ) . which is equal to [  f (x )  dMu0. 
J s  V2 /  Jsn ks*

This means that

lim /  f {x)  dMuj  =  /  f ( x )  dMu0 < p. 
j ~ ¥0CJ s n \ s c J  sn lsc
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Therefore, if j  > J5. I I  < p. Combining all of these inequalities, we get that

Now we prove (3.12). For j  > JQ. we have Sj  <= fio and S  <s We 

estimate the difference as follows:

The integral I I  goes to 0 by the weak convergence. The support of \sd(x. S)  is 

S  <s Qq. Since t)(j. S ) is continuous in x  (Lemma 2.3.4). and limI_,as S)  =

0. we have that \sS(x, S) is continuous and has compact support.

To estimate I. we write

We claim that |f } — f  | <  1 and (f } — f )  —> 0 pointwise. The first asser­

tion is trivial. If j  € S .  \ s }{x) —> \ s (x )  =  1. and by the continuity of 6 

in the second argument with respect to the Hausdorff metric(Lemma 2.5.8), 

S(x.Sj) —> 6(x.S).  If x € dS.  then f ( x )  — 0: for each j  with x  €  ,

6{x.Sj) —> 0. and if x  & S}. f j (x)  = 0. so in any case. f j (x)  —> f ( x )  for 

x G dS.  Finally, if x g S. x  £  S} for large j , so fj{x)  =  f (x )  =  0. This 

establishes that (/, —/ ) —*■ 0 pointwise.

Then by an argument similar to the one above (using Egorov, etc.). I  —> 0. 

Therefore.

Muji^Sj) AIuoaS) .

I  = | J  XSj(x )6(x.SJ)l- t dMuj -  J  \ s (x)6(x .  S )l-e d \ Iu3

for 5 § f i 0 and Mu0 satisfies the Df condition for these sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

C ase 2  d S  fl dQ0 #  0. The idea here is to approximate 5  =  S(x0 .p. f) by 

S n = S(xQ,p. t  — £) Q0 and use Case 1 .

From Case 1. f Sn S(x. S„)l-e(/A/uo < C M u Q(^Sn)- We have that \ i Sn(x) -> 

\ i s (x) pointwise except possibly on 5(^5) (Lemma 2.5.6) and ^S„. C .4 (= 

Q0 for some set .4. Then \ i s n (x) <  \ . 4  €  L 1{ Muq) .  Therefore, by the Domi­

nated Convergence Theorem. M u 0(^Sn) —► M u 0(^S).
Since S n -> 5 in the HausdorfF sense. S(x. S n) —> S(x.S)  and \s„(x) —>■ 

\ s { x ) .  Hence, using Fatou.

[  d(x. S ) l~* dMuQ = [  lim ( \ s n(x)S(x. Sn)l~t ) dMu0 
Js  Js  r,-‘oc

< lim inf J  \ s n{x)6(x. Sn)1'* d \ I u 0 < lim inf CA/u0 =  C M uo •

Therefore. A/u0 € Dt on the sections of u0 in Q0. This completes the proof of 

the Selection Lemma. □

3.4 Holder Continuity of the Gradient

T heorem  3.4.1 (Compare with Theorem 5.3.3 in [3]) Given Q a convex, 
bounded and normalized domain in R", consider u G C(Q), convex, with 

u|an =  0 and such that M u  G Dfl(C) and is absolutely continuous with re­

spect to Lebesgue measure. Suppose also that 0 < A < | inf^ u| < A. Then 

for each e > 0. there exists p =  p(e) such that for all Q normalized, for 

all x0 with dist(xQ.dCl) >  e. for all functions u satisfying the above con­
ditions. and for all supporting hyperplanes l(x) to u at xq, we have that 

{ iG Q :  u(x ) < l(x) -I- p} <= Q.

Moreover, {x  G Q : u(x) < l(x) + pj  C {x G Q : u(x) < -Ce} ,  where 

C  =  C(C. e i . n. A. A) and p depends only on e. e i. n. A and A.

P ro o f  By contradiction. Suppose there exists e > 0 such that for each 

p = I. there exists a normalized convex domain Qj, a point Xj G Qj with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

dist(x}, dQj) > e. a function u} satisfying the hypotheses in and lj. a sup­

porting hyperplane to u} at x3 such that

Sj = {x G Qj : Uj(x) < lj{x) + -}  (£. {x G Qj : Uj(x) < — Ce}.

Then by Lemma 3.3.1. there exists:

(a) Q0. a normalized convex domain, (b) u0, a convex function in Qo satisfying 

M uq e  Dt l {C). uolano =  antl 

A < |inffi0 u0| < A.
(c)a point xo € Qo such that dist(xo.dQo) > e, and

(d) a supporting hyperplane l0 to u0 at x0

such that 5 0 =  {x G Q0 : u0(x) =  l0{x)} <£ {-r € Qo : u0(x) < _ Ce} = TQ.
So there is a point r € S 0 with rz0(~) > —Ce. Since l0 is a supporting hyper­

plane at x0. it follows that uq = Iq on the segment from x0 to c.

We now apply the following lemma (Lemma 5.1.6 in [3]) to u0 in the nor­

malized domain Q0.

L em m a 3.4.2 Let T be a convex and bounded domain in Rn . and let u G C ( f )  

be convex and zero on d r . IJ T  is an affine transformation that normalizes T 

then

{x G T : dist(Tx. d T ( T)) > r j}  C {x G T : u(x) < r]0n min u}. 

for all 0  < r] < 1 . where 8a is a dimensional constant.

We obtain:

{x G Qo : dist (x.dQ0) > e} C {x G Qo : M x ) < — Ce}

where C = 0n \ minn0 uoi- In our case. | minn0 uol can be replaced by a constant 

depending on the structure since | minn0 iz01 > A. this gives us the constant C.

The point x0 is in T0 since dist(x0.dQo) > e- implying that u0(x0) < —Ce. 
Therefore x0 7  ̂ c. Then x^r C 50. so that S0 contains more than one point. By 

applying Theorem 3.2.1 to u0 —10 in Q0. we conclude that 5 0 has no extremal
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points inside Q0. The contradiction arises by showing that S0 must have an 

extremal point in Q0.

For every x  € Qo. uo(x) < 0. because otherwise bv convexity u0 =  0; 

contradicting j in f^  «o| > A > 0.

Then by the following result (Lemma 5.3.2 in [3]). we see that So must 

have an extremal point in Q0.

Lem m a 3.4.3 Let u be convex in T. such that for some x0 € T0. we have 

u(x) > u(xo) for all x € <9T. Let lXo be any supporting hyperplane to u at xo. 

If  the set

E  = {x e  T : u(x) =  lXo{x)} 

contains more than one point. then E has an extremal point inside T.

This completes the proof of Theorem 3.4.1. □

We next prove two technical lemmas concerning the relationship of the 

dilation of a normalized domain and the dilation of a sublevel set. These 

results will be used in the first part of the argument for the C l,Q of functions 

whose Monge-Ampere measures are D(.

Lem m a 3.4.4 (Compare with Lemma 5-4-1 in [3]) Suppose Q is a normalized 

convex domain, u 6 C(Q) is convex and u|an =  0. Mu  € D((C) and is 

absolutely continuous with respect to Lebesgue measure and u ( x q ) =  minn u. 

Suppose also that 0 < A < | minn u| < A. Given 0 < rj < 1 . define

Q, =  {x 6 Q : u(x) < ( 1  — q) minu}.

Then there exists a constant u, 0 < u < 1. depending on n, e, the Dt constant 
C , A and A. such that |Q  C J^Qi. where the dilations are with respect to xQ.

P roof The proof is by contradiction. By the extremal points theorem (The­

orem 3.2.1). there is a unique point where the minimum is attained. If the 

lemma is not true, then for each j  =  2 .3 .4 .... and Vj =  1 — j ,  there exists a 

convex normalized domain Q a n d  a convex function Uj satisfying Ujjan, =  0 ,
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Muj  € D((C), Muj  absolutely continuous, and A < Imin^UjI < A. but 

<£. where the dilations are with respect to Xj , the point satisfying

Uj {Xj ) = minn, ur  

In other words.

=  {x  ̂ +  J(x  - X j )  : x £ fij} <JL VjiQj)'; =  {Xj +Vj{x -  Xj) : x  6 (fij)i} .

Note Xj € -,0.j fi Uj (Qj ) i for all j ,  so by convexity \Q.} n  d(Vj{Qj)i) #  0. 

Let ijj € -jfi,- fi d{Uj(Q.])i).  Then {(/_,} C # i(0), so {?/,} has a convergent 

subsequence say. t/j —>■ y0-

Therefore, by Lemma 3.3.1. there exists a normalized convex domain fio. 

a convex function u0 6  C(Q<j) satisfying Mu0 € Dt (C) with Uo|an0 = 0> and 
Uj —► u0 uniformly on compact subsets. We also have the following inclusion 

for any e0 >  0 (see (3.9)).

{x € Qj : dist{x.dQj) > to} C {x 6  O0 : dist(x.dQo) >

for all j  sufficiently large depending on eo.

C laim : y0 6 n  d(Q0)i.  where the dilation is with respect to the 

(unique) point x0 for which uo(^o) =  ndnn0 no- We assume this claim for now.

Construct the line through x0 and yQ. This crosses at some point 

i/o- Since y0 6  d{Q0)i_. a0(y0) = ~ minno u0 = ^u0(x0). Now write yQ = 

9xo +  (1 — 9)y^ for some 0  < 9 < 1 . Then

«o(yo) =  r  min uQ < 9u0(x0) -I- (1 -  0)uo(?/o) =  0m inuo-1 f2o Ho

Since u0 < 0. this means that 9 <  L. Now suppose that 9 < Then

y0 = xq +  (1 — 9}(yg — xQ) e  (1 -  9)dQo- But 1 — 9 > L . contradicting the fact

that y0 € ^(flo). and therefore 9 =

This means that u0 is linear on the segment L from x0 to y$. This implies 

that L C {uo = /x0}. 'v'here x̂0 *s an>’ supporting hvperplane to u0. Hence 
the set where u0 and lZQ agree has more than one point. Therefore, this set 

has no extremal points in Q0< but 0 =  u0 (x) > u0{x0) for all x e  3f2o- Hence
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by Lemma 3.4.3, this set has an interior extremal point. This provides the 

contradiction.

It remains to prove the claim. Since i/j G ^Qj .  y} =  Xj +  — Xj) for

some Zj € Q j .  Since {jtij(Xj)j} is bounded between two positive constants and 

Qj is normalized, we have that dist(Xj.dQj) > eo for all j  by Theorem 2.4.2 

and Proposition 2.4.4.

From (3.9). dist(xj .dQ0) > ¥*■ for all j  large enough. So by passing to a 

subsequence, we may assume that x} —> x. We will show that x =  xo- For 

j  sufficiently large. Xj and x are contained in a compact subset of Qo (since 

Qj -» Q0): on this compact set u} —> u0 uniformly. Therefore for any x € Qo. 

we have Uj {Xj) < Uj(x); letting j  —> oc. we obtain u0(x) <  uo(x). Hence, x is 

a minimum for uo, so x  =  xo.

Select a subsequence o f  the {f;}. such that Zj —> ; 0- Since z} G Qj and 

Qj -> Q 0 . we get that zQ € Qo- Let j  —> oc in the equation

Uj Xj + ~ j Xj)

to get

ya =  xq +  - ( r o  — -Ai)

so that i/o € |Qo- It remains to show that r/o £ 5(Qo)i. We have that y3 G 

d{uj{Qj)i) =  Uj(d(Qj)i). so that t/j =  x7 4- Vj (w} — Xj)  for some Wj G d(Qj)±. 

Then we have that Uj(u.'j) =  ^Uj(xj) =  ^minn, Uj. As before. Theorem 2.4.2 

and Proposition 2.4.4 guarantee that the Wj lie at least a uniform distance

from dQj.  implying that dist(wj. dQ0) > I  > 0 for j  large enough. Select a

subsequence w} —» w0. Then by the uniform convergence of the u} on compact

subsets, we obtain uq(w0) = limj-^oc u}(wj).
Now let j  —> oc in the equation y} = Xj +  v}{wj — Xj) to get yo = x 0 +  

(il'q — xo) =  wo, since Uj —> 1. So we have that Uj(u.’j) —» u0(w0), but on the 

other hand. Uj(wj) =  | u}( i j ) ->■ Au0(xo). This means that uo(mo) =  jUo(A)).

i.e. wQ G d(Qo)i. This proves the claim and hence the lemma. □
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Lem m a 3.4.5 (See Corollary 5-4-4 in [3]) Suppose that fi is a normalized 

convex domain, u 6 C(fi) is convex and u|<jn =  0. M u  € Dt (C) and is 

absolutely continuous with respect to Lebesgue measure, and u(xo) =  minn 11 = 

— 1. Then there exists a constant v 6 (0.1) such that

fi C (2z/)fcfi .2̂

for k =  1. 2. 3 u =  v(n. e. D, constant), where the dilations are with respect

to the point xq.

P ro o f  The case A: =  1 is covered by the previous lemma. The u in the 

preceding result depends on n.e. the De constant, and minn u. Since this 

minimum is -1 . in this case we can remove the dependence of u on minn u.

Case k =  2: Let T\, normalize f i i ,  and denote T\(Qi) by Qj. Let i’i(r) = 

2[u(7'flx) + £]. Then =  0. .l/c, 6 D((C). and minnj fi =  i’i(Tixo) =  

-1 . Apply the previous lemma to i’i in fij. to get C i/(fij)i. Now

(Qi)i = {x e  fi; : e,(x) < ^m inc,}  =  {x € fi; : 2 [u(T flx) +  ^] < -  J}

=  {x € : u ( T r lx) < —  } =  Tt({x € fii : u(x) < — }) = r t (fii).
4 • 4 4

Therefore. ^ (^ ( f i i ) )  =  T ^i/fii) contains ^ (T ^fii)) = T i^ f i i) .  Hence.

by applying T f 1. we get C i/fii. or f ii C (2i/)fii. Combining this with• 2 4 2 4
the preceding step, we get

fi C (2i/)fi. C (2i/)2fii.2 4

Case k  = 3: Let To normalize f i i .  and denote T2(fii)  by fi2. Let e2(x) =  

4[u(T rlx) + §]. Then c2|an; =  0. Mv2 € Dt (C). and minn; v2 = ^{Tox0) =  
-1 . By Lemma 3.4.4 applied to r2 in fi2. ^(fi2)i contains ^fi2. Then:

=  {-r € fi2 : c2(x) < - ^ }  = { i 6 f i j :  it(r2_lx) <

=  T2({x G f ii : u(x) < -  j} )  =  T2( f ii) .4 O 8
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Therefore. ^Qi C ^ fii-  or f i i  C (2 i/)f ii. Hence, by the previous steps: 

fi C (2*/)fii C (2u)2Q i  C (2*/)3f i i .

In general, let 7* normalize and i'k(x) =  2k[u(Tf lx) +  (1 — - -̂)]. As
-»* “

above, we conclude that f i _ i  C (2u)9. 1 . □
lit — i TF

T heorem  3.4.6 (Compare with Theorem 5.4-5 in [3]) Let Q be bounded, open 

and convex, and let u £ C (f i)  be convex, with u|an =  0. Then if M u  €  D( for 

some e 6 (0.1] and is absolutely continuous with respect to Lebesgue measure, 

then u is C Lft in the interior of Q for some 0 <  a  < I.

Before proving this theorem , we make a few remarks. First we explain what 

it means to say that a function is C l a at a point. By definition, a function 

u is C l Q on an open set if it is differentiable there and its gradient is Holder 

continuous. We want to expand this definition to include functions that may 

not be differentiable everywhere.

We say that a function u is C Xa at the point j 0. where x0 is a minimum  

for u if 0 <  u(x) -  u (x0) <  C\x — J o |l'i’<‘ holds for ail x. This is a sensible 

generalization of Holder continuity o f the gradient, since if u was C L,Q on a 

domain containing x 0. and x 0 is a minimum for u. this estim ate would be 

satisfied. Indeed, in this case we would have (by Taylor)

0 <  u(x) -  u(xa) = V u (£) • (x -  Jo) =  V u ( 0  • (x -  Jo) -  Vu(xQ) ■ ( j  -  Jo) 

for some £ lying between j  and x0. Taking absolute value, we get 

| u ( j ) - u ( j 0)| <  |V u(€) — V u ( j 0) | | j  — J01 <  C | f - j 0|q | j - J o l  <  C I j - J o I 1*0 .

Suppose now that u is convex and satisfies the inequality |u ( j)  —/Xo( j ) |  <  

C\x — Jo|Q+I for any supporting hyperplane lXo(x) to u at j 0. at even,- point of 

the dom ain xo- Then we claim  that u is C l Q. We first show that this inequality 

implies that at each point j 0. u has a unique supporting hyperplane. Let lxXQ 
and lXQ be two support planes to u at j 0. Then for any x:

I t w  -  ^ioW! ^  lU(X) -  +  !U(X) -  *x0(J )l ^ 2C IX -  xo|1+Q-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 3

Write l [l0(x) = u ( x 0 ) - F p r ( x  —-To) a n d / ^ 0 ( x )  = u ( x 0 ) + P 2 - ( x  —x 0 ) .  Substituting 

these expressions into the previous inequality we obtain |(pi — P2 ) • (x  — -Co)I < 

2C\x — x o l 1-1"0 . By choosing x  close to x 0 and such that ( p i  — po) • (x —  x0) =  

!Pi ~ Pi\\x — -To*, we see that this is possible only if pi =  p2. This means 

that there is exactly one supporting hvperplane to u at each point xo- Let 

this hyperplane be defined by the vector p(x0 ) =  Vu(x0). Then from the 

hypothesis we have

|u(x) -  u(x0) -  Vu(x0) • (x -  x0)| < C\x  -  X0|l+Q.

By dividing both sides by |x — x0|. we get

| u ( x )  -  u ( x 0 ) -  V u (Xq ) • ( x  -  Xq ) | <  _  ^

k - J o l  ~ 0

In other words, u is differentiable at xq. We can repeat the same argument 

for any point in the domain, and conclude that u is differentiable everywhere. 

The next step is to show that u is C 1,Q. Fix any two points x and xo. Then 

|(Vu(x) -  Vii(x0)) • (x -  x0)|

=  |u(x) — Vu(x0) • (x -  x0) -  u(x0) + u(xQ) — Vu(x) • (x0 — x) — u(x)|

<  |u(x) -  Vu(x0) • (x -  x0) -  u(x0)| -I- |u(x0) -  Vu(x) • (x0 -  x) -  u(x)|

< C |x -  x0| l+Q + C\x  -  x0|1+Q.

Therefore |Vu(x) — Vu(x0)|fx — x0[ < 2C(x -  x0|l+a. or (Vu(x) -  Vu(x0)( < 

2C|x — x0|Q. This completes the proof of the claim.

P ro o f  of T heorem  3.4.6 The proof proceeds in a sequence of steps.

S tep  1 If 9. is normalized and minn u =  u(x0) =  — 1. then u is C l Q at x0.

The point xq where the minimum is attained is unique by the result on 

extremal points. By Theorem 2.4.2 and Proposition 2.4.4. dist(x0.dQ) > 

p. where p depends on n.e. and the D( constant. From this we see that 

B p(xq)  C fl. Let x € fi. x 7^ x0. Then there exists a k > 1 such that 2~k < 

u{x) — u(x0) < 2 -fc+1. Then since u(x0) =  —1. we get that u(x) > — (1 — 2-fc).
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so x  g  f i  i  . So by Lemma 3.4.5. x £  { 2v )  B p (x q ) =  B  p  (xQ). and hence 

k  -  x0| >  P ( 2 u ) ~ k .

We can take v  >  i. so v =  2 ~ 9 for some 6 €  (0.1). Hence. | _r — _roI > 

p ( 2 l ~a) ~ k =  p ( 2 ~ k) l ~9 . Since u(x) -  «(.r0) < ‘2_fc+l. we see that 2~k >  

u(r)-u(x0) g v rajsjng sides 0f the last inequality to the power 1 — 8, 

and then multiplying by p. we get the inequality

*  -  x 0 | >  P ( 2  * ) '  6 >  P  (  9 ~
u(x) -  u(xQ) '  1 8

I
From this, we obtain 0 < u(x) -  u(x0) < 2 Q j  ^  |x — xol7̂ .  proving the 

claim for this step, since ^  > 1.

S tep  2 If fi is not necessarily normalized, and minn u is not necessarily -1 . 

then u is C 1,Q at its minimum xo-

Let T  normalize Q (Tx = .4x 4- 6 for an invertible matrix .4 and some 

b e  R"). and define u’(y) =  | minn u |-1u ( r _1y)- Then M u '  £ Df (C) in Q' = 

T(Q) and minn- u * = - 1 and this minimum is attained at T x q . Then by Step 

1 we have that.

0 < u'(y) — u*(Tx0) < C(e. n, Dtconstant)\y — r x 0|Q+l.

Let y = Tx.  Then:

0 < u(x) — u(xo) < C(e. n. Deconstant)| min u||Tx — r x 0|Q'rl or

0 <  u(x) — u(x0) < C ||.4 ||Q+1| min u||x  — x0|Q* 1.

S tep  3 If Q is normalized, then u is C l a in the interior of fi.

We prove that if dist{x. c?fi) > p. then

|u(x) — l£{x)\ < C(n. e.p. D(const. | m inu|)|x  — x |Q+l.

where [£(x) is any support plane to u at x.

By Theorem 3.4.1. there exists po =  po{n, e. p. D fconst. \ minn u|) such that

Qi.po =  {x 6 fi : u(x) < l£(x) +  Po} C (x € fi : u(x) < — Cp}  <s fi.
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where C =  C(n.  e. D(const, | minn u|). Let T  normalize fli<Po and let v(x) =  

u(x) -  li(x) -  po. Then clan,.*, =  0 and c(x) =  minn*.,,, v = - p 0. Then by 
Step 2.

0 < r(x) -  t’(x) < C(e. n , Deconst)\ min u |||.4 ||l+Q|x — x |1+Q.

Then since | minn* l'\ = Po• the claim holds if ||.4|| can be dominated as 

claimed. As on p.98 of [3], ||.4|| =  maxA“ l. where the A, are the lengths of 

the axes of the minimum ellipsoid of Qi,Po, and det .4 = (Ai)_1 • • • (An)_ l.

Define u’(x) =  | det .4|« v(T~lx). We claim that | min7-(nf,„0) “ T  is com­

parable to M u ’ (^T(QiiPo)). Indeed by Proposition 2.4.4 and the D( con­

dition. we have that | minT(ni(Jo) u‘1" < C ) d(x.T(QitPo))l~(dMu'  <

For the other inequality, we again use Proposition 2.4.4 and 

also use the fact that if x € ^T(QiiPo). then 6{x, T(Qi,Po)) > Cn. More pre­

cisely.

| min u \ n > C  [  6{x.T{n£,P0))l- edMu
r(IW  Jt( Oi.^)

> c  f  ()•(x .^ (^ ,^0))l- ((f.l/«• > C M u d n n ^ ) ) .
JkTWi.po) -

We have that | minr(nr ^  u*|" = |d e t.4 |2pg and (by (2.1))

M u - ^ T i Q ^ ) )  =  |de t.4 |.V /u (r-l ( i r ( n , ^ ) ) .

This implies that

|det.4 |V S «  |dec-41-V/u ( j - 1 Q r ( n , . „ ) M

or

| det .4| < CponM u ( T - l{ ^ T ( n £.Po)) < CpanMu({x  6 fi : u(x) < -Cp}) .

Since A, < 1. ||.4|| =  max{A“ 1} =  A“ l < (A^-1 • • • (A„)-1 =  det .4. Therefore 

||.4|| can be estimated by n.e. the De constant, p. | minu| and A/u({x € fi : 

u(x) < —Cp}).  By the remark preceding Step 1. we see that this establishes 

the claim for this step.
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S tep  4 If Q is not normalized, then u is C l,Q in the interior of Q.
Let T  be an affine transformation that normalizes Q. and define u*(y) = 

u(T~ly) for y € T{Q). Now apply Step 3 to u* in the normalized domain 

r(Q ). The constant appearing in the inequality will also depend on ||r ! |,  

which depends on the eccentricity and volume of n. □
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CHAPTER 4

ESTIMATES FOR THE
PARABOLIC
MONGE-AMPERE 
EQUATION

In this chapter we show that the estimates of Jerison also hold for paraboli- 

callv convex solutions of the parabolic Monge-Ampere equation — ut det D^u = 

f  on bowl-shaped domains. First we will need to introduce some notation and 

define some terminology.

Let D C R " '1 and let t 6 R. Then denote

The set D  is said to be a bowl-shaped domain if D(t) is convex for every t 
and D(t[) C D(t2) whenever < t2- Now suppose that D is bounded and let 

t0 =  inf{£ : D{t) ^  0}. The parabolic boundary of D is defined to be

For a bowl-shaped domain D we define the set D tQ to be Dto = DO {(x.t) :

D(t) =  { i £ l " :  (x.t) e  D}.

t < £o}-
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A function u : R" x R -> R. u =  u(x. t), is called parabolically convex if it 

is continuous, convex in x  and non-increasing in t.

We next define the parabolic normal map and parabolic Monge-Ampere 

measurp. As in the elliptic case, this will lead to the notion of weak solution for 

this operator. Let D C Rn+l be an open, bounded bowl-shaped domain, and 

u be a continuous real-valued function on D. The parabolic normal mapping 

of u at a point (x0, t0) is the set-valued function

Pui-z0,  to) =  { ( P -  h) ■ u(x. t) > u(x0, t0)+p-{x-xo) for  all x  G D(t) with t < tQ,

h = p- x Q -  u(xQ,tQ)}.

As before, the parabolic normal mapping of a set E  C D is defined to be 

the union of the parabolic normal maps of each point in the set. The family of 

subsets E  of D for which PU( E ) is Lebesgue measurable is a Borel cr-algebra 

and the map taking such a set E  to its Lebesgue measure is a measure, called 

the parabolic Monge-Ampere measure associated to the function u. In what 

follows, the notation |£|* denotes the Lebesgue measure of the set E  in R*.

There is a parabolic analog of Aleksandrov's estimate due to Gutierrez and 

Huang [G-H p. 1463].

T h eo rem  4.0.1 Let D C Rn+l be an open bounded bowl-shaped domain, and 

let u G C(D) be a parabolically convex function with u =  0 on dpD. I f  (xo. to) € 

D, then

|u(x0. t0)|"+I < Cndist(xQ.dD(t0))diam(D{t0))n~l \Pu(DtQ)\n^i

where Cn is a dimensional constant.

We now prove the following parabolic versions of Jerison’s estimates. The 

proofs follow the same outline as those given in Chapter 2.

L em m a 4.0.2 (Compare with Lemma 2-4-3)Let D be a bounded, open bowl­

shaped domain in Rn+l. Suppose u G C(D) is parabolically convex, u\dp(D) = 0. 

Then there exists a dimensional constant Cn such that

N * 0 , * 0 ) r L <  C n £ ( x 0 . D ( f 0 ) ) | £ )( * o ) | n | £ u ( A o ) | n + l
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fo r  any (xo. to) € D. where <i(xo. P(to)) w the normalized distance from  (xo. to) 

to the boundary of the n-dimensional convex set D(to).

P ro o f  D(t0) is a bounded convex subset of a copy of Rn. Let T  be an affine 

transformation of Rn that normalizes D(t0). Define T  : Rn+l —»■ Rn+l by 

T(x. t )  =  (Tx.t) .  Then f { D to) C Pi(0) x [A\t0] for some K  < tQ. Let 

r(c) =  u ( f ~ lz) for r G f {D) .

Then T(D)  is a bowl-shaped domain, v is continuous on the closure of 

T(D).  is parabolically convex, and zero on dpT(D).

Now apply the parabolic Aleksandrov estimate (Theorem 4.0.1) to v in 

T ( D ) to obtain

iu(x0.f0) r +l = ! f ( f (x 0,«o))r+i

< Cndist(TxQ,df(D(t0)))[diam(f{D(to)))]n~l \Pv{T(Dta))\n+i. (4.1)

We next claim that |Pu(T(Dfo))|n+l =  | det 7'_ l| |P „(A 0)|n-*-i- Let p € 

du(x0). Then

u(x. t0) > a(x0. f0) + p • (x -  x0) 

for all x € D{t0). Since u is non-incieasing in t.

u(x. t) > u(x. to) > u(xQ. to) +  p ■ (x — x0)

for all x € D{t) and t < t0, so (p. h) € Pu(x0. 10) where h =  p • x0 — u(x0. 10). 

If p ^  <9u(x0). (p. h) g  Pu(x0. t0). so therefore, p £ du(x0) if and only if 

(p. h) £ Pu(x0. t0).

We also know that p £ du(x0) if and only if (T ~ l )lp £ dv(Tx0). Let 

y — Tx.  Then as above, for t < t0.

t-'{y-t) > v(y. t0) -f- (3 l )‘p - (y -  T x 0).

Hence. (T~l Yp £ 9 r ( rx 0) if and only if ((T~lYp.h)  £ Pv(Tx0. t0).where 

h =  ( T ~ l ) lP  • T x o — v ( T x q . t) =  p • x0 — u(x0) =  h. In other words, (p. h) £  

Pu(*or t0) if and only if ((T~xYp. h) £ Pv(Tx0, t0).
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We also have ( T ~ lY(p.h) =  ((T ~ lYp.h ) which implies that (T ~ lYPu{E) = 

PL,(T(E))  for any Borelset E  C D. In particular. (f ~ lYPu(Dto) =  Pv{ f {Dto)). 
This implies that

|d e tT - l | |P u(A 0)| =  |P t,( f (D t0)|.

but det T ~ l = det T ~ l.

Then using this last claim. Lemma 2.3.3. and the fact that | det 11 <

C{ri)\D(t0)\n. we continue from (4.1) and prove the claimed estimate:

< Cn6{Tx0. T(D(t0)))\Pv( f ( D to)\n+l

= CBJ(x0.D (fo))|PB(f(A „)U *i

=  Cr,d(x0.D (to ) ) |d e tr_1||Pu(Ao)ln-t '.

<  C „ d ( X o ,  D ( ^ o ) ) | - 0 ( ^ o ) | n | P u ( ^ 0 ) | n + I -

□

Lem m a 4.0.3 Let 0 < c < 1. Let E be a bounded open bowl-shaped domain 

in Rn+1. such that E  C Pi(0) x ( —oc. oc). Suppose u € C{E) is parabolically 

convex and zero on dpE. Let M  be the parabolic Monge-Ampere measure 

associated to u. Then there exists C =  C(e.n) such that

|u(xo^o)|n+l <  CS((x0. t0),E{to)Y f  d((x. t0). E(to))l~tdM(x.  t).
J E,0

P ro o f  Without loss of generality, multiply u by a positive constant so that 

u(x0. t 0) =  — 1. Let Sk = s2_fc5 where s and 3 are positive and chosen to 

satisfy 3(n +  1) < e and sk < Let A  denote the quantity

6{(x0. t 0).E{tQ)Y f  d((x .to).£(to))1_edA/(x.t).
J Et0

We want to show that A > C(s). since s depends on e and |u(x0.£o)| =  1. 

Let Ek =  {(x.t) € E  : u(x.t)  < A* =  —1 -F si + • • • -F s*}. Define Eq =  

{(x.t) 6 E  : u(x.t)  <  —1}. Notice that Ek C Ek+l for every k. The set Ek is 

bowl-shaped and u\dpEk =  A*. Fix t and let 6k(t) =  dist(dEk(t),dE(t)).
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Since 4 ( 0  f t  0 as k —> oc (if 4 ( 0  -* 0. then u would be smaller than 

— ̂  somewhere on the parabolic boundary of E). choose k to be the smallest 

nonnegative integer for which 4 + i(0  > \Sk(t).
Let (xk. 0  G d Ek(t) be a point closest to dE(t).  Then as in the proof of 

Theorem 2.4.2. we have that

dwt((x*.f).0£jfc+i(O) < ; j4 (0  < 4 + i (t). (4.2)

Now apply Lemma 4.0.2 to the function u(x. t) — \ k+i on the set Ek~i to

get

|u{xk. t ) ~  E*+l(0 )|E fcJ.i(to)UA/((£fc+i)f)-

The point {xk.t) G dEk(t). so u(xk. t) = \ k and \u(xk. t ) - X k+l\ =  jAfc- A fc+i| = 

sk+y Thus.

snkt l  < C nS((xk. t ) . E k+l(t))\Ek+l(t)\nM((Ek+l)t). (4.3)

Let Lt be a shortest segment from (xk. t ) to dEk+l(t) and let (z . t ) 6 

dEk+i(t) be the other endpoint. Let p denote \Lt \ =  |£* — z\.
The set E k+i(t) is convex, so we can proceed as in the proof Theorem 2.4.2. 

The hyperplane LI (of dimension n — 1) normal to Lt through (c. t) is a support 

plane for Ek+i(t). Let FI' be the support plane parallel to LI on the opposite 

side of Ek-r-i(t). so that Ek+i(t) is contained between the two planes, and let 

r =  dist(H. IT). Then since Ek+l(t) C #i(0) x {f}. there exists a constant 

C =  C(n)  such that |Efc+i(t)|„ < Cr  (In fact C  is the volume of the unit ball 

in Rn~ l ).

Let T : R" —y Rn be an affine transformation normalizing Ek+i(t). Then 

dist(T(U).T(U'))  % 1 and dist((Txk. t). T(Tl)) % f. Define f  : R"+l -> Rn+I 

by f ( x . t )  =  (Tx. t).
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Bv Lemma 2.3.3. we have:

S((xk.t).Ek^i[t)) = 5((Txk' t ) .T{Ek+l(t))) 

< Cdist((Txk, t ) .dT(Ek+i(t))) 

< Cdist{{Txk. t ) ,T{n))

r

Insert this into (4.3) to get

4+1 < C ^ \ E k+l(t)\nM((Ek+l)t ) < Cp\I((Ek+i)t) < CSk+l{t)M((Ek+l)t).

where the last inequality holds since p =  dist((xk. t). dEk~i(t)) < Sk+i{t) from

By the choice of k. Sk+i(t) < Sk(t) < 2~k60{t). For some values of t. S0(t) 

might not be defined. This is the case when a > -1  on £(£). For t =  t0, S0(t) 

is defined. Since u is non-increasing in t. d0(£) is defined for any t > tQ. Take 

t =  £o-
Then 2_fcd0(£o) < C'2~k5((x0. t 0). E{t0)) for a dimensional constant C. 

This is true since S0(t0) < dist({xQ.to).dE(tQ)) and the general fact that 

dist{x,dE) < (diam(E))S(x. E).  In this case diam(E(tQ)) < 2.

Therefore.

(4.2).

Therefore we have:

(4.4)
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The last inequality holds since 

4+iUo) =  dist(dEM {t0) ,dE( t0)) < dist((y.tQ) ,dE(t0)) < S((y, tQ). E(t0)) 

for all y £ Then from (4.4) we obtain that

snkH  < 2 - ktS((x0A 0) .E( t0))( f  6((y. to).E(t0))l-<dM(y.s) < 2~k(A.
J  (Eic~ t )<o

Now recall that

„n-rl _  n + l.-) — {n~l)(k-*-l)3 y,  s n+l.-)-i(h + l) 
k-r I “ —

since 3(n -h 1) < t. Hence

i-rl + 1.2 - e(fcfl) <  2- k( 4 ^  ^n+l <  C A

where C  depends on e. so .4 >  C(s ) as desired. □
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