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CHAPTER 1

Fourier Coeflicients of

Vector-Valued Modular Forms

of negative weight

1.1 Outline of the thesis

In Chapter 1 we will use the circle method as devised by Rademacher and
Zuckerman in [I9] fo obtain a formula (1.106) for the coefficients of the Fourier
expansion of a vector-valued modular form of negative weight that depends
on the principal part only. In Section 1.3 we gef an estimate for the length of
a linear transformation in I'(T), that depends on the Euclidean algorithm. In
Chapter 2 we will see that if we apply the formula (1.106) with a given set of
column vectors, a representation p on I'(I) and a multiplier system v on I'(I)
in weight —k for & € Z* big enough, we do nof necessarily gef a vector-valued
modular form, but we get a vector-valued Eichler integral. This generalizes the
work of Knopp in [6]. In Secfion 2.2, generalizing the work of Knopp in [6] p.
183, we describe a way to construct vector-valued modular forms of negafive
weight. In Section 2.3 we will define the vecfor-valued supplementary series in
the same way as Knopp did for the scalar case in [6] fo gef the generalization

of Theorem 4.9 of [6] fo the vector-valued case. In Chapfer 3 we generalize
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the Eichler cohomology o the vector-valued case. In Section 3.2 we generalize
Theorem 3 of Husseini-Knopp [4] fo obtain an Eichler cohomology theorem for
the vecfor-valued case. In Secfion 3.3 we sfafe a generalization of Theorem 1
of [4]. We also state the same theorem restricted fo the parabolic cohomology.
We conclude by using the generalized Poincare series [13, p. 164] fo prove the

theorem when restricted fo the parabolic cohomology.

1.2 Infroduction

Knopp and Mason [11] obtained growth conditions for the Fourier coeffi-
cients of vector-valued modular forms of positive weight. In [12] they developed
a general theory of vecfor-valued modular forms.

Let (1) = (FO(r),...,F®(7))* be a p-tuple of functions holomorphic
in the complex upper half-plane H and p : ' — GL(p,C) a p-dimensional
complex represenfation (F,p), or simply ¥, is a vector-valued form of real

weight —k on the modular group I' = SL(2,Z) if

. a
I. forall V = (

b
) € ' we have
c

FDO@), L FON | ko, V() = (FO(r),..., FP (1)) (LI)

2. each component function 7U)(7) has a convergent g-expansion meromor-

phic at infinity:
FU)(7) = g™ Z D¢ (1.2)

V2 Wy

with 0 < m; < I a positive rational number, y; an infeger and ¢ = e*™7.

The slash operator |_,, V in (1.I) is defined by:
F | e V(1) = 0(V) T (o7 + @) p 7 (V)F(VT), (1.3)

where v is a classical multiplier system on I' of weight —k. Thus v(V) is a

complex number independent of 7 such that
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L wV)|=Tforall Ver,

2. v safisfies the consisfency condifion

v(Vs)(esT + ds)™* = v(V)u(Va)(ciVar + di) *(cor + da) ™%, (1.4)

%k
WhereVg:VIVQandVi:< ),i:I,QandB,and

¢ d;

3. v safisfies the nonfrivialify condition

v(=T) = e, (1.5)

In [11} Knopp and Mason show that the representation p can be normalized

so that

e27r'im1

(G- )

where 0 < m; < I, m; € Qfor I £ 7 < p. These are the m;’s given in the
Fourier expansion (1.2 ). In [IT} Knopp and Mason assume 0 < m; < 1. We
prefer to change the inferval for convenience. In the rest of the paper we will
assume that —m < argw < 7 for w € C, w # 0.

In the remainder of Chapter I, we will generalize the method of [19] o find
the Fourier coefficients of vector-valued modular forms of sufficiently negative

weight (Theorem 1.9). We need fo introduce some concepts:

Definition 1.1 The set of Farey fractions of order N, denoted by Fy, is the
set of irreducible fractions in the interval [—1,0] with denominator smaller

than or equal to N.

Definition 1.2 Given a rational number 2, where (c,d) = 1, the Ford circle

C(c,d) associated to this fraction is a circle in the compler plane with radius

s> and center at the point & + 5.
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An imporfant fact about Ford circles is that two consecutive Farey fractions
in F give rise to tangent Ford circles. Moreover fwo Ford circles infersect

only if the corresponding Farey fractions are consecutive in Fy, for some N.

Definition 1.3 Let %IL < % < %22 be three consecutive Farey fractions in Fy.
We define x.q(N) as the arc of C(c,d) that joins the point of tangency of
C(er,dy) with C(e,d) and the point of tangency of C(c,d) with C(cy,ds), as

we move clockwise in C(c,d).

Definition 1.4 The Rademacher path of integration P(N) is the path joining
i—1 with i by moving clockwise from the arc x.a(N) to the arc xo.a(N), where

! . . .
¢ and % are two consecutive Farey fractions in Fiy.

i-1

Definition 1.5 The Farey dissection of the circle C(N), given by |z| = e=2™V 7"

denoted by Fyss(N), is a path around zero given by

e—27rN_2627riP(N)_ (I7>

Now, by the Cauchy formula, if f(z) is analytic in the unit circle except
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possibly af zero where there could be a singularify, we get

1 f(z)
= — —d
2m1 /C(N) gm+l o
I [(=)
= — —=d
2m /dem) fm“ ’ (L8)

271-1 E / () mm-i—I

where & 4(N) is the path given by
e—sz—zezwixcﬂ(N)_ (1.9)
In the remainder of Chapter I, we will be inferested in consfrucfing ele-

menfs of I' from Farey fracfions g— in Fy, as follows. Since (¢,d) = T we can

easily find an unique infeger a, such that
ad=1 (mod c) (1.10)

and
0<a<ec (1.11)

We also define b = “—dc—'—l which is an infeger since (1.10) applies. Therefore,

given a Farey fraction % in Fly there exists a unique V € I' of the form

a b
V=< d), c>a>0,c>-d>0. (1.12)
c

Nofice that under the above condifions, since V € I', we have the following:

I. 0. For,
ad —-bc=1=bc=ad —1, (1.13)

and since ¢ > 0, d < 0 and a > 0, we have that b < 0.

2. Itd#0then ¢ > —d > —b > 0. Assume that —b > —d. Then

ad —bc > d(a—c¢) > 0. (1.14)
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The last inequality holds since b < d < 0 and ¢ > a. d(a — ¢) will be zero only
if d = 0. But we assumed that d # 0. Therefore d(a —c¢) > 1, and ad —be > 1,

which is a confradiction.
3. Ifd=0,thenb=—-Tand c=1.

Therefore,
-1
b=l o as pso (1.15)
c

Also given a vector-valued modular form (7, p), for z = €*" we define
- . s - -
@) =2™FO(r) =D aPz”, 1ZjZp, o £0, (1.16)
V2

which is analyfic in the unif circle and has a zero at z = 0 of order uj, if
i > 0, or a pole of order —p;, if p; < 0. We will use this funcfion to get
the coefficients aY’ of the vector-valued modular form by way of the Cauchy’s

formula.

1.3 A new estimate for L(V)

Henceforth we will assume without loss of generality that ¢ > 0 for V =

a b
( p ) in I'(I), since V' and —V give the same fransformation.
c

b
Lemma I.1 LetV = ( ¢ J > in I(1), such that ¢ > d > 0 and let s be the
c

number of steps in the Fuclidean algorithm applied to the pair c,d. Then

1. if s is odd, we can write

S T g1 1 o) (1 I 0 |
gs 1 0 I Qoo 1 01 g I

(1.17)

and
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2. if s is even, we can write

1 B . .
V =7Tm™8 B 1 0 1 Gs—2 o 1 a2 I 0 ,
0 I go—1 1 0 1 0 1 g 1

(1.18)

where qi,...,qs € Z* are the successive quotients given by applying the Fu-

clidean Algorithm to the pair c,d.
Proof 1.1

Therefore since V' € I'(I) we have thaf there exists an infeger m such that

v:(m+1m>:Tm<Iq>. (L.19)
1 [ 1

I. Let ¢ > d > 0 and s odd. We will prove (1.17) by induction. Since
V € I'(1), we already know thaf (c,d) = 1. Now, if s = I, then

c=19, d=r7; and c¢=qd, (1.20)

and since (¢, d) = 1, we have that d = 1. If is then easy fo check thaft

Vz(a b):Tb<IO):<* b)) (1.21)
c 1 c 1 c 1

and therefore (1.17) follows for s = I if we put m = b and ¢; = ¢

Now assume that (1.17) holds for all transformations in which ¢ > d > 0
and for s < s* odd. We wanf fo show that (1.17) will also hold if the number
of sfeps in applying the Euclidean algorithm fo the pair ¢, d is s* + 2, provided
that ¢ > d > 0. In this case we have that

c=1ry, d=7r1, c=qd+res and d=qre+1r3, for r9>1r3>0,
(1.22)

and the number of steps required fo apply the Euclidean algorithm fo the pair

r9, 173 is s*. If is easy fo check that

()GENED
c d e T3 0 I gr 1
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Thus, by the inductive hypothesis, and since ro > 73 > 0, it follows that we can

. * %
write the mafrix <

) in terms of the ¢;’s as in (1.17). This combined
T2 T3

with (I1.23) proves the lemma for s odd.
2. Let ¢ > d > 0 and s even. We prove (1.18) first for s = 2. If s = 2, then

, . a b )
we have that V = , where
c d

¢ =To, d:TI, CZQId‘i—TQ and d:qZTz, (124)

and since (c,d) = I, we have thaf r, = I and d = ¢. It is clear that

(D22 o
0 1 gr I 0 I g 1 c d

Since the lower row of V' and the lower row of (I.25)are the same, and since
both are in SL(2,Z), we have that a = —¢; (mod c). Therefore there exists

an m such that a = —¢; + cm, and

| 1 0 - b
s = © A —V, (1.26)
0 I qgr 1 c d c d

as claimed.

Now assume that (1.18) holds for for all transformations in which ¢ > d > 0
and for s < s* even. We want fo show that (I.I18) will also hold if the number
of steps in applying the Euclidean algorithm fo the pair ¢, d is s* + 2, provided
that ¢ > d > 0. In this case we have that

c=ry, d=r1, c=qd+ry and d=gqro+r3, for ry>r3>0,
(1.27)
and the number of sfeps required fo apply the Euclidean algorithm o the pair

19,73 18 8*. If is easy to check that

CCIEICY -
c d Ty T3 0 1 gr 1
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Thus, by the inductive hypothesis, and since r, > r3 > 0, we conclude thaft

*
) in terms of the ¢;’s as in (1.18). This,

we can write the mafrix
e T3

combined with (1.28), proves the lemma for s even, and therefore the proof is
complete.

We now consider the length of V' with respect to the generafors S =

0 -1 11
( _ ) and T = <O ) ) of I'' Namely, we wrife V as a product

V = £V1... Vg, where each Vj is equal fo either S or T™, for some infeger
n;, and no two consecutive V; are both equal fo S or a power of T'. The way
to write V € I' is not unique since (ST)3 = —T and we can include the sfring
(ST)? as many fimes as we wanf. However there exists a minimal length. Let

L(V) be the minimal length for V.

Lemma 1.2 An upper bound for the minimal length of a transformation V =

a b\ . .
( ) in (1) withc >0 is

c d
LV) < ——(logc+ 1) +3 (1.29)
< g lose , :
where
a= Lt \/5 (1.30)
2
Proof 1.2

Suppose first that ¢ > d > 0. Then, since

( Lo ) - _srus, 1)

g 1

by Lemma 1.1 we can write V as
V = F1mSTV e [ ST 8BS T2[-ST™ 1 3]. (1.32)
Therefore,

V = F1mSTC e gD T g pagy-ag, (1.33)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
Therefore if ¢ > d > 0, we have that
L(V) <2s+2. (1.34)

If d > cor d < 0, then fhere exists n € Z, such that

d=d +nc, 0Zd <ec (1.35)

a b Xk 1 n
VZ(a d):(cd’><0 I>' (1.3

Note that by (1.33) and (1.36), for all V' € I'(1), we have that

Therefore

V = 2rmST Y e gp-D T e1g TR T g, (1.37)

Therefore by (1.34) and (1.36), we have that

L(V)§L<(* ;‘,>>+1§23+3. (1.38)

Here s is the number of steps required fo apply the Euclidean algorithm fto
the pair ¢ and d'.
Now by Lame’s theorem, as explained by Dixon in the introduction of [2],

we have thatf,

loge+1
< 1.
and by (1.34) and (I.38) we have that
loge+1
< . .
L(V) 2 2F = +3 (1.40)

The proof is complefe.
Now we are inferested in bounding p(V'), where p is a representation on

I'(T). Knopp and Mason [1I] showed that

W) 1< PO, T<m g <p, (L.41)
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11

where p(V) = (pU™(V)) and K7 is a constant that satisfies | o™ (S) |< K7,
for all I < m,j < p. Therefore by Lemma, 1.2 we have that

| pU™(V) K Ky, 6= log pK7, (1.42)

log o
where K, is independent of V. Note that since the minimal length of V! is
the same as the minimal length of V', we can use the same bound for

(V) = (VT | (1.43)

In the remainder of this secfion we will prove some lemmas in order fo

show that if q1,...,¢, € Z*, n € Z, such that

8 s—1 b
V = 87V gr(-0)""e%-19  pegr-agrn — ( ¢ p > (1.44)
c
and if for 0 < j < s we define the mafrix
M; = TCYG gD g pegr-ag T = ( o b ) : (1.45)
AR
with My = 1™ and SM,; =V, then
lel = layl, el = |yl |l =161 and [d] > [5]. (1.46)

These inequalities will be very useful in Secfion 3.4 fo show convergence of the

generalized Poincare series (3.50).

Lemma 1.3 Letqi,...,qs € Z* and

V=810 gD g pegpag - ( a b > : (1.47)
c d
Then if s is even we have
sgn(c) = sgn(d) = sgn(-a) = sgn(-b), (1.48)
while for odd s, we have
sgn(c) = sgn(d) = sgn(a) = sgn(b). (1.49)
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12

Proof 1.3
Since
1 0
—8T7%8 = ( > ; (1.50)
g 1
then
V =FES7e -85 eS| ][-ST 8], (1.51)

and we can rewrite V as

EE — T—QS Tq.s—l... —_ T-—l13 Tq2 _ —q1
V:{ [— ST ] [—ST-S|T2[-ST-48], s odd, (L52)

£ST~9[—ST~%-1] ... [-ST~8S|T®[—ST-9S], s even,

or, what is the same,

( 1 0\/1 q. I 10
() ()2
V=) q; T 0 1 qII 0
£S5 % i , S even.
| 0 1 -1 1 0 I g 1

Now if s is odd, since all entries in

L0 (DY e
QSI 0 1 01 qII

are posifive, (1.49) follows automatically. On the other hand since all enfries

CO)GL)-Gn)GT) e
0 1 gs—1 1 0 I g1 1

are positive, then the upper and lower row of

LD (Y o
0 I gs—1 1 0 1 qgq 1

have different signs and (1.48) follows automaftically. The proof is complete.

in

Lemma 1.4 Let V as in Lemma 1.3, then |c| > |d| and |a| > |b].
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13

Proof 1.4
If is easily proven by induction on s.

Lemma 1.5 Let gr,...,qs € Zt and

M =TED gD a2 g | pegpag — ( o« f ) (1.57)

v 0
and
8 b
V=srtvesy = ¢ 7). (1.58)
c d
Then
Lo =, |d >3], ld=lal and |d >|p], (1.59)
2 ld=lal and |d =] (L.60)
3. Je—=d|>|y=46| and lc—d|>=|a—0| (1.61)
Proof 1.5
First note that
lc| = =7+ (-1)°¢sa| and |d| = |-+ (=1)°¢sB]. (1.62)
. -y =0\ ) . , -
Now since SM = has the form of the matrix in Lemma 1.3 with
«a

qi, . ..,qs—_1, we have that
sgn(—7) = sgn((—1)°a) = sgn(—0) = sgn((~1)°F). (1.63)

Therefore we can rewrite (1.62) as

= |— —1)%q,
lel = [—v] + [(-1)°q.c| (1.64)
= |y| + g5 |
and
d| = |-8| + (1),
|d| = |=0] + [{(=1)¢0] (1.65)

= |5‘ +gs lﬁla
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14
and (1.59) follows.
Now since a — —a and b = —@, by (1.59) it is clear that
lel > |a] =lal, and |d] > |6] = 0] (1.66)
and (1.60) follows.

v =5
Now by (1.63) and Lemma 1.4 applied to SM = < v 5 ) with
a

qi, - . -,9s—1, we have that
sgn(—y) = sgn(—y+06) and sgn((-1)%a) = sgn ((=1)° (a = B)). (1.67)
Therefore by (1.67) and (1.63) we have that
sgn(—y +6) = sgn ((-1)° (@ = 8)) . (1.68)
Thus,

lc=d| ==y + (=I)°¢ga — (=0 + (= 1)°¢:B)|
= |—y+ 8|+ |(=1)°¢s (& — B)] (1.69)
= |y —é&|+¢s|a— B

and (1.61) follows. The proof is complete.

Lemma 1.6 Letgq,...,q; € ZT, n€Z,

M =100 T e gD T e g | pagpra gy = < “ f ) (1.70)

Y
and
V = §7CD g — < a b ) . (1.71)
¢ d
Then
I. =1y and |c| = |al, (1.72)
2. ld| =16 and |d>18l. (1.73)
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Proof 1.6

Put

! 7
M = 7D 1 g1 a2 g TRTNG = ( a. p ) (1.74)

,)/l 57
and
. » roy
V' = ST gy — ( Z_/ . > , (1.75)
so that
YT e R R A
N AN+ ¢ dn+d
(1.76)

(Note that the resuls of Lemma 1.5 apply to M’ and V".)
Now since ¢ = ¢, o' = a and 7 = 7 by (1.59), we have that

el =1l > || =lal and |c|=I|c'| = |¥'| =[] (1.77)

and (1.72) is proved.
_,y/ _5/
a/ ,67

Lemma 1.3 with ¢1,...,¢s and g1, .. ., gs—1 respectively, we have thaf

Since the matrices V/ and SM' = ( ) arc like the ones in
sgn(c) = sgn(d), sgn(d’) = sgn(8’) and sgn(y') =sgn(d'). (1.78)
Therefore if n > 0 we have that

ntd| = Cln+|d], |on+8]=|an+|g] and [n+d| = Win+]d]
(1.79)
By (1.59) and (1.79), we have that

|d = |dn+d|=|cIn+|d]
2 |d|n+10] = lo'n+ 6] = | 6]

(1.80)
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and

|d] = [c'n +d'| = |¢|n +|d]

} (1.81)
> [YIn+18] = [y'n+ 8 = 13|
If n = —1 then by (1.61) we have that
jd =| - +d| =] -d]
» » (1.82)
> o =g =|-a +08]=|0l
and
dl = |- +d|=|c-d
| o (1.83)
2y =dl=1-7+0=1

It only remains to show (1.73) for n < —I. Note that Lemma 1.4, applied to
V' and to SM’, implies thaf

[l =1d], || =16] and [¥] =6 (1.84)
(1.84), (1.78) and the fact that n < —1 imply that

sgn(—c) = sgn(c'(n + 1)) = sgn(—c + d'),

sgn(—a’) = sgn(d/(n+ 1)) = sgn(—a’ + 3') and (1.85)
sgn(—') = sgn(v (n+ 1)) = sgn(—7' + &)
Thus,
|d| = |c'n + d']
= [c"(n+I) —d+d| | (156)
=|d(n+1)|+|-c +d]
=|dlln+ 1|+ | —d|.
Similarly,
6] = [Ylln+ I+ |y =& and Bl =d/[ln+1[+]a' =G  (1.87)
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(1.86) and (1.87) combined with (1.59) and (I.61) imply that for n < —1 we

have that
ldl = |d|ln+ 1| +|c —d
_ _ (1.88)
> |d|ln + 1|+ |o — B = |6
and
ldl = |c'lln+ 1] + |c' — d|
» ‘ (1.89)
> Yln+ 1+ 1y =& = [8].
Corollary 1.1 Let q,...,qs € ZT, n € Z, and
. o b
V= STV e gD T g e grma g = ( ¢ ; ) : (1.90)
c
For 0 < j < s define the malriz
M; = TV gTC a1g | Tegpragyn — ( % O ) . (1.91)
Vi
with Mg =1T" and SMy, =V . Then
el = loyl, el = |yl 1l 2161 and |d] = |55]. (1.92)

1.4 The Fourier coefficients of a vector-valued
modular form of negative weight

In this section we are going fo use the method of Rademacher and Zucker-
man [19] o calculate the Fourier coefficients of vector-valued modular forms
of negative weight < —2¢, with § defined in (I1.42).

Lemma 1.7 Let (F,p) be a vector-valued modular form of weight —k and

b
V=<a d) el withe>a20andc>—d > 0. Then if z = cT +d, we
c
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f(j)(eZW'ZT) f(]) Zﬂcdl,_] cl,](z)f(l( 27t S —2771 )’ (193>

where f(z) = (fP(z),... ,f(”)(:c))t is given by (1.16),

miz+my/z

U,4(2) = e e (1.94)
p(V)7T = (), (1.95)

e27rzml % 0 ezmml a o
Qeg =v7H(V) p(V)™! :

o eZﬂ'impg Is) N 627rimp%
(1.96)
and we have put
.. mya+m;d

Qc,d,l,j = (Qc,d)(J’l) = 'U_I(V> G, l) i e (197>

Proof 1.7

First nofe that if we let ¢ > 0 and choose the unique a such that 0 < a < ¢,
then V € T' is defermined by d and ¢, and €. 4;; depends only on d and c.

From the definition of vector-valued modular form (I.I, 1.3), we gef that

F(r) = v(V) Fp(V) TR (V7). (1.98)
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Thus,
[ 10 (z)
f(z) = :
\ 7O (z)
/6—27rim11' 0 \ F(I)(T>
\ o o emmmr |\ FO)(7)

= : : v I (V)P p(V) TR (V) (1.99)

627rim1 vr ... o

0 eZ'nimpV‘r

Now since (c7 + d) = z, and since ad =1 (mod c),

—d I
=222 oy 2 (1.100)
C C Ccz

Note that since ¢ > 0 then $(2) > 0. Now it only remains to apply (1.100) in
(1.99) to prove the lemma.

Lemma 1.8 Let (F,p) be a vector-valued modular form of weight —k. Then

the Fourier coefficients a,, = (aﬁi), ey a,(ﬁ))t are given by the following formula:
. s P o [Cen
LD DI DI U / Uepy(ie(N7* — i)
-0 .
c, d I=I c,d

0L -d<ecN
(c,d) =1

f(l) (6% (a+ic—1(]v—2_i<p)—1)) e—zm‘mcpd(p’
(1.101)
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S, - 7 rr - . .
for any positive integer N, where 8, ; und 6, , are given by the Farey dissection

27N~

of the circle || = e > ™" with Furey series of order N.

Proof 1.8

Since the functions f) (z) are analyfic inside the unit circle excepf possibly
af zero where there could be a pole, we can use the Cauchy formula fo get

, £0)
o) = i/ SE) (1.102)
o)

2 gm+l

-2 . . -
N for N a positive infeger. We can change

where C is the circle |z| = e
the path of infegration by making the usual dissection of the circle C' info arcs

€.4(N), using the Farey series of order N. Thus we have

. 1 J9(z)
() — S L g 1.103
a, - x. .
Zd 2 Je,ay T 109
0T -d<cIN
(c,d)=1

We can make fhe change of variable

d

o= e—27rN—2_27riz+2i7T<p, _‘9::,11 <pZ 9’6'7(1 (1.104)

and substitufe in (1.103) fo get

a%) — 2N 7*m Z e27rim% / d f('j) <e27ri(i(N—2—i<p)—g)> e—27rimzpd()0.
c, d “Ve,d
0% -d<c¥N
(e,d) =1
(1.105)
Now we apply (1.93) to f0 (eZWi(i(N_Q‘iw)—%)), where z = ic(N~2 — ip)

and the lemma is proven.

Theorem 1.9 Let F(7) be a vector-valued modular form of weight —k with
k > 25 > 0. (See (1.42) for the definition of §.) Then for m > 0 the

coefficients in (1.2) are given by the formula

o0 <k P
. 1 _
ald) = 27T§ :_c. E ’E 0O Ay mi Beymoji- (1.106)

c=1 =1 v<0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Here,
- 21 dm+tav
AC,V,m,j,l = § QC,d,l,je ¢ 3 (I-IO7>
c,d
0 —d<e
(c,d)y =1

Q.15 s given by (1.97) and Beym g is given by

E4+1
—v—m 2 T 1 1
g [ ) (s, e
VMg, . () k+1 o —0
(k+1)! c ’ m=mng;=y.
(1.108)
In (1.108),
(£)k+1 (0+
Ii1(2) = ~2— / thettEdt, 2€eR
2 J_oo .
00 (E)Qn-i-k—i—l (1109)
= 2 eR
n=0 n‘(n—i_k_i—l)', ‘
Proof 1.9

We note first that f(z) in the neighborhood of z = 0 is dominated by the

principal part P(x), where P(x) and D(z) are the column vecfors with com-

ponents
PO (z) =Y aPz” (1.110)
v<0
and
DY(z) = adz, (1.111)
v>0
so that
D) = PO (z) + DY) (). (1.112)

For that purpose we split the formula (I1.101) for o into two parts

af) = QY(N) + RY(NV), (1.113)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

where

'

j - a id ec,d . .
QU(N) = o) Qe /0, Ve, (ie(N72 = i)
c,d I=I -

c,d
0L —-d<cXN
(e,d) =1

P(l) (62% (a—l—ic—l(N—?__itp)—l)) 6—27rim(pd80
(.114)

17

) _ ? . am ec,d
RPN)=e™m 37 Y Qaaye™ / ey (N2 — i)
e d 1=1 —0

c,d

0L —d<c<N
(,d) =1

D(l) (e%ﬂ(a-l—ic—l(]\/—?—i@)—'f)) e_Z"iTdeQD.
(1.115)
We will first show that limy_. Rg) (N) = 0. From the theory of Farey frac-

fions we have

I / 1 I ” I
—<Z < — — <9 < — 1.116
2cN — Oea < cN’ 9cN = 4= N ( )
and we find for —9’0’ 1L < 9; d
R (c(N72—ip)) =cN2 (1.117)
By (1.116) and —0, , < ¢ < g, , we get
5 I B N2
c(N2—ip)) (N2 +¢?
N—2
>
T ¢(N=24c2N72) (I.118)
c
T 2N—2+1
c
> a
-2
since ¢ < N. Also,
|e(N72 — igp)| = o(N~* + ?)2
Z (ANt 4+ N33 (1.119)

< 22NL
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and by (1.1I8) and (I.117), we have that

—ip e

e——g—c"'—"(ic(N“z—i(p)mj—FE(ﬁ——)) < 627" (cN_ij—E%L)

(1.120)
z eZWﬂMN_Qe—W}im,
where k3 = mazx(my,...,m,) and &k, = min(ms,...,m,). Therefore by
(I.I19) and (1.120) we have
|\Ilc,l,'j(z0)‘ z 2§N—k62ﬂ'nMN—2e—7er,
where 29 = ic(N~2 —iyp). Also,
‘D(l) (ez%i(aﬂc*(N‘z—iw‘l))‘ <Y e ERETT O T
= (1.121)
< Z laV]e™.
v=0
Using these resulfs we have
U, 5(ic(N~2 —ip)) DY (e%(““c_lm_g‘i‘ﬁ)_l)) ‘
< 2§N——k627mMN_26—7mm Z la,(/l)le—m/
v=0
— CN_k€27TKMN_2.
Here
i x
k
C =217y jalle™™, (1.122)
=0

which is finite since |e™™| < 1 and the series is convergent inside the unif circle.

Now in order fo bound [€2. 4, ;|, we need fo use the estimate for p discussed
a b

before (1.42). For V =
c d

)erherec>a20,c>—dZOWehave

by (1.15) that

I (p—I)(j,l) (V)I 3 K3026

B (1.123)
= 3 3
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where §, Ko and K3 are constants independent of V. Therefore

- .myatm;d
ch,d,l,‘jl = ’U_I(V)I(J,l)e%ml_cL
26 (1.124)
< K3N*°.
Thus we have,
|RG(N))]
S - 26 GZ’H k 2wdN—2
_Z_e_"T m K3N / O N kg2 _ng
CZ; lz=1: _9;@
0T —d<eciN
(e,d) =1 :
(1.125)

a

< Kge Vi mmo ke / dy
9
c,d cd

0T —d<cZN
(ec,d) =1

_ —27N~2(m~8 —k+26
= Kye (m=3) y ,

where Ky is a constant independent of V. We conclude that limy_.o |RY (V)| =
0 for k& > 26.

Lemma 1.10 The following series converges absolutely for k > 204

sk
Z %Ac,u,m,j,ch,u,m,j,la (1126)

c=1

where Ae om0 15 given by (1.107) and Beym, i s given by (1.108).
Proof 1.10

From (1.123) and (1.107) we have that

ik
1"
?Ac,u,m,j,l

< Kyc®. (1.127)
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On the other hand, for m + m; > 0 we have that

Bc,umg,l
—v—my =R dn 1 ;
=\ L1 7(—V—mlgm+m12
j
% T 1 2n+k+1
‘_V—ml MZ—J— oo (%("l/_mlim—i—mj _2_)
B (m~|—mﬂ7 > ;:; 2m+ktInl(n + k4 1)!
(—v—-my k“i dn?(~v —my)(m +my)\" 1
B c ard c? nl(n +k + I)!
k+1
Z (—V——ml) 64772(—u—ml)(m+m-j)’
c
(1.128)
and for m = m; = 0, we have that
I o (—v —my)\ ¥
Bl = : :
GV, a]vl (k+ I)‘ ( c ) (I ]:29)

In both cases the series (I.126) converge absolutely for k > 24.

Lemma I.1T1 Let F(7) be a vector-valued modular form of weight —k with
k> 26 > 0. Then if m+ m; > 0 the Fourier coefficients in (1.2) are given by

the formula

j f: ZC * Z Z a; AC Wy ghl C VLol + Hc,u,m,j,l) . (1130)
e=1 =1 v<0

Here A.umji1 is given by (1.107),

. 1 o+) B
ng,m,l = —./ 99w, ¢, v, dw, (1.131)
and
0 -
Heymiji = 2sin7rk/ gDw, ¢, v, 1)dw, (1.132)
0
where
w(v+m
99 (w,¢,1,1) = whe™ T rlmeme, (1.133)
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and f_(?;') 15 the integral on the keyhole path, which is the path that goes from
—oo to 0, with the argument 7, and then goes from 0 to —oo with the argument

—T.
Proof 1.11

We evaluafte @,,(N), under the above condifions. If we substifute w = N~2—ip
n (1.114), we have

—2.,4
N +ecd

. isl I 4 “
Q,Srjl)(N) = Z Z chl,]EZMd / - \Ilc,l,'j (’LC&))

N-— Hc’d

(1.134)

0 d<c§N
(c,d) =1

«< P® ( ami (a-}-zc‘lw_l)) 2T g,

Therefore by (1.94) and (I1.110), we have

%)
Qm (N)
2 07
I N+ c,d 27m,
m ) Ly e
— § : § :chm(e?md (,Lc)kwke%rm]we o
. i
’[/ N_Z—ec,il
0%~ d <c¢ZN
(c,d) =1
2mwiay 27 i
< § :a(l)e "c“ 22; 2rmw g, (1135)
v<0
2 dm k: 27rmu .
= E E :ch,l,g TG et e ymia
v<0
0Z d <ciXN
(c,d) =1
where
I N—2+i9; d 2n(v+m))
Ic,v,vn,j,l = _'/ wke_ clw e27r('m+mj)wdw
v JIN-2-i0],
I 2+19
= —,—/ g(J)(w c, v, l)dw.
N-2-i0” e

Now we cuf the complex plane from 0 fo —oo along the negafive real axis,

and consider the path shown in the figure below, with ¢, 8’ and " > 0.
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—e+id8  JMN prge

7N 7.
— 0 @

— 0
SN J, M)

-2 . qn
—e=i8 I N7-i8

Then we can write

jny . 7]
1 0+) 1 [ 1 [~ ®a T (N ?—i6, 4
Tewmiji = = -7 ~3 —7 }
—00 - —€ —e—zech
Al
1 /"‘5‘*'19‘:,& 1 /—6 1 /—oo
bIn2tae Vel VS

= Leym,js = J1i(N) = J2(N) = J3(N) = Jo(N) = J5(N) — Js(N),

(1.136)
where fhe infegrand in all fhe infegrals is
whem T garlmamy e (1.137)

Note that the argument in Ji(N) is —7 and the argument in Jg(N) is 7.
We also assume that 0 < ¢ < N72. Now in the integral Jo(N) we have

W= —¢ +1v, 0>v>-6,,,
R(w) = —e, R(1) = 5% <0,
and |w| = (e + UQ)% T (N + C—QN—Z)% < 23 IN-L,
(1.138)
Therefore
[Ja(N)| < 0,428 c7F N~ke2rimamae (1.139)

< 25 RINTRT,
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Similarly we have
|J5(N)| < 28 F-IN—+-T, (1.140)

In the infegral J3(NN), we have

w:—u—iﬁgd, —N?<-—e<u<N-
— u —2
Rw)=u< N g R (% = 24972 = ];;cl,?i =
w] = (u? +6/2)® < (N 4+ ¢ 2N2)% < 281N,
(1.141)
and ftherefore,
|J3(N)| z (N—Z 4 6) 2%c—kN—keZw(m+mj)N“Q—Sw(u+ml)
N . , (1.142)
< 21+§c—k—IN——k—162w(m+m'j)N —87r(1/+ml).
Similarly,
|J2(N)| € oT+§ k=T \p—k—T g2r(mt-m; )N~ ~8n (v-+ma) (1.143)

Finally, we have

B(V) + Jo(V) = [ s /_ - (1.144)

t oo v €

where the integrand is given by

w(v+my)
w[Fe Tt g2nlmmg)e (1.145)

Thus we get

o0 T {(m;+v) _
Jr(N,€) + Jo(N, &) = —2sink / phe B et mt gy (1.146)

€
(Here, for clarity we have written Ji(IN) = J1(V,€) and Jg(N) = Js(N,¢€).)
Combining (1.136), (1.139), (1.140), (1.142), (1.143), (1.146) and making ¢ —
0+, we get

E —k—Ip7—k—1_2n(m+m;)N=2—8x(ut+m
Towm,it = Dowm,si + Hepm,a + 60123 ¢ # TN TR TeinlmamaN = =nlutmo),

(1.147)
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where p is the smallest v such that a,(h) # 0 for some h, |©1] < 1T,

(0+) T+
Lepmil = —1—/ whe™ A ganlmemy)o g (1.148)
17y 3y ’L oo
and
o 27 (mg+v)
Heymjy = 2sinmk / the e mmAmt gy (1.149)
[

Now by (1.135) , (1.124), the fact that SN ¢T < N and (1.123), we obfain

14
QINY = > Y Q€ (i)
e, d =1

0 -d<c&N

(c,d) =1
2miay 1
x Y e al) (Lopmis + Howmia)
v<0

P
2mid™ (1 Nk
+ YY) Qe (i)
c,d =1

0K -d4<cTN

(c,dy =1
2miav E _p_ —k— OANT2-8
X E e e aD6022cTFINTF Lg2n(mtmy) mlptm)
v<0
p
1d ™ -
= d Y Qg (i)
c,d =1
0 -d<cXN
(c,d) =1
2miay 1
x Y e aP(Leymip + Hopmii)
v<0
E o ke N2 1) —1
+ E 16160427 N ~F~12m(mtmy)NT"—8n(utm) E ¢
v<0 c,d
0T —-d<c¥&N
(c,@) =1

p

2mid - Nk

= E E Qe qq567 (ic)
c,d 1=I

0 -d<ecN

(c,d) =1
2rioy 1
x e e e Lepmip + Hewmid)
v<0

+ O(]\]—Is—}—266271‘(7'r1,+'mj)N’z)7
(1.150)
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where |O2| < I and |©1| < I . Thus by (1.150), (I.113) and (I.125), we have

N
=30 T 3
c=1 0z —da<c =1
2(c du)_ I (I.I51)
X Z e ¢ a(l cu,m,j,l + Hc,u,m,j,l)

v<0
+ O(N~k+26627r(m+mj)1/v_2).

Now let N — oo. Since & > 24, by Lemma 1.10 we have that the series

converges absolutely and therefore

oo p
aff;) = Z(ic)k Z Z afl(,l):/[c,y,m,'j,l (Lc,u,m,j,l + Hc,z/,m,j,l) ’ (II52}
=1 =1 v<0

where A, m ;. is given by (1.107). Now from the theory of Bessel functions

)

(1.153)

we have that

k+1

2 [(—v—my\ ? 4
I/Cyl’am7j:l + HC,I/,m,j,l - Ck+I m + mJ Ik+:[ _C—-(—V - ml)
2m

'ECVm}‘l
k+ SV, 3000
C I

N
S

(m + mj)

well defined since m +m; > 0. Here I;41(2) is given by (1.109). This reduces
(1.152) fo

J>—2WZ ZZM Acvmii Bewmits (1.154)

=] =1 v<0

where B, mj; is given by (1.108). This completes the proof of Theorem 1.9

for the case m 4+ m; > 0.
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In order fo complete the proof of Theorem 1.9 for the case m = m; = 0,

we note that

lim [im {meJH-JI(N e)+ Jg(N,e)}

e—0m,m;—

= lim Iim {Lc,jmdl + JI(N 6) + JG(N E)}

m,m;—0e—0

= lim {I’c,'/ m,jl t Hcvm,J,l}

N

S (1.155)
k41
m,m; —0 Ck+I m—{—m]— )
2 o (—v — my) \**"
(k1) c? '

—1) — 2
= Jim 5 (2t (Bev - mtm )
Also we nofe that the esfimates (1.139), (1.140), (I.142) and (I.143) hold.

Therefore,

Lemma 1.12 Let F(7) be a vector-valued modular form of weight —k, with
k>26>0. Then if m; =0,

”—%2 ;X;a Ae0.i1 Bewo s (1.156)
<<

where A5, 18 given by (1.107) when m = 0, and

I o (—v —my)\ !
B.yois = . 1.157

Theorem 1.9 follows from (I1.154) and Lemma 1.12.
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CHAPTER 2

Construction of Vector Valued
Modular Forms of negative

weight

2.1 Introduction

In the first chapter we saw that the Fourier coeflicients of vector-valued
modular forms (1.2) of negative weight are given by (1.106). Now the question
is: whether, given a set of column vecfors b_1,...,b,, a representation p on
I'(I) and a multiplier system v on I'(I) in weight —k for & > 26 (1.42) and
k € Z, the formula (I.106) gives rise fo a vecfor-valued modular form of
negative weight —k. The answer: not necessarily. The transformation law (I.1)
does not necessarily hold, although if does hold up fo an adifive polynomial

of degree at most k. This is the content of our next theorem.

Theorem 2.1 Let b_,,...,b, be a set of column wvectors such that b, € CP,
b, # 0, p: I'(I) — GL(p,C) a p-dimensional complex representation , v
a multiplier system on T'(1) and weight —k, and k > 26 (see 1.42), with
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k,—u € Z*. Define
/ A })_(_I)DZWi(m1+u)'r 4N hg)p27ri(m+m1)7—

b'(jI)eZTF’Z(mI-H/)T + EOO—O bSrIL)e27ri(m+m1)T \

1) _gnsv<o . @)

ZMSU<0 b’(jp)e%ri(mp+y)'r + Z:nozo bgﬁ)e27ri(m+mp)r

where for m > 0 we define b,, as the column vector with components given by

b)) =2m ) = D0 W Aeumir Beymia- (2.2)
=1 € 121 u<v<o

with Ay mij. given by (1.107) and By mia by (1.108).
Then

1. F(7) is regular in the complex upper half-plane ‘H, and
2. F(r) satisfies

F(r) — v (M)(y7 + 8)"p {(M)F (M) = Qu(7,k,v,0),  (23)

M:(a ﬁ)el‘, (2.4)
v 0

where Qu (7, k, v, p) is a column vector of polynomials in T of degree at most

k.

for all

Lemma 2.2 For k > 26 the series

oo .
’I,k

2m Z Z:AC,V,m,j,l Bc,u,m,j,l (25)

c=1

converges absolutely, and as m — oo, we have

o0 i 1 I
2 Z Z—Hc,u,m,j,z Beymiji =0 ((m + mm)'%_ge‘lﬂ(”"‘m)?(m“?"’)g) , (2.6)
c=I ¢
where
Km = min(my,...,my) and Ky = max(mg,...,my). (2.7)
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Proof 2.2

The strategy is the same as in [5]. First we will show that

o0 ik 1 1
2y %Aa,v,m,'j,l Boymil| < C(m +my) "2ermtm)? zv-mi? = (5.8)

c=2
Then we show that as m — oo the summaftion on ¢ is dominated by the ferm

for ¢ =1.

In order to bound A, ;1, we use (1.123) to get

- o i dm+av
Aepmitl = | Y Qeapge™
c,d
0 —-d<ec
(c,;d) =1

(2.9)

mpa+m;d i dmetay

= Z v (V)gUlemi—— = Mo

e, d
0K —-d<ec
(c,d) =1
= 0 (7).
On the other hand, from the power series definition of 7,1(z) (1.109) we have
that
Ti41(2) < 2Fsinh 2. (2.10)
Also, we have
sinki 2 < %sinﬁB, for 0 < z < B. (2.11)
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Now by (2.9), (2.10), (2.11), (1.108) and the fact that k > 26, we have, for
m+m; > 0,

Z 17
27]- —EAC,V,m,j,Z BC,I/’m’j’l

c=2

o0
I — mpatm dm+tav
§27r§ - E v (V)2 e = £ gami B.ymii
C

c,d
0 —-d<ec
(¢,d) =1

e k+i
Q_m_l)___? sinh (Qﬁ(m + m.j)% —v —my) %) Z o~k +26-1
(m + mj) 2 c=2

< 02 (m + mj)—%ezw(m"’mi)%(—’/_ml)% )

Z

(2.12)

Also from (2.9), (1.108) and the fact that k& > 26, we have for m +m; = 0 that

A(” (J) z 0 r—m) 2073, 2.13
5 2| = O e 2.13)
The term for ¢ = 1 is
QWikAI,y,m,j,l B%{Z,m,l
%l
— 2y (V) g 0D 2milmiatmyd) 2rifdme-av) (——V——ﬂ) Ty (4W(—V - ml)%(m + mj)%) '
m + m;
(2.14)
Also, by [20], we have
e? '
]k+1(z) N (2.15)

vV 2z '

Thus, the behavior for the ferm ¢ = I is given by
271.,216;417’/’”’”;7.71 BI,I/,m,j,l =0 ((m —+ my; ) 2 4647r(‘v m1)7(M+mJ)7) (216)

Thus we see that the series

0 .k

oy %Ac,y,m,j,, Bewmoji (2.17)

c=1
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converges absolufely, and that

* ik . 1 1
27 Z ";Ac,u,m,'j,l Bc,u,m,j,l =0 ((m + ﬁ:m)—%—%elh(—u—nm)?(m—b-nm)?) . (218)

c=1

Corollary 2.3 The series

- 2mi(m~+m;
LI :;Ac,u,m,‘y’,l Beym,ja€* T (2.19)
m=0 c=1

converges uniformly in 7 on 1, = {7 : Z(7) > w > 0}.
Proof 2.3
For m > 0 and Z(7) > w, we have that

00k
7 . . 3 K nl—pr )T 5 omi ,
27TZ?Ac,u,m,j,z Al C'I‘(m+f€m) 13ty Rmban)® gImimms )T

c=1
z CQm—%—§e~27rmw+47ru% (m-i—I)’% .
(2.20)
Proof 2.1
Let R,(7) be the mafrix function defined by
e.¢} [oe] ke
7l __ (= wi(m4m; )T
RE) = 30 20 3 it Bamse ™ (221
m= c=

By Corollary 2.3 and Lemma 2.2, we have that RYY (1) converges absolutely
in m and in ¢, and therefore we can change the order of summation in (2.1)

and rewrife the j** component of F(7) in the form

o0 OO—.kp

FO(r) = Z py) 2rilmy+v)r +2WZZ%Z Z b A, i B €2mmmT
ik

u<v<0 m=0 c=1 =1 pu<vr<0
p )

= > BT ST N S 2wy A Bomae

p<v<0 u<v<0 I=1 m=0 c=1
4

— Z bl(jj)eQWi(mj+V)T+ Z Zb(ul)R(f’l)(T)~

ur<0 plv<0 =1

(2.22)
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Since the series converges uniformly on compacts of H by Corollary 2.3, (1)

is regular in H. Now by (2.22) we can rewrife the function F(7) as

oY
- o ¢ | (2.23)
u<lv<0 b,(,p)
where 7,,(7) is the mafrix given by
TID(7) = §yePmat)T L RUD (1), (2.24)

We will prove the resulf for 7 = iy and y > 0, and by analyfic continuation
the resulf will follow for all 7 in H.
Now by (2.21), (1.107) and the absolute convergence of the double series

R,(,j D in m and ¢ we have that

R(J ) Z 2r Z Ac v,m, 7,1 Bc v,m,j, l€2m(m+mj)'r
_O =1
m a+m ~dm+av ~
0 E d <ec
(c,d) =1
=1 _zﬂ ; . a
-9 - e 10% (4,0) ,27ia ik Bcum 27rz(m+m3)('r+g)‘
L L Y b
0 -d<e
(c,d) =1
(2.25)
To proceed we need the Lipschifz summation formula.
For n>-1, O0<m;<1 and Z(r)>0, (2.26)
- n 2mwiT(m4m;) __ ’I’L + I - 271 'mJ —n—1
If n=0, m;=0 and Z(7)>0, (2.28)
[o @] . ) I I o0 ] 3
Z(m —+ mj)neZWzT(m“l"mJ) == 4 — (—'L (7_ _ q)) I 7 (229)
— 2 27rq=_oo

- o« _ Tz N
where Y 07 * = limy 0o Do -
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Lemma 2.4 If m; > 0, we have

> =1 2mi(—v —my)\"
k § : 2ri(m+m;)( 'r+ 2mwim;q . E el it S V)
oBC”mJale ’ Z e (er +d cq) n! (C(CT+d—CQ)>
m= g=—00 n=k+1I
(2.30)

and if m; = 0 we have

2 3 - 2mi(m4m;)(7+4)
— E:Bc,u,m,j,le P

= _WikB i+ if e*™ M (er +d — ¢ f: 27m —v—m) )"
= p c,,0,7,1 q CT + d— Cq)

g=—00 =k+

(2.31)

Proof 2.4

The proof is a simple application of the Lipschitz summation formula (2.27),
(2.29), the definition of B, m;; (1.108) and of the power series expansion of
Ii+1(2) (1.109). For m + my; > 0, we have:

oo
2m omi(mtm;)(r+2)
—~ Y " Beumjie T

m=0
2n+k+1 »

E+1 71'
27T —v—my\ * = <—°— v ml) <m + mj) ) 2mi(mAm; ) (r+4)
Ziy (o ) > i+

m +m; 22tk HInl(n + k + 1)!

oo 00 2n+k I n n
= 2_7T.zk Z Z 2m +k+ ( ) +k+1(m + mj) 627ri(m+mj)('r+%)
¢ c n!(n +k+ 1)!

m=0 n=0
e Zntk+1 n+k+1 ,
= 2_7T_ik Z 2_7T (‘I/ — ml) +k+ Z(m n mv_)nezwi(m+mj)(r+%)
c i \¢ nlln+k+1)! £ I
9 ) 9 2n+k+1 _ nt+k+1 F I 00 d —n—1
:-—ﬂ-zkz _E ( 12 m) n+ Z 627”qm] —., T+——q
c “\c nln+k+ D! (2r)ntT — -
S iqm; = 1 (27mi(—v— ml) "
! _
g0 S cler +d — cq)

(2.32)
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Now for m; = 0, we have thaf

O e
. ; " 4
T'Lk E : Bc,r/,m,j,l€2m(m+m3)(7+ c)

m=1I
)2n+k+1

B oo (Z(_py —my)z(m+m;)3
= ml) ? Z ( c : 2mi(mem;)(r+4)
E e i\t
( 0

m + my; 22tk tInl(n + k + I)!

m=I

oo 2n+k+1
_ 271—,[:16 Z - 2_7T " (_V — ml)n+k+1(m + mj)neZWi(m+m'j)(’r+%)
> 2l(n+ &+ 1)!

nl(n +k+ 1)!
B 27Ti'° _I(2r B Ly — )R
e c (k+I)!

2
—_— wgmy | g - —
+ nZ ( c ) nl(n+k+ 1) (2m)n+! q;ooe ( 3 (T + . Q))
«k o . n
_ _7”’ 2mriqmy; . k 1 QWZ(_V - ml)
T oc Bevosut Ze (e +d = cq) Z n! (c(c7'+d—cq) '

g=—00 n=k+1

00 tk+1 n+k+1 00
— 27{@’“2 (2_71’) ( v ml) Z m+m])n 27rz(m+mj)(7'+ )
C
1

(2.33)

Therefore we have that

2T 1
—i* E Beym 2 mtma)(r42)
c

mi® = 2 = I [(2mi(—v—my)\"
— _Bc e 2migqmy d— k - ’
CBesosit Y (er b d—eq) Y ( )

el S c(er +d — cq)
(2.34)
and we are done. (2.25) and Lemma 2.4 imply that
R(] l) ]C(J 1) + Z Z U_I(V (.7 ) 27rza—lﬂ Z e?wzm_,q ((,7_ +d— Cq)
c=1 deD. g=—0c
i I <27ri(—1/ —my) )”
S ! \eler +d—cq) ’
(2.35)
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where
00 wiF- . . I
IC,(/j’l) — Zc:I TAc,V,O,J,ch,u,O,y,la 7n7] =0 ’ (236)
0, otherwise
and
b
DC-——{d| EIVC,d:(a d)EF(I),OS—d<c,O§a<c}. (2.37)
c

Now let d' = d — cq and

1 - *
Via = Vo N I . (2.38)
0 1 c d

As g runs through all integers and as d runs through the set D, d' assumes

exacfly once each value in D¢, where

D¢ = {d/l IV, g = ( a ;‘, > el(I),0<a< c} : (2.39)
c

Now by (2.38) we have that

v (Vea)p (Vo)

(e (o 1) (v (5 7))

6—27Tim1:¢1
= v (Vea) P (Vea)
e—27rimpq
g~ 2mimig xga’l}) ng)
= v (Vea)
e 2mimpq mg;;;) x%ﬂ)
Therefore
v (Voa)oly) = v (Vea)e gy, (2.40)

Now put
ngj,l) — 5jle2ri(mj+V)T + Rz(/j’l) — /Cl(,j’l)

241
— 79(r) - K3, .
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and write WY (7) using (2.35) (with d' replaced by d):

oo N
W,Sj’l) () — Sie e2mi(mj+v)r ]\}lm Z _I(Vc,d) ((;J:i)e%m"lL (er + d)
c=1 Oo d=-N
d € D¢
i I <2m’(—u—ml)>"
Narel n! cler +d)
(2.42)
To continue we will show that the series
00 N -1 (G:4) 2mig e
v (Vea)zlye e ,
Ii = 243
N D e CTTE) (2.43)
c=1 d=—-N
d e D¢

converges. To do so we write (2.43) as

) (J 1) 2mia T p2mim;a

Z Z Z ck+2 2y+ d q) ! (2'44)

c=1 g=—0c0 deD,

and apply the Lipschitz summation formula (2.27), for m; > 0, n = 0 and
T =1y + ¢ fo get

—271"& - ) ma—iﬂ wi(m+mi)(iy+ 2 1
ZZ TR K )xﬁjd)ez 262 ramaee), (2.45)

=1 deD. m=0

For m; = 0, we get a similar result. Now we see easily that (2.43) converges

by applying a modified version of Lemma 2.5 in [6]:

Lemma 2.5 If k > 26 > 0, then the sum

o0
5[5 v tangpama| o 240
e=1 |deD.

converges.

Proof 2.5

In the proof of Lemma 2.5 in [6], Knopp shows that for £ > 0

i D ek (2.47)

c¢=1 deD,
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converges. This, combined with the fact that k& > 26 and (1.42), proves the
lemma.

Now we will show that the following series

o0

o0 N n

. _ 1 [ 2mi(—v —my)

lim vV, D) g2mia™LE (o + d)* (————)

n;—i—Z e=1I N=oo d;N ( d) o ( ) n' C(CT + d)
de D¢

(2.48)

is an absolutely convergent triple sum. To do so we rewrife (2.48) as

o 20D g2mia ™t 0 2rim;q

I od €
Z ol (27rz —v —my)) Z Z C2ndk Z (7 :% — gk

n=k+2 c=1 deD, g=—00

(2.49)

Now applying Lemma 2.5 we see that (2.48) is an absolutely convergent triple

sum, and since (2.43) converges we can rewrife (2.42) as

. k+1 oo N -1 () j2mia
W(j’l) (7_) _ 5-~le27ri(mj+y)7- _ (27{'@(—U - ml)) lim Z v (V ) Cd € c
v ’ (k+1)! 7 Nooo ck+1(ciy + d)
c= d=—-N
de D¢
00 N ( N
: -1 Jl) 2mia L k
+ ) lim > v (Vea)zdye (cr + d)* x
c=1 d=—N
d € D°
i I <2m’(—y—ml))"
et n! c(er + d)

(2.50)

To continue we need Lemma 2.13 in [7], with some modifications fo be

aplicable in fhe vector-valued case.

Lemma 2.6 Let 7 = iy, withy > 0, k > 20, v a negative integer and t a

positive integer. Then

I .l 2 a<_"wi"_> (J,z) o2 a<_mwf_
Novoo ck"'I(CT +d) - K—oo Ck“(c’/’ +d)
e=1 deDe cEZ dcD°
ld| € K 0<cZTtK |4 ZTK
(2.51)
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Proof 2.6

Following Rademacher’s proof [17], we will show that

_ 1 a(_mlﬂ
v I(V; d)m(] )e2m

- - ) C, d __
D D D - =
cEZ d € D¢
0<c<iK K <|d €N
Nofte that
VT (Veoe)204) g = v (Vea)zle2riom. (2.53)

First we will show fhe result for m; > 0. Replace d by d — cg and rewrite

the inner sum as

1 _ J0) o Amaty)
W Z v I(‘/c,d)l'g;ll)ez ¢ c [SI + Sz] s (254)
deD
K<|a TN
where o
e2rigmy
i (2.55)
oo cr+d—cq
and o
eZrigm
Sp= y, — (2.56)
Kt yon cT+d—cq
Then,
2t + Dtt=s
S0l + 18] < At DEL 2.57)
| sin wmy|ct—s
where

S:min{I,k;%}. (2.58)

Therefore we have that

_1 Gl 2 “(_m}"'_”).
v (‘/C,d)xcd m

i
Nooo d; 1 (er 4 d)
K<|d TN
2t + 1)1 0 (2.59)
[ sin rmy |+ 2+ Z K™%z
de D

* [m—8 1

<CKT Y g

de D,
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where C* is a consfant. The rest of the argument is the same as in [7].
If my = 0, write

_ l a<_mm_>
v I(‘/cd) {J, )627r1,

M ) -1 (.7 l) 27rz—(m+— 7
]\h_l,%o Z ck+I(c7—+d) ck+I Z v (Vea)z [S1 + 53 + 53],
d e D° deD,
K<|d N
(2.60)
where
St = lim Z (ciy +d —cq) ™, (2.61)
e d<lqjg e
Sy = lim > (cy+d—cg) (2.62)
T e g o
and
Si= >, (cdy+d—cq . (2.63)

Etd g K=il
Now apply the same argument as in [7] using the estimate (1.42) and the fact
that k > 20.

Now using Lemma 2.6 with ¢ = I, we can rewrite (2.50) as

ng,l) (7.) _ 5 e%‘ri(m'j-l—u)r
inl)eZ'/riaﬂlbﬂ @mi(—v — ml))kﬂ

= [
Jim Z et + d)(k + 1)

ceEZ d € D¢
0<cZK JiZK
+ Klim Z Z Jl) sza—lj—u (CT—{— d)k X (264)
ce€Z d e D¢

0<cTK 4K

4 (e

n=k+2
This 1s
@) _ §.aexmimiti)T — [f I (Jl) 2mia MLEY k
W) = O Jm 3T 3 v (Vea)el P (o + ) x

c€EZ d € D¢
0<cT K |dZK

v k 0 n
S _Zl <2m( v ml)>
 n c(er + d)

(2.65)
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Put
8572 (7)
_ sy S Y Iy el (o g
cEZ d e D¢
0<cZTK |dZTK
(2.66)
) a b _ _
Since V.4 = ( J ) € SL(2,Z), we have that
c
Q I —acT — ad + ad — be
_Z - = -V 47, 2.67
c + c(er+d) c(er+d) a7 ( )
and therefore
emaﬂj—”e—%ﬁ;ﬁ_ﬁ) _ e27r’l(V+ml)Vc,dT. (268)
Thus
SiR(r) =t BT ST v (Vea)aly (or + d)f etnilmitear,
cEZ d e D¢
0<cZK |dEK
(2.69)

Now we include the first term in the summation. Since v(I)p(I) = I, we

have that
5jl627ri(ml+u)r — ,U—I (])xg,ll)e%ri(ml—l—y)]'r" (270)

Next we include the pair (c,d) = (0,1) and we get

S(J,l)( ) _ Z Z U_I(V;, ) (7 )(C’I‘ —l—d)k 2ni(v+my) Ve, ar_ (271)
cEZ d € D¢
0ZcZTK ld 2 K
(c,d) # (0, 1)

For every transformation V.4, included in (2.71), we next include the frans-

formafion —V, 4 = V_, _4. Since we have fhaft
VI (Ve p ™ (Vea) (o7 + &)F = 07 (=Veu)p H(=Vea) (mer —d)F  (2.72)

and

62777:(ml+V)Vc,ii7' — 627Ti(ml+ll)(—vc,d7'), (273)
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we see thaf if we make fhe summaftion including the transformations -V, 4 =

V_c,—q, every term of S,E]I? (1) occurs fwice and therefore

Sﬁ]}? _ Z Z (J: ) (CT + d)k 2ri(v+my) Ve g (2 74)

c€EZ d e D¢
el 2K Jd| T K

Now let S, x(7) be the mafrix with components given by (2.74). Then we
define the matrix Mg, % (1) = v=1(S)p~1(S)7*S, x (ST), given by

il
Mgu?K(T)
I ) ‘ |
- 5 Z Z U_I( _I c, Z -Tg $£sdl)7k cST + d)k 627”(mz+V)Vu,dS"r
cEZ ade D¢
lelTK |4 TK
Z Z cdS Ifgl S (dT — C)k e27ri(mz+V)Vc,dST'
c€EZ d e D¢

lel 2K [d 2K

Now we make the transformation ¢ = d, and d = —c. This is a I-I corre-
spondence befween the pairs {(c, d)|c € Z,d € D°} and the pairs {(¢,d')|c €
Z,d € D°}. Then

l
M&JK( )
Z Z C/ d’ x o d)' (CI'T + d,)k e27ri(ml+V)VClyd/'r

¢ €L dED
12K @ Z K

_ 6jle27ri(ml+u)7— + Z Z U—I(‘/C’d)xg:il) (C’I’—i— d)ke27ri(m,+u)vc,d'r.

celZ d e D¢
0<cXTEK JdZTK

Now put
Us, (r) = v (S)p T (S)TWL(=2), (2.75)

where 7,,(7) is given by (2.24), W, (1) by (2.41) and K, is the matrix given by
(2.36). Then we have
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u(ﬂ)()
R A NETE SR S AT

c€l d € D¢
0<cXK i XK

k . n
ko dmt) I 2mi(—v —my)
(cSr +d)"e ; n! ( c(eST + d)

— 5'l 2m(ml+u)7+ lim Z Z ,U—I(V;’ (J,l) (CT+d)k 2wi(my+v)Vear

K—oo
ceEZ d e D¢

0<cZTK |dTK

Z Z (Ve.aS x%ﬁ’dsT (CST—I—d)k

c€Z de D¢
0<c¥K @l T K

sa(my+v) k I 271—'L<—V - ml) "
627rz c _' —_— .
ano n! \ c(cST + d)

(2.76)

Also Lemma 2.6 implies

Wb (r)

- 5jle27ri(mz+u)7+ Him Z Z U_I(‘/c,d (]’)(CT—Q—d)k 2ni(my+v) Ve at

K—oo
c€EZ d € D°

0<cZTK |3TK

b omislmite) 2ri(—v —m) \"
_ Z Z v (Vo) )(CT+d) Zn‘ (m)

cEZ d € D¢
0<cXK |dZTK

Therefore
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WOD (1) — UL (1)

= lim Yo Y v (VeaS)aPgrt (ST + d)F

K—o0
cEL d e D¢
0<cZK |4 %K

i Sl ) zk: 1 (2mi(=v —m)\"
n! \ ¢(cST+d)

n=

k , "
- (J,l) ) g2mi ) 1 (2mi(—v —my)
Z Z (et +d)"e nzzo .y __C(CST T

ceZ d e D¢
0<cXK JIZTK

(2.77)

* combines with (cST + d)*", it produces a polynomial of

Since the facfor 7
degree at most k. On fhe ofher hand, the limif of a sequence of polynomials
of degree at most k converging af k + 1 poinfs is a polynomial of degree at
most k. Now put

Vs, (1) = K, — v H(9)m*p 1 (S)K,. (2.78)
Clearly y(J ’l)( ) is a polynomial in 7 of degree at most k, and so is

Qg (r) = WP (r) — Uy () + ¥§) ()

] . 2.79
— TO0(r) — () 3 aGOTIN (5. 21
s=1I
By (2.24) we see that
F(r) — v (S)T*p ™ (S)F(S7)
(1) (1)
bl/ bl/ (2_80)
= > W) -Us, ()| |+ D] Vsuln) |
u<v<0 b}(jp) u=v<o bz(/p)

is a column vecfor of polynomials of degree af most k. Now, for all V =

(‘;‘ ?) € I'(1), put

Uy (1) = o™ (V)™ (V) (77 + 8) W (1), (2.81)
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Wo(r) = Ky =0 (V) (y7 + 8)*p7 (VK. (2.82)
and

QU (r) = W) —Ug) (m) + W) (7)
. L (2.83)
= T90(r) = v (V) (yr +8)* 3 P T (V).

s=1
We want fo show that the matrix Qy, (1) = 7,(7) = T, |—kv, V(7), given by
(2.83), is a mafrix of polynomials of degree at most k. We will prove this by
induction on L(V'), the length of V' when writfen in ferms of S and 7. By
(2.79), we know it is true for S. By (2.24) and the normalizafion (1.6) it is

c d
that Qpz,(7) is a mafrix of polynomials of degree at most k, we want o show

that:

; b
clear that 7,(1) = 7, |-kw, 1'(7). Now, assume for M = ( ¢ ) e I'(1)

1. T,(r)—v" Y (MS)p~ (MS) (dr — ¢)* T,(MST) = Oms, (), where Qs (7)

is a mafrix of polynomials of degree at most &, and

2. Ty(r) — v (MT)p  (MT) (o7 +d + O TMT7) = Qurr(r), where

Qurr(7) is a mafrix of polynomials of degree at most k.

I. Since Qu,(7) and Qg,(7) are mafrices of polynomials of degree < £,
we have that
T, (1) — v Y (MS)p~ (MS) (dr — ¢)* T,,(MST)
= 7,(7) — 0 (9)07(S) (€57 + ) v (M)~ (MYT (M (S7)))
=T,(1) — T (S)p™H(S) (T.(ST) — Qw1 (S7))
= Qg (1) + Tkv_I(S)p_I (5)Qn1,. (ST).
(2.84)

The first term is a matrix of polynomials. In the second ferm 7% combines

with (=2)*™ for 0 € n < k, forming a matrix of polynomials.
T
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2. Similarly, using the fact that Q. ,(7) = 0, we have

T(7) - 1( > “(MT) (er + ) T,(MT)
= T(r) = v (D)D) (e + ) v (M) (M) T, (M (7))
= T,(r) = v (D)D) (TATT) = Quia(TT))
— v (1) (1) Qur, (T7)

7

(2.85)

which is a mafrix of polynomials of degree at most k, sice Qar,(7) is.
Therefore we have shown that if Qa7 (7) is matrix of polynomials in 7
of degree at most k, so are Qug,(7) and Qur,(7). We have also shown
that Qg,(7) is a matrix of polynomials in 7 of degree at most k, and that
Qr, (1) = 0. It is clear by (2.85) that Q= ,(7) = 0, and therefore if (V) =1
we have that either V = S or V = T™, in either case we have that Qv ,(7) is
mafrix of polynomials in 7 of degree af most k. Assume that for (V) = r,
we have that Qy,(7) is mafrix of polynomials in 7 of degree at most k. Then
since Qvg,(7) and Qyrn,(7) are also mafrices of polynomials in 7 of degree

at most k, we have that the result is also true for L(V') = r + I. Therefore for

all V = ( ¢ ? ) € I'(1), we have thaf
Y

QVJ/(T) = ,Z;(T) - r]; I—k,v,p V(T>, (286)
which is a polynomial of degree at most k. Thus by (2.83) and (2.23), we have

F(r) —v(V)(ym + )"~ (V)F(V'7)

bz(/I) b,(;I)
= Z W (r) Uy, (1)) | & |+ Z W, (1)
n<lv<0 b,(/p) u<v<0 bf,p)
o (2.87)
— Z QM,I/(T)
ulv<0 b,(,p)

= QM(T; ka v, ,0),
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which is a vector of polynomials of degree at most k, since the right hand
side is a linear combinafion of polynomials of degree af most k. The proof of

Theorem 2.1 is complete.

2.2 Construction of a vector-valued modular

form of negative weight —£

So far we have that

v 6
(2.88)

where Qu(7,k,v,p) is a column vector of polynomials of degree af most k.

F(r)—v ™ (M)p~ (M) (77+6)k F(MTt) = Qu(r, k,v,p), M= ( . ) e I'(1),

We ask whether we can construct a vecfor-valued modular form of negafive
weight —k by choosing appropriafely the coefficients of the principal part in
(2.1). If turns ouf that if there are enough coefficients in the principal part,
this is in fact possible. Note that the number needed depends on k.

11 0 —I . .
Let 7' = and S = . By (2.22) , if is easy to see that
01 1 0

for n € Z we have
627rinm1

F(T"r) = F(r) =o(T™)p(T™)F (7). (2.89)

eZTrinmp

This implies that Q7 (7, k,v,p) = 0.
Since all the elements of I'(1) can be writfen as a product of 7" and S for

n € Z, we want to find b(f}, e ,bf?) such that

v (S)p Y (S)T*F(ST) — F(1) = 0, (2.90)
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or what is the same

b
v (S STF(ST) ~F(r) = Y Qsulr
p<v<0 p(®)

,(SI) (Ta ka v, p)
- : (2.91)

,(5?)(7—7 ka v, p)

0
If we do so, by the proof that the right hand side of (2.83) is a polynomial of de-

gree at most k, we will have a function F(7) with the following fransformation

law, for all M € I'(1),
F(r) = v Y (M)p~ Y (M) (yr + )" F(M7). (2.92)

Also since F'(7) is regular in H, and has the Fourier expansion at oo given by

(2.1):
FO(r) = 3 gy § wazwz  evimit Bovmage™imimr
u<v<0 m=0 u<y<0 =T
(2.93)
it follows that F(7) is a vector-valued modular form of weight —k.
Now if we replace 7 by S7 in (2.91), we see that
5'(H k,0,0) -Q4(r,k,v,p)
vH(S)pH(S) : = : . (2.99)
$(F kv.p) (7. kv, 0)
or, what is the same,
. b"") . )
v HS)pH(8)* Qs —s (_—I> : = - Qs,—s(T :
S 050 ; ;S()b@g
(2.95)
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By (2.94), we see that the zeros of Qg)(T, k,v, p) occur in pairs, except for
7 = Fi, since det(p~1(S9)) # 0.

Now, since
() (@)
Qg_1(r1) Qs-a(mr) ... Qs_p(1) b(_p% (p)(TIJCUP)
Qs_1(m2) Qs-2(m2) ... Qgs_r(12) b(_I% B g)(szk,U,P)
Qs—1(1n) Qsa(ma) ... Qs—r(ra) | | %) P (13, k,v, p)
\02 )\ QP v.p) )

(2.96)
we sef up fhe following system of equations:
(5
Qs,—1(11) Qs—2(r1) ... Qg (1) b7 0
Os-1(r2) Qsa(m) - Qsr(m) 2= TN I R B,
| | | G) 0
QS,I(Tn) QS,—Q(Tn) e QS,—-T‘(TH) b_

\ b(P)

If is clear thaf if n > k and r > n, then this system is a homogeneous system
with a nonfrivial solufion since the number of unknowns, pr, is bigger than
the number of equations, pn. Also if n > k, we have that all polynomials

QY (7, k,v, p) have n > k roots and therefore they are identically zero. How-
ever we can use the fact that the zeros of Qg)(T, k,v, p) occur in pairs, so that
if 7, is a root of Qg) (1,k,v,p) , so0is —T—Is. So let S be a set of distinct points,
S={m,...,Tn}, such that if 7, € S, then _?I; is nof in S. Now we set up the

linear equation (2.97) using exclusively elements in S. Then if n = [g] + 1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o4

we will have thaf all polynomials Qg)(T, k,v, p) have more than k zeros, and
therefore are identically zero.

We can now state the following theorem:

Theorem 2.7 Let r be an integer greater than [k/2] + 1. If we define F (1)
as in (2.1) with k > 26 and b_z,...,b_, column vectors of length p satisfying
(2.97), then F(7) is a vector-valued modular form of weight —k.

2.3 The supplementary series

Let m. and v be defined by

m;-,: I— my, vV -',: —-I-— v, rif my; > 0 (298)
m; = —mj, V= —v, if m; = 0.
Note that m; +1v' = —(m; + v). Further we can define
v(V)=0v(V) and p'(V)=p(V). (2.99)

Since k is an integer and v is a multiplier system in weight —k for I'(I), it
follows that v’ is also a mulfiplier system for I'(I) in weight —k. On the
ofher hand, since p is a representation for I'(I), we have that p’ is also a

representafion. Note fhat

PO
627rzm

7 I I T I I _ I ., k
(A7) o

Now we define the series supplementary fo RY ’l)(T) as

oo o0 .k
o~ * o~ ~ . ,
ROV(T) = D 2m 3 —Aepmjt Bewim,jpe™ "7, (2.101)
m=0 c=1 R
where
- o] 2 vdmiau7
Acwmir = > Qearje® e, (2.102)
c,d
0 —d<ec
(c,d) =1
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Rl
Bovmiji = (__":jr:nﬂ;)% Tiq1 (4—(~1/ — m}ix(m + m})%) , m4m, >0
ey
(2.103)
and
Qoars = Veary (2.104)

Note that RY" (1) is given by (2.21),and Q. 4, by (1.96) but with o/, o/, o/
and m. replacing v, p, v and m; respectively. Similarly we can define the
supplementary series 7, (7) (2.24), Ko (2.36), A,Sj’l)(T) (2.41), yW’( )
(2.82) and U473 (r) (2.81).

Using exactly the same arguments as before, we see that:
1. 7,0V (1) is regular for 7 € H.

a B

2. For every M = (
v

) € I'(I) we have

T(r) — v Y (M)p 7 (M) (7 + 0)* T, (M) = Qo (7). (2.105)

3. The polynomials @%2(7) are given by formulas analogous to those in
(2.83):
O (1) = W) = gy (r) + V()
~ , N (2.106)
= Z90(r) () (7 + 8)° Y EUOTED (o),
s=I

Here we have some facts:

I. From (2.42) we see thaf Wy l)( ) = Wi (7).

2. From (2.81) we see that [7) (1) = UZ) (7).

3. From (2.102) we see that g, = Acposi-
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4. From (I.108) we see that Bc,u,o,j,l = (-D)*1B. 051
5. From (2.36) and the above results we see that £3*) = —KCYP.
6. From (2.82) and the above resulfs we see that y“’ (1) = =Y, l)( ).

7. From (2.106) and the above results we see that

Q(Jl)( ) = (Jl)( ) — 23;(1’)( ). (2.107)

Now le b_1,. .., b, be asef of column vectors such that b, € C?, bff) # 0, for
some I <j<p, p: ' — GL(p,C) a p-dimensional complex representation,
v a multiplier system, and k > 20, k,—u € Z*. Let F(7) be defined as in
Theorem 2.1. Then by (2.23), we have that

B!
=> | | (2.108)
ulv<0 bgp)

We define the series }/4\(7) supplementary to #'(7) by

B:(I)
=Y | : | (2.109)
p<v<0 B:(p)
For M € T'(1) we have that
(1) — v (M)p Y (M) (y7 + 8)* F(M7) = Qui(r, k, v, p), (2.110)
where by (2.87),
by
Qu(r, k,v,p) Z O (T : : (2.111)
u<r<0 b(p)
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Similarly,

F(r) — o™ (M) p= (M) (v + 6)F F(M7)

— Z (WV(T) — Z:{\M,,,(T) + j}\MV(T)>

u<w<0 b—(p)
E RS (2.112)
= Z Q\M,u (T)
p<v<0 B—(p)

= @M(Ty ka 1)77 P,)

We are now inferested in studying the relationship between @ s k', p')
and Qg(T,k,v,p). As discussed before, if Qs(7,k,v,p) = 0 then F(7) is a
vector-valued modular form on I'(1) of weight —k, mulfiplier system v and
representation p. Also, it is trivial that if #'(7) is a modular form then
Qs(7,k,v,p) = 0. Analogously we see that if @S(T, k,v',p) =0, then 1/*\(7) is
a modular form on I'(I) of weight —k&, multiplier system v’ and representation
¢, and vice versa.

By the definifion of @S(T, k, v, p') (2.112), we have that

Z‘):(I)
Q Tkvp ZQSU 3

BSr<0 —Zz(p)

and by (2.107) we can rewrite @3(7‘, k,v' p') as

E(I)
QS(T k, v, p") ( Z Qs (F) — 2y5V<T)> .
p<r<0 b—(p)
S (2.113)
bu(l)
:Qs(?,k,v,p) -2 Z yS,u(?) :
p<r<0 b—(p)
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Now we have that if #'(7) is a modular form then

g’l)(T,k,’U,p) = (Jl)(T k v p) o 0’ (2114)

and by(2.113), we have thaf

E(l)

Qs(r. k', ))=-2 > V.0 | : |- (2.115)

psv<0 Bz(p)

On the other hand, we have that if @S(T, k,v',p') is given by the equation
(2.115), then we have that

Q]l)(T k? v p) (J )(T k v p) =0. (2]:]:6)

We have already shown thaf Qg’l) (1,k,v,p) = 0. On the other hand , for Mj,
M, € 1'(1), such that for

% * * % %k %
MI - < ) y M2 = ( ) and M3 MIM2 ( ) y
T 02 Yo 62 3 03

(2.117)
we have thaf
QM1M2 (T’ kv v, P)
= F(7) — v (MyMa)p~" (MrMs) (737 + 83)" F(M1 Ma7)
= v (Ma)p ™ (M) (r -+ 60)" (B (M) = v (M) () (M +60)" F (M M) )

+ F (1) — v H(My) p™ Y (My) (yar + 62)* F(Myr)
= v (My)p (M) (Yo + 82)* Quay (Mo, k, v, p) + Qary (T, K, v, p)

= QM2 (7—7 ka v, p) + QMT lk‘,'u,p ~-—2(7—)’
(2.118)

where the slash operator |, , was defined in (1.3). Thus, by (2.118), we have
that for every M € I'(1)
Qi (r k. v,0) =0, (2.119)
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and therefore F(7) is a vector-valued modular form on I'(I) of weight —F,
mulfiplier system v and representafion p.

Now we can state the following fheorem:

Theorem 2.8 The function F(7) defined in Theorem 2.1 is a vector-valued
modular form on I'(1) of weight —k, multiplier system v and representation p

if and only iof

5;(1)
@S(Ta kavlapl) = -2 Z yS,u(?) : . (2120)

u<r<0 7—(p)

by
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CHAPTER 3

Eichler cohomology and vector

valued modular forms

3.1 The cohomology group Hg,p’p(lﬂ, P)

In Chapter 2 we indicated how fo choose the coeflicients b(_j}, .. ,bgj) in
formula (2.I) to obfain a vector-valued modular form of negative weight —k.
However, in general formula (2.1) does nof give rise to a vector-valued modular

form, since for all V € T" we have that
F(T) = Fl k0, (VT) = Qu(7), (3.1)

where Qv (7) is a polynomial on 7 of degree at most k. The vector polynomials
Qv (7) are called period polynomials.

Let bk >26>0,k€Z, F(I', k+2,v, p), the space of vector-valued modular
forms of dimension p, weight k£ + 2 and mulfiplier system v, with the represen-
tation p over I' = I'(1), thaf are holomorphic in H. Let f(7) € F(I', k+2,v, p),
and let F'(7) be any (k + I)-fold indefinife integral of f(7). Then, since F'(7)
is differentiable, it satisfies Bol’s identify:

dk+I

drk+1

(7 + FF(.-7)) = (yr + &) FFED(__7)

= (y7 4+ 8)7* 2 f (M),

(3.2)
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for 7 € H and all M = ( * ; ) € I'(1). Therefore,
Y

v V) (er + d)Fp T (V)E(VT) = F(r) + py (1), (3.3)

* ok
forre Hand all V = ( i ) € I', where py(7) is a vector polynomial of
c

degree at most k. The vector polynomials py (7) are called period (or Eichler)
polynomials of f(7). We call F(7) a vector-valued Eichler integral of weight
—k with respect to I'.
As before, put (F|_x,,V)(7) = v (V)(cr + d)*p~(V)F (V7). Then we
have
Flogw,V =F + py. (3.4)

* *
Let Vi,Vo €T, V3 = ViV,, and V; = ( ) Then by (3.3), we see that

C; dl
v (Va)(esT + da)*p ™' (Va) ' (VaT) = F'(7) + puy (7). (3:5)

Also by the consistency condifion (1.4) we get that

v (Va)(ca + da)"p™ (Va) F (Var) (3.6)

= v (Vo)o™ (Vo) (erVar + di)*(car + do)*p ™" (Vo) F(Var) (3.7)

= v (Vo) (ear + do)p " (Vo) (v (Vi) (exVar + do)*p™ (Vi) F(Va7))3.8)

= v (Vo) (eor + do)*p™ (Vo) (F(Var) + puy (Var)) (3.9)

= F(7) + pva(7) + (Pva|-£,,0V2) (7). (3.10)
Therefore,

Pvive(T) = Pwa(T) = P (7) + (Pva|—k,0,0V2) (7). (3.11)

Now suppose that {py : V € I'} is any collection of vector polynomials of
degree at most k safisfying (3.11). Then we call {py : V € I'} a cocycle. A
coboundary is a set {py : V € I'} of vector polynomials of degree at most k
such that

Pr(r) = (gl V) () — a(7), (3.12)
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for all V € T" with ¢(7) a fixed vector polynomial of degree at most k. The
cohomology group qu,p’p(F,Pk) is defined as the vecfor space obtained by
forming the quotient of the cocycles by the coboundaries, where p is the length
of the vector of polynomials and P; is the vector space of vector polynomials
of length p and degree af most k.

Nofte that given f(7) € F(I',k+2,v, p), then F(7), a (k+ I)-fold indefinite
integral of f(7), is determined up to a vector polynomial of degree < k. Then
if we replace F(r) by F(7) + ¢(v) we find that the cocycle {py(r) : V €
I'} associated to F(r) is replaced by the cocycle {p}(r) : V € I'}, where
Py (1) = pv(7) + ((q]=kw,,V)(T) — q(7)), so the cocycle {py(7) : V € I'} is in
the same cohomology class as is the cocycle {p},(7) : V € I'}. Thus f(r) €

{T',k +2,v,p,p} determines uniquely an element of HS’ oL ).

3.2 The supplementary function

Knopp and Mason [12] defined the vector-valued Poincaré series P(7, p, k,v,v, ', )
in fhe following fashion. Fix v an integer and 7, I < r < p, and put

1 e27ri(l/+m7«)MT
P(r,p,k,v,v,T,r) == Z

p
2= v(M)(cr + d)*

“(M)e,, (3.13)

where e, is the column vector consisting of zeros except for the r** component

- a b .
which is a I. Here M = ( p ) ranges over some sef of cosef representatives
c
for T \I'.
A normal representation p is a representation that safisfies two conditions
[12, p.I351]:

1. p(T) is diagonal, and
2. p(S?) =1.

Let us list some facfs abouf vecfor-valued Poincaré series. Let p be a

normal representation of I'(I) and k > 20 (1.42). Then,
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1. P(r,p,k+2,v,v,T',r) € F(I',k+2, p,v) is a vector-valued modular form
of weight &k + 2 [12, pI355].

2. The space of cusp forms S(T', k, p,v) is spanned by Poincaré series [12,
p.1360].

3. The Fourier expansion for a Poincare series P(7) = P(7, p, k+2,v,v,T, 7))
is given by:
P(r) =T} (1)e,. (3.14)

Here e, is a column vecfor of zeros, except for the r* component which is a

I, and 7.f(7) is a mafrix defined by

T3 00 (1) = 6,2+ L RAGY (1), (3.15)
where
e ? - * wi(m+my )T
RU(J’Z)(T) - Z QWZ TAc,u,m,j,l Bc,u,m,j,le2 (rtma)r, (3'16)
m=0 c=I
In (3.16) B;, ., s given by
__’%_ I
(ﬁ%) Tt (4 (—v—my)? (mJFm'j)i)’ v+m <0
* 7 (m+m; kt1
B} ymi = Gz (2 (mt n) , v=m =0

E+1
2

V+ml T
m—+m;

Jea1 (—c’f(u+ml)%(m+mj)%), v+ my >0,

(3.17)
with Tj.1(2) defined by (1.109) and Jx11(2) by
00 ) ( )2n+k'+I
Jer1(2) = ; T kT DT zeR (3.18)

12, pp. 1355-1356).
Suppose that g(7) € S(I', k+2, p,v), and let s = dim S(I', k+2, p, v). Then

there exist complex numbers b1, ..., bs, along with a sef of posifive infegers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

vi,. .., Vs, not necessarily disfinct, and a sef of posifive integers ri,...,7s,

where I <r; < p, such that

g(T) :ZbiP(T?p7k+27/U7 Vi7rari)- (319)

i=1
Now we are going fo define the funcfion supplementary fo a cusp form in a

way similar fo the definifion in Secfion 2.3:

V=—I-v im;>0,
’ (3.20)
V=—v if my; = 0,
and
m; =-—my;  ifm; =0.
Also as we did in Secfion 2.3, let
5(M) = o(), P(M) = p(3T) (3.22)
and define g(7), the function supplementary to g(7) as
9(r) =Y BiP(r,pk+2,5,5,T, 7). (3.23)

=1
Note that, although the values for ¥, m;, ¥ and p are the same as v/, m}, v/
and p’ in Section 2.3. Here we form a nonentire vecfor-valued modular form
given a cusp form, while in Section 2.3 we formed an Eichler infegral given an
Eichler integral.
Now let é(T) be the (k + I)-fold integral of g(7), defined by infegrating
term-by-term in the expansion at ico. Note that G(r) is the (k + I)-fold

infegral of the funcfion

Y Ti(menbs, (3.24)
i=I

normalized so that
e271"i7”711

G(TT) = 3(T)p(T)G(1) = - G(1), (3.25)

e2mifyp
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I 1
with T = ( 01 ) Also we have

0 (V)(er + @)% TH(VIG(VT) = G(r) + By (), (3.26)
for all V € T', where py (1) is a vector polynomial of degree at most k. Now let

G(7) be the (k + I)-fold infegral of g(7), defined by infegrafing term-by-ferm

in the expansion at ico as we did before with g(7). We see that
v (V) (er + d)fp T (VIG(VT) = G(7) + py (), (3.27)

for all V €T

Now we want to consider the relationship between py (7) and py (7). To do
so we take the same sfeps as we did in Chapter 2. Let R;(j’l) (1) be defined as
the (k+1)-fold integral of R;(j’l) (7). Therefore after changing the order of the

summation as we did in (2.25), we have that

> B* 2mi(mA4m) (r+2)
*(7, l) (27r ~_1 G0 2ma—l— cvmjle ¢
R T2kl Z Z v (v)ay mz:: (m + i)k +1
0< d < e
(e,d)y =1
(3.28)

Applying the Lipschitz summation formula (2.27), as we did in Lemma 2.4,
we get that

(21)F i Brj @A) )

Ci2k+1 = (m+mj)k+1

—k 2n-+k+1 ~ ~\m - \n
_ (27) = f: 2\ " (=¥ — )" (m + M) p2mi(mA @y ) (r+4)
c nl(n+k+ I)!

—k o0 2n+k+1
_ (27T) Z & (— —ml Z n n 27rz(m+mj)('r+d)
ci2k+I c nlln+k+1)!

o 2ntk+1 (=0 — )™ F(n+1) i emiamy [ _g T+C—l—q o
: Al + kDY 20 ‘

g=—00

_(@m) T f: ™9™ (cr + d — cq)* i T (2mi(=D—)\"
- (=0 — my)*+1 ! cler+d—cq))

(3.29)
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(Note that in this case we do not get a different formula if m = m; = 0,
because P(7,p,k + 2,v,v,T',r) is a cusp form. Thus either the the coefficient
for m = 0 is zero, or m; > 0 and therefore if we follow the same sfeps as we
did in Chapfer 2, we get a resulf similar to (2.107). The difference here is that
we do not have the term 2—3% (2.36, 2.82), that comes from applying the

Lipschitz summation formula.) Therefore we have that
pv(r) =pv(7), forall V €T, (3.30)

Now following Husseini-Knopp [4] we can state the following theorem which

is proved exactly in the same way as Theorem 3 in [4].

Theorem 3.1 Let k > 26, g(r) € ST,k + 2,p,v) and G(r) the function
supplementary to g(7). Then g(7) = 0 if and only if G(r) € F(T, -k, p,7).

Proof 3.1

If g(r) = 0, then its (k+1)-fold integral G(7) is also identically zero, and
therefore py(7) = 0 for all V € T'. Thus by (3.30), we have that py(r) = 0,
and therefore

TN V) (er + &) 5 TY(V)E(VT) = G(1). (3.31)
Also, since g(7) € F(I',k + 2,p,7), we have that g(7) is holomorphic on H
and meromorphic af ioo. Therefore @(T) e F(I',—k, p,7).

On the ofher hand, if @(T) € F(I',~k,p,7), then py(7) =0 forall V € T,
and by (3.30), we Have that py(r) = 0 for all V € I', and therefore G(r) €
F(T',—k,p,v). Now since ¢g(7) is a cusp form, then if is holomorphic on H
and af 00, and so is its (k+1)-fold infegral G(7). By Lemma 4.1 in [I1], we
have that G(7) = 0.

3.3 Eichler cohomology and a mapping

of Hg,p_,p(ra Pk)

Definition 3.1 A parabolic cocycle {py : V € '} is any collection of vector
polynomials of degree at most k and length p satisfying (3.11), in which for
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every parebolic class B in T there erists a fixred polynomial ps(T) of degree < k
such that
QB(7) = pB |-k, B(r) —pB(7), VBEB (3.32)

(Note that coboundaries are parabolic cocycles.)

Definition 3.2 The parabolic cohomology group ﬁg p’p(I‘, Py) is defined as the
vector space obtained by forming the quotient of the parabolic cocycles by the

coboundaries.

In I'(T) the only parabolic class is the class of 7. Note that in ﬁipm(f‘, Py)
we can always find a cocycle in which @7 (7) = 0. For, suppose that Qr(7) # 0;
then fhere exists a polynomial py(7) such that (3.32) with B = T'. Therefore

the following polynomial is also in the same cohomology class:

Qr(7) = Qr(7) = (pr |-k0., T(7) —pr(7))
= 0.

(3.33)

Theorem 3.2 Let k a positive integer such that k > 26, v a multiplier system

in weight k and p a normal representation of ' = T'(1). Then,
S k+2,5,7) @S,k +2,p,v) 2 HL (I, Py), (3.34)
with the same mapping as in Theorem 3.1.

Theorem 3.3 Let k a posilive integer, such thal k > 2a, v a mulliplier system

in weight k and p o normal representation of I' = T'(1). Then,
S(Fa k+ 2a ﬁ) {)\) © M(F) k+ 2) P ’U) = Hg,p,p(Fa Pk)7 (335)

and the construction of the mapping 18 independent of I', k, v and p. Moreover

the map is the same as in Theorem 38.2.
Following Husseini and Knopp [4], we define the mapping

w:8Tk+2,5,9) & ML, k+2,p,v) = H,y (T, ) (3.36)
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by
u(g(r), f(1)) = alg(r)) + B(f(7)), (3.37)

where 3(f) is the cohomology class of the cocycle of the the vector of period
polynomials {py : V € T'} of the (k + I)-fold infegral F(r) of f(r), while
a(g) is the cohomology class of the cocycle of the vector of period polynomials

{qv : V €T} of G(r), the (k + I)-fold integral of the supplementary function
of g(7).

Remark 3.1 To avoid confusion note that
1. g(r) e ST,k +2,p,v),
2. 9(r) e FI', k+2,p,v),
3. G(r) is the (k + 1)-fold integral of g(7),
4. {qv : V €T} is the cocycle of vector polynomials corresponding to G(T),
5. G(r) is the (k + 1)-fold integral of 9(1) and
6. {gv : V €T’} is the cocycle of vector polynomials corresponding to (A;(T)

It may seem that the map « depends on the choice of the basis for S(I', k + 2, 9, V).
However our mapping is in fact independent of this choice, since the periods,
{@v : V €T}, of the (k + I)-fold integral of g € S(I',k + 2,5,9), G(7), are
related to those of G (1), the (k + I)-fold integral of g(r), the function sup-
plementary to g(7), by (3.30):

gv(T) = qv(7), (3.38)

regardless of the choice of the basis.

To show fhaf the map is I-I if is enough fo show thaf the kernel of u
is (0,0). Suppose that p(g, f) = 0. Then there exists a vector polynomial
p(7), of degree smaller than or equal o k, such that F(r) + G(r) + p(r) €
F(', —k,p,v). This is holomorphic on H, and since F'(7) is the (k + I)-fold
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integral of f(7) € M(T,k + 2, p,v) and p(7) is a vector polynomial, we have
that the principal part of F(7) + G(r) + p(7) is the same as the principal part
of G(7), the (k + I)-fold integral of 9(7). This principal part is
- bi ~(vitme

; (_27T7:(Vi+mri))k+1q e (359
Since k+2 > 2+ 26, the Fourier coefficients of F(r) +G(7) +p(7) are given by
the formula (2.2) and when we apply if to (3.39) we get the Fourier coefficients
of @(T) as stated by Knopp and Mason [I2, Theorem 3.2]. Therefore @(T) =
F(r)+ @(r) + p(7), so F(7) = —p(7). Since the degree of p(7) is less than or

equal to k, the (k + 1)** derivative is zero, and therefore f(7) = 0. Also since

G(r) € F(T',—k, p,v), we have that g(7) = 0 by Theorem 3.1. Thus p is I-1.
Now let &t be the map p, restricted to the space of cusp forms S(I', & + 2, p, v).
We want fo show that

L:8STk+2,5,0) ST, k+2 pv)— H-__(T,P). (3.40)

v,0,P
Let f(r) € S(I',k + 2, p,v), then

f9>r) = Z aWemilmtms)r — for 1< j X p, (3.41)
m+m; >0
and the (k + I)-fold infegral is
() a
FOD = Y. Gritmt m

m+m;>0

e2mi(m+mj)r +p(j)(7')’ for 1<j7<p.

(3.42)

Here pU) (1) is a polynomial of degree at most k. We saw af the end of Section

3.1 that the cohomology class of #'() is the same as the cohomology class of

F(7) — p(1), so we can assume without loss of generality that pi)(r) = 0. It
is clear that if p(7) = 0, we have that

F|gw,p T(T) = F(1), (3.43)

which implies that p;(r) = 0. Therefore 3(f) € H:

s (T, Pc). On the ofher
hand if g € S(T', k + 2, 5,), then

g9(r) =D b:P(r,p,k+2,0,5,T,7), (3.44)

=1
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and
S

/g\(’T) = ZEP(T7p>k+27UaVi7F’Ti)' (345)

i=1
In all the expansions of the Poincare series P(7,p,k+2,70,5;, ', ;) € S(T, k +
2,p,v), we have that m+m; > 0, for all I < j < pandall I < i < s.
Therefore in the expansions of P(r,p, k + 2,v,v;, ', ;) we will also have that

m-+m; >0, forall ITj<pandall I <i<s. Thus

)= Y demimmi or 12j<p  (346)

m+m; >0

and the (k + I)-fold integral is

€]
A() — Cm 2ni{m~m;)T 7 ; .
GO0 = D GmimrmyEEe 0, for 1< <p.
m4m;>0 J

(3.47)
Here ¢)(7) is a polynomial of degree at most k. We assume without loss of

generality that ¢/)(7) = 0. It is clear that if ¢(7) = 0, we have that

G |y T(1) = G(1), (3.48)
which implies that gr(7) = 0. Therefore a(g) € H1 (L5 Pr). Thus
Alg(r), (7)) = alg(r) + B (7)) € Hy (T, Pr)- (3.49)

Therefore we have shown not only thaf 7 maps the given spaces into the Eichler

cohomology H] (T, Py), but also that & is I-1, since y is.

v’p’p
If remains fo show that the maps p and z are onfo. We use the vecfor-

valued generalized Poincaré series, fo show that u is onfo.
3.4 The vector-valued generalized Poincaré se-
ries V(7; {py(7)},r, w)

Lehner [13] defined a vector-valued generalized Poincaré series. Let {Qv(7)}

be a parabolic cocycle of vector polynomials of degree < k on I'(I), with
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k € Z*, v a multiplier system in I'(I) and p a normal represenfation. Assume
also that Q7(7) = 0. We define the vector-valued generalized Poincaré series

\If(j)(T‘r)—Z———g)<T) V= (a b) (3.50)
’ VGL_(CT‘Fd)T, c d /]’ '

where 7 is a large posifive even infeger and L is any sef in I'(I) containing
all fransformations with different lower rows. Now we nofe that if M and M*

have the same lower row, then we can write M = T'M* and therefore

QM(T) = QTlM*(T)
= Qi |—kw,p M (T) + Qu~(7) (3.51)
= QM* (T)>

so that U (7;7) does not depend on the choice of coset representatives.

To study the convergence of ¥(7;7), we need the following facts:

I. Lemma 4 in [9]: For real numbers ¢, d and 7 = z + ¢y, we have
2

I—_:yﬂ7?(c2 +d?) < et + al|2 < 2(|T|2 + y—z)(c2 + d?). (3.52)

2. Let aéj), e ,agcj) be the coefficients of Qg)(T) Then if

p k
Kr=>Y"|a, (3.53)
j=1 t=0
we have thaf
‘Qg)(r)l < K1 (|7‘|k +y‘1) , forreH and 1<j75<p. (3.54)

3. Since Qr(7) = 0, we have that

Qum(T) = Q1 | kwp T HT) + Q1 | kg T™72(7) + ... + Qu(7)
= 0.
(3.55)
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4. Since Qpm(7) = 0, we have that

QCI‘mV(T) = Q’l'm |—k,v,p V(T) + QV (7—)
= Qv(T).

(3.56)

5 Letgr,...,q, € Z*, n € Z,
s o b
V = STV e gpt-D"" g | e gpTa g — ( ¢ ; ) (3.57)
c
and for 0 < j < s define the mafrix

M; = TCV 6 gD 019 | pegTTagTn = ( % i ) , (3.58)
Vo9

with My =T" and SM,; =V, then
lel 2 layl, el = byl [dl 21651 and |d] > |6]. (3.59)
6. For V € I'(1), by (3.1I) we have that

Q-v(7) = Q1(7) + Qv |-k, (—1(7))

D D) (R Qu() + Q) (3.60)
= Qv(T).
7. Finally,
Q1(7) = Q-1(7) =0. (3.61)
Nofte that by (3.55), we can rewrite (3.50) as
()
i) (- (1) _[ab
VD (7)) = V}; (CTV—l— iR V= ( . ) : (3.62)

Now we want to find a bound for the cocycle Qv(7) for V' € I'(I). By
(1.37), we have that

b : -
V= ( : ) — Fp ST gD e g TegT 0 ST (3.63)
d
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Recall (Lemma 1.1) that s is the number of steps in the Euclidean algorithm
applied fo the pair ¢, d.

From the definifion of a cocycle and by (3.55), (3.1I), (1.37) and (3.60) we
have that
Qu(r) = QITmST(—I)qusT<*I>s’1qs—Is...quST—qlsTn ()

- QST(~I)quST(-I>S‘Iqs—IS...qusT—qlSTn (T)

= Qsm,(T)
= QS |——k,v,p Ms T)+ QMs< )
= QS [—-k,v,p Ms T)+ QT( D)%as SM,_ 1( )

(7)
()
= Qs |-kp,0 Ms(7) + Qsm,_,(7)
()
() +

= QS |—k,v,p Ms T)+ QS l kv,p ( )+ QMS~1 (7—>
= Qs |-kp,p Ms(T -+ Qs l—k,v,p Mi(7) + Qs |-kw,p Mo(T) + Qs (7)

= ZQS | —k0,0 Mp(T) + Qpn(T)

h=0

- E QS ’—k,v,p Mh(T)

= Zv (M) p~ Y (M) (47 + 01)* Qs (MpT).

(3.64)
Now by (1.42) and the fact that |y,| < |¢| (3.59), we get
QP ()] < 3 S (W) i+ 6| QP (M) |
I=1 h=0
p s
KLY D Il e + 6l | QF (Mar) | (3-65)
1=T h=0
p s .
< K33 w6l | QY (Mar) |,
1=T h=0
and from (3.54) we obtain
ot + 8l | QP (M7)| 2 K3 I + 8alF (1Mt + 37 P + 8,]°)
(3.66)

= K, (|ah7'—|—ﬁh| +y~ Ih/hT-{—é ]k+2)
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y (3.52) we have that

k
2

T + Balt < 28 (1712 +57) (a2 + 82) (3.67)

and
k42
2

et + 65|52 € 25 (|T|2 + y‘2) (7,% +67) (3.68)

Thus, (3.66) becomes

i+ | Q9 ()| 2 K (1P +w2) T (03 +80) 7 +y7 R+ ) ),
(3.69)

and by (3.59) we have that

aT + 64" ’Q(l) th)\ Z K3 (I +y‘2)£'452 ((c +d)E ()T )

<K (E+d)F (P +y D) (1+47Y).

(3.70)
Therefore we rewrite (3.65) applying (3.70) as
ng)(T ’ < K: 252 (c +d2) (|T|2+y_2) T (1+y7Y)
(3.71)
<K s+ DA (@ +d)T (rP+y?) T (1+y7Y).
Also, by (1.39) we have that
s+122(+d%) (3.72)
and clearly
H (A4 (3.73)
Thus, we rewrife (3.71) as
Q0| = Kz (2 + )T (P 40T (1447, (3.74)
Now by (3.52) we rewrife (3.74)
I+ 4\
(J) \ZK*( r 4 dl? 7') 72 4 g2 T4yt

§ )\(T) lCT+d|k+25+4.
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Here,
k+26+4
L (14472 2 oy E£2 _
)\(7’) _—_K5 ( y2| l ) (|7-|2+y 2) 2 (I+y I). (376)

Thus, by (3.62), (3.75) and (3.76) we have that

|\I/(j)<7-;r)} Z X(r) Z ICT+d|k+25+4—r‘

‘::f (3.77)
Now we wanf fo show that WU (7;r) converges uniformly on
S:{T:m+iy:|m|§%,y2M>O}. (3.78)
First we note that for 7 € S we can bound the function A(7) (3.76),
A(r) < Ky(S)(T+y™?), (3.79)

where K1(8S) is a constant that depends on S. Also, since ¢ # 0, we have that
|CT + d|k+2 Z |C|k+2yk+2 > yk-}-?' (380)
By (3.79), (3.80) and (3.77) and for 7 € S we have

, T 4 o/k+2 )
|\I;(J)(T;,r)| < Ki(S) +y Z |c7_+d|2k+26+6 r

k
y 2 vecl
S (3.81)
S KQ(S) Z lCT + dl?k+25+6—7‘ '

Vel

Since the summaftion converges absolute-uniformly on S for r > 26+ 2k +8 [T,
pp. 15-16), so does W) (7;7). Therefore ¥V (7;r) is holomorphic on H and at
100. Moreover we have that
) ()
lim V9 (7;r) = Z Iim Q) 0,

T—100 T—300 (CT—{—d)"' -
VecL

c#0

(3.82)

since we can puf fhe limif inside the summation by fhe uniform convergence

on S.
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Nofte that for every M in I'(I) there is a one-to-one correspondence between
k% kK
L and LM. Therefore, M = VM =1 _ _ | €T, and using the
v 4 )
absolute convergence and the fact that r € 2Z*, we have

U | g, M(T) (3.83)

= v (M) (T + 8)*p N (M)U(MT;7) (3.84)

= ZU_I(M)(’)/T +8)* o I (M)Qy (MT)(cMT +d)" (3.85)
Vel

=Y " (Qv |-t M(7)) (cMT +d) " (3.86)
Vel

= (Quu(r) = Qu(r)) (M7 +d)™" (3.87)
Vel

=(r+6 Y (Quu(n) - Qu(n) (7r+8) " (389)

= (y7 +8)" (¥(757) = P(757)Qu (7)) - (3.89)

Here 9(7;7) is the classical Eisenstein series

Y(rr) =Y (er+d)7, (3.90)

veL
which converges absolutely for » > 2. Also we have the fransformafion law

W(MT;r) = (y7 + 0)"(r;r), for all M € T, (3.91)

provided 7 is an even infeger bigger than 2.

Now we define the vector valued function
(r;r)

F(r)=— (3.92)

By (3.89) and (3.91) we get

Bk M(r)
_ _\I/ |——k,v,p M(T)
Y(MT;T)
_ _Y(ryr) .
T + Qu(7)
= F(7) + Qu (7).
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Since W(7; ) converges absolute-uniformly on compacts of H for r sufficiently
large, it is holomorphic on H and therefore ¥(7;r) does not have any pole on
H.

In order fo avoid a pole in F(7) at 7 =, and af 7 = EE‘“

, we can choose

a convenient r. Basically we want fo avoid a zero of ¢(7; r) at those points.

To do so note that by (3.52) for 7 = ¢, %@ we have that

1
(et +d)

1
2 | = 2

vecL Vecr
fe] > 1 le] >1

<2} % Z

=2 ogzxg<ec M=—
(cyd) =1

s e R D e
=2 gza<e m=—00 (T (I+(m+§’)2)E

(c,d) =1

(L+4rig~ 1 (g~ 1 .
Sk 2o (Zm+m;oo ((m+1>2+1>%>

c'r+cm+d)

m=0
IT+4rP) 3t T & I
= 2K -
yr ; CT—I 7;) (m2 + 1)5

(3.93)

and we can choose an r large enough fo make the above summaftion less than

I for 7 =1, I—I—z*[:ﬂ We can also choose r large enough so thaf

X | = 1
> m<1, > (—m<1 (3.94)

= —00 d=—o00
a0 a#0
and
- I i I
Z —_—| < 1, Z —_— | < T, (3.95)
S (B gy S (B ay
d#0 a#0
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Now if r =0 (mod I2) we have that

W) =T+ e b2 Ly i L, i + ) S
(=D i (=) = i+dr & z+d — (ci+d)
;¥0 ;¥0 lef > 1
= I I
= 4 [ -
+ Z Z (_Z+d)r+ Z (C’I:—f—d)r’
d=—o0 d= —o0 VeL
ad#0 d#0 lel > 1

(3.96)
and therefore | (i) > 0. Also ,

1EV3i I I 1 o0 I
w( ’ ):”(_w(%@)w(_%@)w 2 ey

I
I et E e

d= —o0 Vel 2

d#£0 e>1

. (B T (B ay

d#0 a#0

+ Y s
i () +q)
c>1
(3.97)

and therefore [ (E‘/_z> > (0. Thus for r a large infeger divisible by 12, we

have that F'(7) does not have a pole at 7 =1 or %\/—1

3.5 Construction of a convenient vector val-
ued modular form of negative weight —k <

—26 on ['(1)

Next we wanf fo modify the function F(7) by substracting a form with

the same principal part at all poles of F(7) on H, so that we get an Eichler
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infegral with poles only af ico and the same periods as F'(7). To do so, we
wanf fo consfruct a function I ,.(7) which has a pole of order s at 7y in the
fundamental region of I'(1) and possibly af 0o, and which is holomorphic
everywhere else on the fundamental region.

In Theorem 2.7 we showed how fo construct a vector-valued modular form
H(7) on I'(I) which is analytic in H. We define H(7) as in (2.1), with k£ > 24
and p sufficiently large.

Now we want fo modify the function H(7) so that we have a pole of order
s af 70.in the 7" component. Let h the order of the zero of H(7) at 7y in the

" component. We can consider the function

,r.t
H(T) it j#r
B (r i
G-I

IV (1,8) = (3.98)

To,r =7

If is easy fo see that 1, (7, s) € F(I', -k, p,v), since H(r) € F(I', -k, p,v),
and J(7) is invariant under the action of |_,, ,.

Since J(7) attains every complex value only once in the fundamental region,
we see that J(7) — J(7) will be zero of order I in the usual variable 7 — 7,
except for 7 = 1, -I%@, where the function J(7) — J(7p) does not have a zero
of order 1 in the usual variable 7 — 7;.

The function defined in (3.92)
V()
%(r)

could have poles at H. Those poles correspond to zeros of ¥(7), since we chose

F(r)=— (3.99)

r large enough to make W(7) converge in H. Also we chose 7 = 0 (mod 12),
to make sure that () has no zeros at 7 = 1, %_3—’ Therefore F(7) will not
have a pole at 7 = ¢, 1_;_2& Now if '(7) has a pole of at 7y at the compoonent
r, and the principal part of F(7) af the component r is given by

> (=) (3.100)

ne<n<0

we will construct a form 7, .(7) with the same principal part as #'(7) in the
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componenft. Puf

o)

Iy (1) = Z W:’m,r(ﬂ n), (3.101)
Nne<n<0
where a(7p,n,r) is given by
lim ]_SS)T(T n) (T — 70)", (3.102)

and Iﬁg,)T(T, n) is given by (3.98). We note that the principal parts of 2'(7) and
I, ~(7) are the same in the component r.

We repeat the process as many fimes as necessary fo construct an auto-
morphic vector-valued form Q(7) € F(I', —k, p,v), such that both #'(7) and
Q(7) have the same poles with the same principal parfs on a fundamental

region for I'(1). Therefore,
F(r) — Q1) (3.103)

is holomorphic on H and for all M € I'(I) we have that

(7~ Q) |-k, M(7) (3.104)
=F | _pp M(T) = Q |-k, M(T) (3.105)
= F(1) — Q(r) + pu (7). (3.106)
(3.107)
Now let W (7) be defined as
k+1
W(r) = o (F(r) — Q1) (3.108

where the derivative can be calculated term-by-term on the expansion af 00,

since it is analyfic everywhere else. By the discussion in secfion 1 we see that
W(r) e F(I',k+2,p,v). Now let E;J,I:_MO b,(,?ezm(”ﬁmj) be the principal part

of WU)(7) at ico, where b7)s are a complex numbers. Then we can wrife

p
Z b P(r,p, k + 2,v,13,T, §) + B(7), (3.109)

!

=
S
H
";
[=)
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where P(7,p,k + 2,v,v4,T,j) is a Poincare series with v; + m; < 0, and
therefore the first ferm has the same poles as W(7). B(7) is therefore in
M(T, k+2,p,v). For all j, v; +m; <0, and thus the function supplementary
to P(r,p,k + 2,v,v,T,1) is a cusp form. So lef B(B(7)) be the cohomology
class of the cocycle of the the period vector polynomials {py : V' € I'} of the
(k 4 I)-fold integral of B(7). Now put

—1 3
AN =" B7Pr 5 k+2,5,0,1,) € STk +2,,9),  (3.110)

i=1 v=—pto

=

and let a(A4(7)) be the cohomology class of the cocycle of the the period vector
polynomials {gy : V € I'} of the (k + I)-fold integral of

p -1
S ST WOP(r ok 20,05, 5). (3.117)

j=lv=—po

It only remains to show thaf the function B(7) is indeed a cusp form in
STk +2,p,v). We already saw af the end of Secfion 3.3, that the cohomol-
ogy class a(A(7)) is parabolic. We will show that if B(r) is not a cusp form,
then 8(B(7)) will not be parabolic, and therefore a(A(7)) + B(B(7r)) will not
be parabolic, which is a confradiction, since we starfed with a parabolic coho-
mology class and showed that a(A(7)) + B(B(7)) equals the given parabolic
cohomology class.

Suppose that B(1) € M(T',k +2,p,v) —S(T', k + 2, p,v), then for some j,

we have that m; = 0 and

BU(r) =3 a@e ™, o) #0, (3.112)

m=0

and ifs (k + I)-fold integral will be

) o a(j)e27rim'r aéj),rk-{—l )
Dr) = - J 3.113
¢ g;:o omim TP ) (3.113)
and ) )
B a(J) a(()a) ,
(C(T) -C ‘—k,v,p T(T))(J) — —]2—'—7'/4 + ..., F 7é 0. (3114)
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Therefore all cocycles of the cohomology class of (3.113) will have a polynomial

of degree k, in which the coefficient of 7% in the j** component will never be zero

since the coefficient of 7% of pl¥)(7) cancels with the coefficent of 7 of p() (74-1).

And therefore 8(B(1)) is not parabolic. Thus B(7) € S(I', k + 2, p, v).
Therefore the map

IS8T, k+2,50) @8I, k+2,pv) — H. (T, P). (3.115)

U’plp

is onfto. The proof of Theorem 3.2 is complete.

3.6 End of proof of Theorem 3.3

Now we want fo show that the map u of theorem 3.3 is onfo. We have

already seen that
B:S(k+2,5,0) @S, k+2,p,v) — Hy, (I, P). (3.116)

is onfo. Let {Qv(7) : V € I'} be a cocycle in a nonparabolic class, with the

polynomial corresponding fo the franslation given by
QP (r) = b7 + 0@ T L+ 0T b (3.117)

We will construct a vector-valued modular form i(7) € M(T', k + 2, p, v), such
thaf the cohomology class of the (k + I)-fold infegral, L(7), will give rise fo a
cocycle {py(7) : V € T'}, where

pr(1) = Qr(7). (3.118)

Let )
i(r) =~k Y 6P P(7,p,k+2,0,0,T, 7), (3.119)

=T

where 5" is given by (3.117), and P(7, p, k + 2,v,0,T,%) by (3.13). Now the
(k + 1)-fold integral of I(7) is given by
LU (7) = k1Y) Z D (2mi(m + my))TF T 2rilmrmaT 4 skl U (),

m2m;

(3.120)
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where c,, are the Fourier coefficients of P(, p, k+2,v,0,T,7), p¥(7) is a poly-
nomial of degree af most &k, whose coefficients can be chosen at our convenience

and ¢; is given by

p(3)

— =0 ‘

%::{ kD M _ (3.121)
O, m; ?é 0

Now we choose the coefficients of pU)(7):
P9 (1) = (J) a4 a7 4l (3.122)
If m; # 0, we want to choose the coefficients so that
P(T) = ((7) [ ()Y = QP (7). (3.123)

Note that

P = 6l0) e T =) =m0+

— p(J) e~ 2mim; Z Z ( ) aglj)Th—s_

h=0 s=0
(3.124)
Therefore we can sef up the following linear system:
( [ — e=2mim;  g(L2) g13)  gLE+D) \ / ) \ ( bgj)
0 d@? @3 . gekD a9> by
0 0 d&3 .. gD : = N
: - a’l(cj—)l bl(c]—)l
\ 0 0 0 ... T-emm |\ o W,
(3.125)

where d™Y is given by

)
(-1
I_e—2mm-j(l h) h=1
dD = - (3.126)

. [—1
_e—2mmj h;é L.
{ l—h

This linear system has a unique solution for the a(?)’s, and satisfies (3.123).
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If m; = 0, we want fo choose the coefficients so thaft
G4 pO(r) = (B +0(1) ko T) = QP (). (3127)

Note that

k
S k+1
7T (8T |_k,v,pz’<f>)<”=—5j2< N ) (3.128)

s=0

Now we can sef up the system of equations

( by + 6 \
(0 dw a0t dek ) gl ) ONIDS B
0 0 d2¥ ... kD oy Tk
0 0 0 .. d&kD P = : ’
S () ) k+1
) akfl bl(c31+6j K
\0 0 0o ... 0 ) \ a’l(c]) 2
\ o) kT
(3.129)
where

-1
d®D = — ( . ) : (3.130)

This system of equations has a solution for the al)’s, since by (3.121) we see
that

b +6;(k + 1) = 0. (3.131)
And by the choice of the coefficients we have that (3.127) holds. Note that
this solufion is unique excepf for agj), which can be chosen fo be whatever
we want since m; = 0. Sumarizing, we have found a vecfor-valued modular
form (1) € M(I',k + 2, p,v), such that the cohomology class, G(1), of the
(k+1)-fold integral, L(7), has the same cocycle for T as the given nonparabolic

cohomology class. Therefore we can say thaf a given nonparabolic cohomology

class can be writfen as

B + b, (3.132)
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where p is a parabolic cohomology class in H! (T', P,). We saw in Theo-

U’p7p
rem 3.2 that
ST k+2,5,9) @S, k+2,p,0) = HL, (T, P); (3.133)

therefore, there exists g € S(I', k + 2,,7) and h € S(T', k + 2, p,v) such that

p=alg) + B(h). (3.134)
Hence the given nonparabolic cohomology class in Hg p,p(F, Py) is
a(g) + B(h) + B(1), (3.135)
or, what is the same,
a(g) + B(h +1), (3.136)

where g € S(I', k + 2,5,0) and h+1 € M(T,k + 2,p,v). Therefore the map
w: ST k+2,0,9) & ML,k +2,p,v) — Hy , (T, P) (3.137)

is onfo and the proof is complete.
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