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I

C H A PTER  1 

Fourier Coefficients of 

Vector-Valued M odular Forms 

of negative weight

1.1 O utline o f th e  th esis

In C hapter I we will use the circle m ethod as devised by Rademacher and 

Zuclcerman in [19] to obtain a formula (1.106) for the coefficients of the Fourier 

expansion of a vector-valued modular form of negative weight th a t depends 

on the principal part only. In Section 1.3 we get an estimate for the length of 

a linear transform ation in F (I), th a t depends on the Euclidean algorithm. In 

Chapter 2 we will see th a t If we apply the formula (1.106) w ith a given set of 

column vectors, a representation p on T(I) and a multiplier system v on F (I) 

in weight —k for k  £ Z + big enough, we do not necessarily get a vector-valued 

modular form, but we get a vector-valued Eichler Integral. This generalizes the 

work of Knopp In [6 ]. In Section 2.2, generalizing the work of Knopp In [6 ] p. 

183, we describe a way to  construct vector-valued modular forms of negative 

weight. In Section 2.3 we will define the vector-valued supplem entary series In 

the same way as Knopp did for the scalar case In [6 ] to  get the generalization 

of Theorem 4.9 of [6 ] to the vector-valued case. In C hapter 3 we generalize
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the Eichler cohomology to  the vector-valued case. In Section 3.2 we generalize 

Theorem 3 of Husseini-Knopp [4] to obtain an Eichler cohomology theorem For 

the vector-valued case. In Section 3.3 we state  a generalization of Theorem I 

of [4]. We also state the same theorem restricted to the parabolic cohomology. 

We conclude by using the generalized Poincare series [13, p. 164] to  prove the 

theorem when restricted to the parabolic cohomology.

1.2 In troduction

Knopp and Mason [II] obtained growth conditions For the Fourier coeffi­

cients of vector-valued modular forms of positive weight. In [12] they developed 

a general theory of vector-valued modular Forms.

Eet F ( r )  =  . . . ,  F ^ r ) ) *  be a p-tuple of Functions holomorphic

In the complex upper half-plane 7i and p : T — > GTj{p, C) a p-dimensional 

complex representation (F, p), or simply F , Is a vector-valued form of real 

weight —k  on the modular group V =  S~L{2,Z) if

I. For all V  =  G P we have

(F<'>(t), • ■ •, f * V ) ) '  l-M,o V ( t ) =  ( F « ( r ) , . . . ,  F W (r))1; (I .I)

2. each component Function F ^ \ t ) has a convergent g-expanslon meromor- 

phic at Infinity:

F ^ ( r )  =  g ^  (1 .2 )
V>llj

with 0 < m-j < I a positive rational number, an integer and q = e27riT.

The slash operator \ - k , v ,P V  In (I .I)  Is defined by:

F  |_w  V ( t ) = v ( V ) - 1 (cr +  d f  P- \ V ) - F ( V t ), (1.3)

where v is a classical multiplier system on P of weight —k. Thus v(V )  is a 

complex number independent of r  such tha t
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1. |v (y ) | =  I for all v e v ,

2. v satisfies tfie consistency condition

v(V3 ) ( c3t  +  d3)~k =  v(Vi)v(V^)(ciV2T- +  d i)_fc(c2r  +  d2)~k, (1.4)

/  * * \
wHere V3 =  V1V2 and V\ =  I I , i = 1 ,2 and 3, and

\  Q  d i  J

3. v satisfies the nontriviality condition

v ( _ 7 )  =  e n i k . (1.5)

In [II] Knopp and Mason show th a t the representation p can be normalized 

so tha t

/  p2irimi \
I I \  \  /  /  I I

0 1 / /  V V 0 i y g27rimp j
(1.6)

where 0 < m,j < I, m-j G Q for I < j  < p. These are the m-jS given In the 

Fourier expansion (1.2 ). In [II] Knopp and Mason assume 0 <  m-j < I. We 

prefer to  change the Interval for convenience. In the rest of the paper we will 

assume th a t —7r < arg uj < tv for uj € C, u  ^  0.

In the remainder of Chapter I, we will generalize the m ethod of [19] to find 

the Fourier coefficients of vector-valued modular forms of sufficiently negative 

weight (Theorem 1.9). We need to Introduce some concepts:

D e fin itio n  I . I  The set of Farey fractions o f order N , denoted by Fjv, is the 

set of irreducible fractions in the interval [—1 , 0 ] with denominator smaller 

than or equal to N .

D e fin itio n  1.2 Given a rational number where (c,d) =  I, the Ford circle 

C(c,d) associated to this fraction is a circle in the complex plane with radius 

2^2 and center at the point f  +  ^  •
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An im portant fact about Ford circles is tfiat two consecutive Farey fractions 

in F]v give rise to tangent Ford circles. Moreover two Ford circles intersect 

only if tfie corresponding Farey fractions are consecutive in Fjv, for some N.

D e fin itio n  1.3 Let ^  ^ ^  be three consecutive Farey fractions in Fjv .

We define Xc,d(N) as the arc of C(c,d) that joins the point of tangency of 

C (ci,d i)  with C (c ,d ) and the point of tangency o fC ( c ,d ) with C (c2 ,d 2), as 

we move clockwise in C(c, d).

D e fin itio n  1.4 The Rademacher path of integration P (N )  is the path joining

1 — I with i by moving clockwise from the arc Xc,d(N) to the arc Xc',d'{N), where

2  and ^  are two consecutive Farey fractions in Fjv-

i-T

T

D e fin itio n  1.5 The Farey dissection of the circle C( N) ,  given by jm[ =  e 2nN 2, 

denoted by Fdiss(N),  is a path around zero given by

e-27rW-2e27riP(3V)_

Now, by tHe CaucHy formula, if f ( x )  is analytic in tfie unit circle except
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possibly at zero where there could be a singularity, we get

d
-,L..........

r f('r\
rdx ,

a = _ L  [  m dx
m 2 m  J c m  x - + 1 

  f i x ) j

-Lss(N) *m+1 X (L8)
f i x )

2« Jr: I . , x rpm-\-I
aeF]V-fc, # )  X 

wEere £,c,d{N) is tEe patE given by

- 2 tt]V - 2 27riXc,a(A 0 (1.9)

In tEe remainder of CEapter I, we will be interested In constructing ele­

ments of F from Farey fractions ^ in Ibv, as follows. Since (c,d) =  I we can

easily find an unique Integer a, sucfi tEat

ad =  I (mod c) (1.10)

and

0 <  a <  c. ( I .I I )

We also define b = wEicE Is an Integer since (1.10) applies. Therefore,

given a Farey fraction -  In FN tEere exists a unique V <£ F of tEe form

V  = ( ] ,  c > a > 0, c > —d >  0. ( I . I 2 )
c d

Notice th a t under the above conditions, since V  € F, we have the following:

1. b < 0. For,

ad — be = I =$> be =  ad — I , (1 .13)

and since c >  0 , d < 0  and a > 0 , we Eave th a t b < 0 .

2. If d 0 then c >  —d > — b > 0. Assume th a t —b > — d. Then

ad — bc> d(a — c) > 0 . (I-W)
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THe last Inequality Holds since b < d < 0 and c > a. d(a — c) will be zero only 

IF d =  0. But we assumed tHat d ^  0. THereFore d(a — c) >  I, and ad — bc>  I, 

wHicH Is a contradiction.

3. IF d =  0, tHen b =  — I and c =  I.

ThereFore,
b = a d - l . ^  c >  _ d > _ b > 0 (I I 5 )

c

Also given a vector-valued modular Form (F ,p ), For x  =  elr'lT we define

00

f ® ( x )  =  =  Y ,  I <  J < P ,  a ®  ^  0, (I-I6)

wfiicH is analytic in tHe unit circle and Has a zero at x = 0 oF order yu-j, iF 

Uj >  0, or a pole oF order — p-j, iF pj <  0. We will use tEis Function to get 

tEe coeFficients oF tEe vector-valued modular Form by way oF tHe Cauchy’s 

Formula.

1.3 A  new  estim ate  for L(V)

HenceFortH we will assume without loss oF generality tHat c >  0 For V  
a b \

I in T (I), since V  and —V  give the same transFormation. 
c d J

(  a b ,E em m a I . I  l e t  V  =  \ in T (I ) . such that c > d > 0 and let s be the
\ c d

number of steps in the "Euclidean algorithm applied to the pair c, d. Then

1. i f  s is odd, we can write

v=Tm ( 1 ° \ ( 1 q*~i  ̂( 1 oy. . ( i92>) ( 10
V qs I J  \  0 I A  Qs- 2  I J  \  0 I J  V Qi I

( M 7 )

and
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2. i f  s is even, we can write

V  = T mS
qs - 1  I

I 0 I Qs- 2

0 I

1 <?2 

0  1

where q i , . . . , q s G Z+ are the successive quotients given by applying the 'Eu­

clidean Algorithm to the pair c, d.

Proof I .I

Therefore since V  G T(I) we Eave tEaf tEere exists an integer m  sucE tEat

I. Let c > d > 0 and s odd. We will prove (1.17) by induction. Since 

V  G P (I), we already know tEat (c, d) = I. Now, it s =  I, tEen

and since (c, d) — I, we Eave tEat d — I. It is tEen easy to  cEeck tEat

and therefore (1.17) follows For s — I if we put m  = b and qi = c.

Now assume tEat (1.17) Eolds For all transformations in wEicE c > d > 0 

and For s < s* odd. We want to  sEow tEat (1.17) will also Eold if tEe number 

of steps in applying tEe Euclidean algoritEm to tEe pair c, d is s* + 2, provided 

tEat c > d > 0. In tEis case we Eave tEat

c = r0, d = ri, c = qxd + r2 and d = q2r2 + r 3 , For r2 > r 3 >  0,

and the number of steps required to apply the Euclidean algorithm to the pair 

r2,r-i is s*. It Is easy to check tha t

(I.I9)

c = r 0, d =  7*1 and c =  q^d, ( 1.20)

(I-2I)

(1.22)

(1.23)
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Thus, by the Inductive hypothesis, and since r2 > r 3 >  0, it follows th a t we can

(* * \
in terms of the q^s as in (1.17). This combined

r 2 r3 J
with (1.23) proves the lemma for s odd.

2. Let c > d >  0 and s even. We prove (1.18) first for 5 =  2. If s =  2, then

f  a  b \
we have th a t V  — \ , where

V c  d )

c =  r 0, d = ri, c = q1d + r2 and d = q2r2, (I-24)

and since (c, d) — I, we have th a t r2 =  I and d = q2. It is clear th a t

Since the lower row of V  and the lower row of (1.25)are the same, and since 

both are in S h ( 2,Z), we have th a t a =  —qi (mod c). Therefore there exists 

an m  such th a t a =  —qi +  cm, and

(  1 q2 \  (  1 0  \  (  —qi + cm  * \  /  a b \

T S ( o i ) U I l j  = (  c J  = ( c  J  ’ (L26>

as claimed.

Now assume th a t (1.18) holds for for all transform ations in which c > d > 0

and for s < s* even. We want to show th a t (1.18) will also hold if the number

of steps in applying the Euclidean algorithm to the pair c, d is s* +  2, provided 

th a t c >  d > 0. In this case we have th a t

c =  r 0, d = r i ,  c = qid + r2 and d = q2r2 + r 3, for r 2 >  r 3 >  0 ,

(1.27)

and the number of steps required to apply the Euclidean algorithm to the pair

r 2, r 3 is s*. It is easy to check th a t
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Thus, by the Inductive Hypothesis, and since > r$ > 0, we conclude tEat

we can write tEe m atrix ( J In terms of tEe qj’s as in (1.18). TEIs,V r 2 r 3 J
combined with (1.28), proves the lemma For s even, and therefore the proof is 

complete.

We now consider the length of V  with respect to  the generators S  =

0 - I  \  /  1 I \
and T  =  of F. Namely, we write V  as a product

1 0 /  V o  I )
V  =  E V i. . .  W , where each Vj Is equal to  either S  or T Uj, for some integer 

rtj, and no two consecutive V:j are both equal to  S  or a power of T. The way 

to write V  G T Is not unique since (ST)3 = —1 and we can include the string 

(ST)3 as many times as we want. However there exists a minimal length. Let 

T(V) be the minimal length For V.

L e m m a  1.2 A n upper bound for the minimal length of a transformation V  =
a b \

I in  T (I) with c > 0  is
c d J

L ( l / ) < - ^ - ( l o g c + I )  +  3, (1.29)
log a

where

a = — -— . (1.30)

P r o o f  1.2

Suppose first th a t c >  d > 0. Then, since

I 0  \  , ,
=  —ST~qjS, (1.31)

<ti 1 J

by L e m m a  1.1 we c a n  w rite  V  as

V  =  ! T m,ST(- I)sgs . . .  [ - S T - q3S}Tq2[ - S T - qiS]. (1.32)

ThereFore,

V  = ^ 2 imS l< - 1)' qaS 7 i - 1)s~Iq- IS . . .  T q2ST~qiS. (1.33)
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Therefore if c >  d > 0, we Eave th a t

L(V) < 2 s  + 2. (1.34)

IF d > c or d <  0, tEen tEere exists n £ Z, sucE tEat

d =  d! + nc, 0 < d' < c. (1.35)

TEerefore
( a b \  ( * * \  [ I n \

c J  = U J U  J'  (U6)
Note tEat by (1.33) and (1.36), For all V  £ T(I), we Eave tEat

V  =  5 7 nm5'2"'TI)s9s)g'21(_I)s-I9s- i g  g T n (I 37)

TEerefore by (1-34) and (1.36), we Eave tEat

L ( K ) < L ^ *  * ^ + I < 2 s  +  3. (1.38)

Here s is tEe number of steps required to  apply tEe Euclidean algoritEm to

tEe pair c and d'.

Now by Eame’s theorem, as explained by Dixon in tEe introduction of [2], 

we Eave tEat,

.  5  ! ^ ± I ,  ( U 9 )log a

and by (1.34) and (1.38) we have tha t

L(V) <  2 l0gC—  +  3. (1.40)
log a

The proof is complete.

Now we are interested in bounding p(V), where p is a representation on 

T(I). Knopp and Mason [II] showed th a t

| p ^ m\ V )  |<  pL{y)- l K ^ {v\  I <  m, j  < p, (1.41)
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wEere p(V)  =  (p^,m\ V ) )  and K \  Is a constant tEat satisfies | p ^ ,m\ S )  \< K i,  

for all 1 <  rri.j < p. TEerefore by Eemma 1.2 we Eave tEat

| pG>m)(V) |<  K 2c6, 5 =  - 2 —  logpK i,  (1.42)
log a

wEere K 2 is independent of V. Note tEat since tEe minimal IengtE of Is 

tEe same as tEe minimal IengtE of V , we can use tEe same bound for

i p ( y r l i=i p i v - 1) i . (i.43)

In tEe remainder of tEis section we will prove some lemmas in order to

sEow tEat if q\ , . . . ,  qs £ Z + , n  £  Z, sucE tEat

V  = . . .  T q2S T ~ qiS T n = I  “ 6 ) (1.44)
V c  d )

and If for 0 < j  < s we define tEe m atrix

Mj = T ( - l)Sqi S T i- 1)j~Iq'j- l S  . . . T q2S T ~ qiS T n = ( a j ^  )  , (1.45)
\  5j J

witE M q =  T n and S M s — V,  tEen

|c| >  |CKj|, |c| >  \jj\, |d| >  \(5j\ and \d\ > \Sj\. (1-46)

TEese Inequalities will be very useful in Section 3.4 to sEow convergence of tEe

generalized Poincare series (3.50).

E em m a  1.3 Let q i , . . .  ,qs £  Z + and

V  = . . . T q2S T - qiS  = ^  a . (1.47)

Then  i f  s is even we have

sgn(c) = sgn(d) =  sgn(-a) =  sgn(-b), (1-48)

while for odd s, we have

sgn(c) = sgn(d) =  sgn(a) = sgn(h). (1.49)
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Proof 1.3

Since

-ST ~qjS  =
I 0 

Qj 1

fHen

V  =  £ S T {~1)Sqs. . .  [ - S T - q3S}Tq2[ - S T - qiS),

and we can rewrite V  as

v  _  ( . . .  [ S T - q3S}Tq* [ - S T - q'S}, s odd,

_  \  ^ S T - q° [ - S T - q°- '} . . .  [- S T - q3S]Tq* [ - S T - q' S ], s even,

or, what is the same,

I 0 W  I qs- 1 \  (  I q2 \  (  I 0

(1.50)

(I.5I)

(1.52)

V  =

z s

qs I ! \  0 I

1 qs \  I  I 0

0 I /  V (7,-1 I 

Now if s is odd, since all entries in

0 I J \ q i  I 

I q2 \  I  I 0

0  I j  U i  I

s odd

s even.

I 0

qs i

I qs- i  
o i

I <?2 

o I

i  o

Qi 1

(1.53)

(1.54)

are positive, (1.49) follows automatically. On the other hand since all entries 

in
' I qs \  /  I 0 \  /  I q2 \  /  I 0

0  I /  \  qs- i  I /  "  ' V 0  1 /  U i  1

are positive, then the upper and lower row of

(1.55)

S
l  qs 
o I

1 0

qs - 1  I

I q2 
0 I

1 0  

Qi 1
(1.56)

have different signs and (1.48) follows automatically. The proof is complete.

L em m a  1.4 Lei V  as in Lemma 1.3, then |c| >  \d\ and |a| >  |6 |.
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Proof 1.4

It is easily proven by induction on s.

E e m m a  1.5 Let q i , . . .  ,qs G Z + and

M  = T ( - 1)s~lqs- l S T {- l)s~2qs- 2S  . . . T q2S T ~ qiS  = [ “  ^  ) (1.57)
7 5

and

Then

V  = S T ( - I)aq*SM  = ( a b ) . (1.58)
c d

I- lc| >  |t15 \d\ ^  1̂ 1) lcl ^  M  and 1̂ 1 ^  \P\i (1.59)

2 . |c| >  |a| and |d| >  |6 |, (1.60)

3. |c — d\ >  I7  — <5| and \c — d\ > \a — /3\. (1-61)

P r o o f  1.5

First note tb a t

lcl =  I~ 7  +  ( - I ) s<?sa | and |d| =  | - £  +  ( - I ) sgs/3 |. (1.62)

(  - T  S \Now since S M  =  Has tEe form of tEe m atrix in Eemma 1.3 witE
{ a f3 J

qi , . . . ,  qs- i ,  we Eave tEat

sgn(—7 ) =  sgn((—I)sa) =  sg n (-5 ) =  s g n ( ( - I ) s/3). (1.63)

TEerefore we can rewrite (1.62) as

|c| = h7l + l(-ir«,a| (164)
=  h l+ Q s  M

and

MI =  H I  +  I ( - W I
(1.65)

= |5| + qs \P\ ,
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and (1.59) Follows.

Now since a = —a  and b = —0, by (1.59) if is clear th a t

|c| >  |a | =  |o|, and \d\ > \0\ =  |5| (1 .6 6 )

and (1.60) Follows.

(  - 7  S \
Now by (1.63) and Eemma 1.4 applied to S M  =  J witFi

\  a 0 J
q i , , qs- 1 , we Eave tEat 

sgn{—7 ) =  sgn(—7  +  5) and sgn((—I )sa) =  sgn  ((—I)s (a — 0 )) . (1-67)

TEereFore by (1.67) and (1.63) we Eave tEat

s g n { - 7  +  5) = sgn  ( ( - I ) s (a  -  0 ) ) .  (1.68)

TEus,

|c -  d\ = | - 7  +  ( - 1  )sqsa  -  ( - 6  +  ( - I ) sgs/3)|

=  I ~ 7  + d\ + | ( - I ) sgs ( a -  0)\ (1.69)

=  | 7 - 5 |  + qs \ a -  0\

and (1.61) Follows. TEe prooF is complete.

E em m a  1.6 Let q j , . . .  ,qs £ Z +, n  £ Z,

M  = T ( -V s~lgs- IS T i~i r ~2,ls- 2S . . . T ' 12S T - giS l in= ( “  ^  ] (1.70)
7  6

and

Then

V  = S l ' {- 1)SqsS M  = { a b j  . (1.71)

I- |c| >  |y| and \c\ >  |a |, (1-72)

2 . \d\ > |5| and \d\ > \0\. (1-73)
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P roof 1.6

P ut

M 1 = T (--I)'~lq‘- IS T i- 1)'~*9‘- 2S .  . . T q2S T - qiS  = I  “  ̂  | (1.74)
Vy s  )

and

V 1 =  S T {~1)Sq»SM ' = f  a b ) , (1.75)
V c' d' )

so th a t

(  a' a 'n  + 0' \  , f a '  a’n  + b1
M  =  M 'T n =  ^  and f  =  V 'T n =

y y  7 'n  +  5' /  \  c' c'n  +  d'
(1.76)

(Note ffiat tHe results of Eemma 1.5 apply to  M '  and V ' .)

Now since c = d , ol = a  and 7 ' =  7  by (1.59), we Have ffiat

|c| =  \d\ > \a'\ — |a | and \c\ =  |c'| >  |7 ;| =  (7 ! (1.77)

and (1.72) is proved.
(  - i  - 5 '  \

Since the matrices V '  and S M '  =  I are like the ones in
U  0' )

Eemma E3 wiffi g i , . . . ,  qs and g i , .. •, qs- i  respectively, we Have tHat

sgn{d) =  sgn(df), sgn(a') =  sgn(/3') and sgn( 7 ') =  sgn(5!). (E78)

Tfierefore if n > 0 we Have tHat

\dn + d'\ = \d\n+\d'\, \a'n + 0'\ = \a ' \n + 1/?'| and \ i 'n  + 8'\ = \')'\n+\5'\.

(E79)

By (1.59) and (1.79), we Have ffiat

\d\ = I d n  +  d!\ = \d\n  +  |d'|1 1 1  1 1 1

>  \a'\n + \(5'| =  |a 'n  +  (3'\ =  \{3\
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and

\d\ = | c'n +  d! | =  \c'\n +  \d'\
(1.81)

>  \j '\n  +  |5'| =  |7 'n  +  <5'| =  |5|.

IF n  =  —I then by (1.61) we have th a t 

\d\ =  | — d  +  d'\ =  |c' — d'|
(1.82)

> let' — /T| =  | — c/ +  (3' \ =  |/3|

and

Idl =  I — d  +  d'\ =  \d — d'|
1 1 1  1 1  1 (1.83)

> \ i  -  = 1 -  y + 5'| = |5|.

It only remains to  show (1.73) for n  < - I .  Note th a t Eemma 1.4, applied to 

V'  and to S M ' , implies th a t

|c'| >  \d'\, \a'\ >  \(3'\ and ly'l >  |5'|. (1-84)

(1.84), (1-78) and the Fact th a t n  <  — I Imply th a t

s g n ( - d )  =  sgn(d(n  + I)) =  sgn(—d  +  d1),

s g n ( -a ' )  =  sgn(a '(n  +  I)) =  sgn(—a ’ + j3') and (1.85)

sgn(-'y ')  =  sgn{^'{n  +  I)) =  sgn(—7 ' +  5').

Thus,

\d\ = | c'n +  d'\

= | d (n  +  I) — d  +  d'\

= |d (n  +  I) | +  | -  d  +  d'\

= \d\\n +  1 1 +  \d — d'\.

Similarly,

M = W \ \ n  + + W  ~  & \  and \ P \  =  \a ' \ \ n  + I| + \a '  ~  P ' \ -  (I-8 )̂

(1.86)
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(1.86) and (1.87) combined witE (1.59) and (1.61) imply tE at for n < — I we

1.4 T he Fourier coefficients o f a vector-valued  

m odular form  o f negative w eight

In tEis section we are going to use tEe metEod of RademacEer and Zucker- 

man [19] to calculate tEe Fourier coefficients of vector-valued modular forms 

of negative weigEt <  —2d, witE 5 defined in (1.42).

E em m a  1.7 Let (T\ p) be a vector-valued, modular form, o f weight —k and

Eave tEat

|d| =  \c'\\n +  I| +  | d  — d'
( 1.88)

> \a'\\n +  I| +  |ol — (3'\ =  |/3|

and

\d\ =  |c '||n  +  I| +  | d  — d'
(1.89)

>  [VIIn  +  I| +  Ii  ~  <51 =  l<5|-

C o ro lla ry  I . I  Let q i , . . .  ,qs G Z +; n  £ %, and

Y  — S T (-~1'>SqsS T ^ 1̂ 8 lqs^ S  T q2S T ~ qiS T n (1.90)

For 0 < j  < s define the matrix

a j  flj 

7j <5j
(1.91)

with M 0 — T n and S M s =  V. Then

c| >  |cky|, |c| >  \jj\, \d\ > \/3j\ and |d| >  |5,-|. (1-92)

V = G r ,  with c > a > 0 and c > — d > 0. Then i f  z  — cr + d, we

have
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18

/<S>(e2’* )  = /0 )(e2'“ ^ )  = Y,ncA, (1.93)
1 = 1

where f ( x ) =  ( / ^ ( z ) , . . .  , /^ (rc ))*  is given by (1.16),

, m v z + m t ' / z

'S 'cljM  =  z V 2" ^ ----- ,

p ( V ) - 1 =  (x a ‘>),

02TTim\i

O

\

02 m m p -

p(vy
(  e2nimi^

O

and we have pul

/ - »\ n . ’n?a+Tii-7-a 0,0

Proof 1.7

(1.94)

(1.95) 

\
e2mmpf

(1.96)

(1.97)

First note th a t if we let c > 0 and choose the unique a such th a t 0 < a < c, 

then V  G T Is determined by d and c, and Qc,d,i,j depends only on d and c. 

From the definition of vector-valued modular form (I .I, 1.3), we get th a t

f ( t )  =  v i y ) ~ l z k p ( y )~ l ~F{VT). (1.98)
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T I i u s ,

f i x )  =

( /(i) (a;)  ̂

V f (p)ix ) J
fi g—2-KimiT

(  Q—2'KimiT

\  /  y m ( r ) >

■pr  y  y  F ( P ) ( r )  )

\

-2 m m pr

( p—2irimiT

v~1(V )zkp(V )~1F (V r )  (1.99)

V g —2-K irripT

f*V) - I

X

/  p 2 ix im iV T

\ g2w  im pV r

f ( e 27riVr)

Now since (cr +  d) =  z, and since ad =  I (mod c),

z — d Tr a I
r  = - - - - - - - - , V t  = - - - - - - - - - - - - .

c c cz
(1.100)

Note th a t since c >  0 tfien Q(z) > 0. Now it only remains to apply (1.100) in 

(1.99) to  prove tHe lemma.

E e m m a  1.8 Let (F, p) be a vector-valued modular form of weight —k. Then 

the Fourier coefficients am = (a$ , . . . ,  a $ Y  are given by the following formula:

c, d
0 < - d  <  c <  N  

(c, d) =  f

1 = 1

a £  = e ™ - ‘"' Y .  f f
J -6 „

/«> (

c,d

eaji(a+fc-'pv ' ) )
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for any positive integer N ,  where 9 'd and Q"c d are given by the Tarey dissection 

of the circle \x\ = e~2nN 2, with Tarey series of order N .

Proof 1.8

Since fHe functions f ^ \ x )  are analytic inside tlie unit circle except possibly 

at zero where there could be a pole, we can use the Cauchy formula to get

, 0) =  _! f
I  C (N )a m  ~  2Tli J, <“<*)Jam x

where C is the circle |a;| =  e27rJV 2, for N  a positive integer. We can change 

the path  of integration by making the usual dissection of the circle C  info arcs 

£c,d{N), using the Farey series of order N .  Thus we have

m
x

o < -a  < c <~n
(c, d) =  i

We can make the change of variable

x = e-2*x-’-M  ^ ' c 4 <y?-<eld (1.104)

and substitute in (1.103) to get

a <j) =  e2^  2m
on

g 2 ir i m ^  f  c,d j ( j )  ^ £ 2ivi ( i ( N ~ 2- i i p ) -  

J —0„
c, d

0 < - d  < c < N  

(c, d) =  I

(1.105)

Now we apply (1.93) to /b ’) ^g2™ ^^ where z  = ic{N~2 — itp)

and the lemma is proven.

Theorem 1.9 Let T ( r )  be a vector-valued modular form, of weight —k with 

k > 25 > 0. (See (1.4-2) for the definition of 5.) Then for m  > 0 the 

coefficients in (1.2) are given by the formula

CO .b. plK ---
a f t )m

c = I  i = I  i'CO
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Here,
'  d m + a u

c, d.
0 —d  <  c 

(c, d) =  1

is given by (1.97) and is given by

R±1

In (1.108),

2 J*+i { j ( ~ u +  > m  + m 3 > 0

m  =  m,  =  0 .

( I .108)

Z z 'jfc + I  r(0 + ) 2

2fc+i(-g) =  20 ■—  /  t~ket+4t dt, z £
00

. 2 n + fc + I°°
^  . ; 27 , z G K .

(1.109)

„ n\(n + k +  I)! ’
n = 0 v 7

P r o o f  1.9

We note first th a t f ( x )  in the neighborhood of x = 0 is dom inated by the 

principal part P (x), where P (x)  and D(x)  are the column vectors with com­

ponents

pO')(x) =  (1.110)
v<0

and

D ° \ x )  =  E « ? v ,  ( i . n i )
i /> 0

so th a t

f j \ x ) = pG)(x) + D ® (X). (1.112)

For th a t purpose we split the Formula (I.IOI) For am into two parts

0& = Q t t ( N )  + R ^ i N ) ,  (1.113)
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wKere

Q(£ ( N )  = e2vN 2m [  ’ %c,i,j(ic(N  2 - ^ ) )
7“ T J-e ' ,

c,  d  I — I

0 E  —d  <  c  ^  TV 

(a, «) =  I

p(0 ^e2fi (a+ic x(w 2_i )̂ e~27Timip dp

(1.114)

and

*g> (W) = e*"̂ ” E EIW**5 r:  *«W (MW-* - <*>))
c,  a  i = I  0 c ’d

o z -a < c < n 
( c ,  a )  =  i

p(0  ^gafi (a+ic“I(iV~2- iv)“T)^ e- 27rim̂ dp.

(1.115)

We will first sfiow tfiat lin i/v -^  (TV) =  0. Prom tfie tfieory of Farey frac­

tions we Have

2 <L™)
and we find for —9'c>d <  p  <

ft (c(N~2 — ip))  =  cN ~ 2. (1.117)

By (1.116) and - 0 ^ d <  p  < 0"c d we get

^  (  1 \  TV"2
f t

c(N ~2 — ip) J  c(N  4 +  </?2)
N ~ 2>

c(TV-4 +  c~2N ~ 2) (1.118)
c

c2N ~ 2 +  I
>

since c < N .  Also,

c
-  r

|c(iV 2 — ip)  | =  c(N  4 +  (p2 )2

<  (c2AT4 +  A^-2) i  (1.119)

< 25TV-1,
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and by (1.118) and (1.117), we Have tHat

s(iC(2v <  e^ ( ^ - 2̂ - ^ )  

^  27rKMTV-2  -nKm
( I .120)

wHere %  =  m a x [ m i , . . .  ,m p) and Km =  m i n ( m i , . . .  ,m p). Therefore by 

(1.119) and (1.120) we Have

l ^ y ^ o ) !  <  2 ^ N - ke2̂ KMN~2e ^ Km, 

wHere z0 = ic (N ~2 — itp). Also,
OO

D®  ^e2f(« + ^ - I(N-2- ^ ) - I)^ | ^  ^ l a W i e ^ R ^ O v - ^ r 1)

u=0
OO

s t h S ' K ” .

Using tHese results we Have

i /= 0

Here

<  2f jV~fce27r'tM3V 2e~nKm |a® |e_7n/

_  ( ĵY-feg27rKMW-2
j / = 0

C, =  2 te “ ,r,tm5Z |aJ,,)|e“w ,
i / = 0

( I .122)

wHicfi is finite since |e ,r| <  1 and tfie series is convergent inside tfie unit circle. 

Now in order to bound |fiC)(z,zj|, we need to use tfie estim ate for p discussed 

(  a b \
before (1.42). For V  = I J £ F wfiere c >  a >  0, c > —d >  0 we Have

\ c  d J
by (1.15) tfiat

(d-1) 0,0 OOI <  K ^ 25 

< k 3n 25,
(1.123)
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where 5, K? and K 3 are constants independent of V. Therefore

-  v - ' W x M e 2™— ^

< k 3n 25.

Thus we have, 

<  e
p re”

e  e ^ / ;
) — T 'J

C N ~ ke2nm 2dip
c, d I— I

0 <: -  d  <  c <  TV 
( c ,d )  =  1

jpie ~2nN 2(m“ i5)_/v'-fe+2<5 £  j£
c, d  c 'd

0 K — d  <  c ^  TV 
(c, d) =  I

=  K % e ~ 2wN  2 (m ~<5) j\j~ k+ 2 5

where iCj is a constant independent of V. We conclude th a t Iimjv-»oo I 

0 for k > 26.

L em m a  1 .10 The following series converges absolutely for k > 28:

c= I C

where is given by (1.107) and is given by (1.108).

P r o o f  1.10

From (1.123) and (1.107) we have th a t

jk
—  A is -'15< K iCM.

(1.124)

(1.125)

! m ( T V ) |  =

(1.126)

(1.127)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



25

On flie otKer Hand, for m  +  m-j > 0 we Have tHat

fc+I
( —u — m { \ ~ ^  ( .  . 1 , , i '

l k + l  ------ { - V  -  m i )  2 (771 +  771^)2i I rv~ri- im  +  m-j J  \  c
j  \  2 n + fc + I

te-f2
Em  +  m-j J ^  22n+k+1nl(n  +  k + I)!

J '  n = 0

— ^  —  m { \  k+1 ^  / 4 7 t 2 ( — i /  —  m i) ( m  +  r r i j ) \ n I/  \  /c-f-i OO

( ^ )  5
- i /  -  mi

=o
fc+i

c2 y n!(n 4- k +  I)!
\  K+J-

j  g 4 7 r 2 ( — m j ) ( m + m j )
\  C /

( I .128)

and for m  =  m-j — 0, we Have tHat

O I / 27t( — U — TO;)\ fc+I
(fc +  I ) | ^  c J  • ^ - I29)

In bofH cases tHe series (1.126) converge absolutely for k > 28.

L em m a  I . I I  Let L’(r ) a vector-valued modular form  of weight —k with 

k > 25 > 0. Then if  m  + m j > 0 the Tourier coefficients in (1.2) are given by 

the formula
OO P

= 5 > c)‘ E  E  . (I.I30)
c = I  Z =I v<0

Here A ĉ mtj ti is given by (1.107),

T
1 S,m,i =  7 /  g(j){u,c,v,l)duj, (1.131)

* J —oo

and
roo

H r vm. il  2 Sill

where

noo

c,v,m,j,i  =  2sIn7rL j  g^J\u j , c 1u,l)du,  (1.132)
Jo

gQ\uj, c, i/, Z) =  (1.133)
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and is the integral on the keyhole path, which is the path that goes from  

—oo to 0, with the argument it, and then goes from 0 to —oo with the argument

— IT.

Proof I .I I

We evaluate Qm(N),  under tEe above conditions. If we substitu te uj =  N ~ 2—i(p 

in (1.114), we Kave

p T r'N^re'

tr fit 1
c,d

0 < - d  < c < N  
(c, d) =  I

x p(0 ( e ' ^ ( a+ic Ia~1) ^ e 2mnadw. 

TEerefore by (1.94) and (1.110), we Eave

Q S ( N )

= £  E f w 2”"?! /
7  T  1

I f'N +6c,d 2irmt
(ic) id e 3 e ^

7 - t  1c, d  •> — 1
0 <  —d < c < N  

(c, d) =  i

2 rviau   2 n u

u<0
27r ia v

Qc,d,ije27Tidrr: ( i c ) k  Y 1 e av)j^m ,j,i
c , d  2 = 1  ^ < 0

0 5  - d  < c <  TV 
(c , d) =  I

wHere

( I . 1 3 4 )

( 1 .1 3 5 )

T f  c<d , 2ir (v+mt) n , , ^-  / u ke  ^ T ~  e (m+rn^ uldu
t P v -2- < a

I  f N~2+idc, a
t  / g^3)(u},c,u,l)du>.
1 J~N-2-ie"A

Now we cut tEe complex plane from 0 to  — oo along tEe negative real axis, 

and consider tEe patE sEown in tEe figure below, witE e. 9' and 9" > 0.
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£ + J  ̂ I

—  00

Then we can write

I r(°+) i  r~£ i  r - £- iec,d \  r N '2~iec,a

W i '1 = i  J - „  ~~i i-oo L  J -
_  I /*-£+<,a _ l  r s I f

i Jw-i+ie1 i J - £+ie' ,  i J -

c.d

=  -  J i W  -  M N )  -  M N )  -  M N )  -  J S( N )  -  J e ( N ) ,

( I .136)

where the integrand In all the Integrals Is

^e_2Kjjgp) eMm+mj)aj' (1.137)

Note th a t the argument In J i(N )  is — n  and the argument In Jq(N)  Is 7r.

We also assume th a t 0 <  e < N ~ 2. Now In the Integral ^(-^O we have

tu =  — £ +  iv, 0 >  v  > —0'^d,

t =  - e ,  $  ( J )  =  <  0 ,

and |a;| =  (e2 +  v 2)1 < (N ~4 +  c~2N ~2) 2 < 2^c~1N ~ 1.
( I .138)

Therefore

\j 2(n )\ < e l d2 h - kN - ke - 2<m+m^ e

< 2 h ~ k~1N - k- 1.
(1.139)
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Similarly we Have

\ M N )\ < 2%c~k~1N ~ k~1. (1.140)

In the Integral ~MN), we have

uj =  — u — id”d, —N ~ 2 <  — e < u < N ~ 2,

=  V -2, St ( I )  =  ^  <  4c2

jic| =  (ti2 +  # 3 ) 2 < (N ~4 + c~2N ~ 2)2 < 25C-'JV1,
(I H I)

and therefore,

\ M N )\ <  {N~2 +  e) 2 h - kN - keMm+m^ N
^  2^+^ Q—k—lpij - k —l^2n(m+mjYN~2-Sn(u+mi)

(1.142)

Similarly,

|74(7V)| <: 2I+2C~k~IN ~ k~Ie27T(m+m̂ N 2- fcrH-mI). (1.143) 

Finally, we have

p —ixlk r —£ pirik p —oo
M N )  +  M N )  =  —  /  + —  /  , (1.144)

* * /—OO ^  • / —£

where the integrand is given by

| o f e - ) o ,  ( I .145)

Thus we get

Ji(W ,e) +  'J6(N ,e) = - 2 a in n k  tke ^ ^ e ~ 2̂ m+m^ d t .  (1.146)

(Here, for clarity we have written 'Jj(N) =  J i(N ,e )  and 'Jq(N) = J6(N,e).)  

Combining (1.136), (1.139), (1.140), (1.142), (1.143), (1.146) and making e 

0T,  we get

7  ■, =  7 ,  - ,  +  H - ,  +  6 B T2 ^ r _ fc _ I  / v _ f c _ I e 27r(m+m3)]V-2_87r(M+mi)

(1.147)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

wHere p  is tEe smallest v  sucE tEat a^(h) ^  0 for some h, |© i| <  I,

T 2'!r(L' + mt) 0 / , \ / \
I'c.v.mM =  -  /  v  e---- ^ e 2̂ m+m’>duj (1.148)

^ J —oo

and

=  2 s m r t  £  (1-149)

Now by (1.135) , (1.124), {He fact {Hat )T f  c "1 <  N  and (1.123). we obtain

Q $ m  = Y
c, d ^— I

0 <  -  d  < c <  TV 
(c , a) = i

27riat/
x +  H ™ . , )

i /< 0

+  Y 1  Y ^ nc’d’i’i e27rid̂  (ic);
c .S  Z = I

0 <  — d <  c <  TV 

(c , d) — I

x 
{2<0

z C~k~l ] \[ -^ - l eMm+m3)lSr-2-&n(fi+ml)

v<  0

Y  £ SU« e2”id“(fc)ft
c, d ^ ^

0 5  - d  <  c <  TV 
(c , d) =  I

27ria^'
x > e c aE 2 ir ia v  n \  ,- j. j j  \

e  c a v {■L'c,i/,m,j,l +

v<0

+  |a ^ |6022^A/'_fc_Ie27r(m+m;')w-2_87r(A1+m!) 52
^ < 0  c, d

0 ^  - d  <  c K  7V
(c, d) =  I

52 5><^e27r̂ c)fc
c, d ^— I

0 < - d  < c K  7V 
( c ,d )  =  I

2ivia.u
Y ^ ‘ ^ ( Z ^ mJi  + Hm U )
v<0

0 ( N ~ 1 ~“e"

x
!X < 0

r—k+2S 2w (m + m j)N  2 i

( I .150)
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where |0 2| <  I and |0 i | <  I . Thus by (1.150), (1.113) and (1.125), we Have

TV p

& = ' D ic>i E  E
C— I  0 < - d <  c 1=1

(c, d) =  I

27ria^
( I .151)

E 2'Kiav (I)/-,- TT \
e c av (-bc,i/,mJ,T +  -nc,iv,mj,;)

v<0

+  o ( N ~ k+25e2w(-m+m^ N~2).

Now let N  —>■ oo. Since k > 25, by Lemma 1.10 we Have tHat the series 

converges absolutely and tHerefore

OO p

( W j , J  +  Hcu.m-u) , (1.152)
c =  I  i = I  v< 0

wHere A c < Is given by (1.107). Now from tHe theory of Bessel functions 

we Have tHat
fc + 1

-r t t  2 n  ( — u  —  m i \ ~  ^  / 4 i r . . 1 . . A
T-j c , i / , m , j , i  +   ̂ 1 m  _) _  m . J  k + 1  ( u  —  m i ) 2  ( m  +  r r i j ) 2 J

2 n

( I .153)

well defined since m  + m j > 0. Here lk+i(z) Is given by (1.109). THIs reduces

( I .152) to
OO .fc p

4 ? = 2* E  7  E E  (ri5i)c
c—I 2=1 i/< 0

wfiere BC)l/)TOJy is given by (1.108). Tfiis completes tHe proof of Theorem 1.9 

for tHe case m  +  m,- > 0.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

In order to  complete tEe proof of TEeorem 1.9 for tEe case m  — m-j = 0, 

we note tEat

2ir ( 2t;(—v — m{) \  k+I
^  (k +  I)! V )  '

Also we note tEat tEe estimates (1.139), (1.140), (1.142) and (1.143) Eold. 

TEerefore,

L em m a  1 .12 Let L '(r) be a vector-valued, modular form of weight —k, with 

k > 25 > 0. Then i f  m-j = 0,

( I .155)

c=I 1=1 v<0
( I .156)

where ~Ac,v,o;j,i given by (1.107) when m  = 0, and

(I.I57)

TEeorem 1.9 follows from (1.154) and Lemma 1.12.
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C H A PT E R  2 

Construction o f Vector Valued  

M odular Forms of negative 

weight

2.1 In troduction

In tHe first cfiapter we saw tHat tHe Fourier coefficients of vector-valued 

modular forms (1.2) of negative weigfit are given by (1.106). Now tHe question 

is: wfietfier, given a set of column vectors 6 _ i , . . .  ,b^, a representation p on 

F(I) and a multiplier system v on T(I) in weigfit —k for k > 25 (1.42) and 

k G Z, tHe formula (1.106) gives rise to  a vector-valued modular form of 

negative weigfit —k. Tfie answer: not necessarily. Tfie transform ation law (I. I) 

does not necessarily Hold, altfiougfi it does Hold up to an aditive polynomial 

of degree at most k. Tins Is tfie content of our next tfieorem.

TEeorem 2.1 L et f e _ i ,  • • . , be a set o f  colum n vectors such tha t bu G C p, 

b/j, 7  ̂ 0, p : F (I) — ► GL(p, C) a p-dimensional complex representation , v 

a multiplier system on T(I) and weight —k, and k > 25 (see 1.4-2), with
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k, —/j, G Z + . Define

(  V - '  }D)c,2m (m i+ v)T i V ' '00 }fD e 2m (m + m i)T  \
2^ijx< v< 0  Uv e 2—/m = 0 Um e

F ( r ) (2 . 1)

jfsi)e2vi{mv+v)r _|_ ffF) e2ni(m+mp)r
•p< v<Q

where for  m  > 0 we define bm as the column vector with components given by

OO . f .  p

iff = 2x J2 7  E  E  ■ <2-2)
C—I  i = I  fj.<v<0

with mj,i given by (1.107) and B ^ m ^ i  by (1.108).

Then

1. F ( t ) is regular in the complex upper half-plane Tt, and

2. F (r)  satisfies

where Q M {^,k ,v , p) is a column vector o f polynomials in r  o f degree at most 

k.

E e m m a  2 . 2  For k > 25 the series

F (r )  — v I (M)('yr + 5)kp 1(M )F (M r)  = QM(r ,k ,v ,  p), (2.3)

for all

(2.4)

00 nk
(2.5)

C—I

converges absolutely, and  as m  —► oo, we have

,47r(i2—Km)'2 (m+KM)3

c —I

where

Km =  . . . ,  m p) and %  =  m ax (m i,. . . ,  m p). (2.7)
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P roof 2.2

The strategy is the same as in [5]. First we will show th a t

OO . juIT _

c = 2

Then we show th a t a s m - > o o  the summation on c is dom inated by the term 

for c =  I.

In order to  bound we use ( I -123) to  get

|A E
c, d 

0 ^  ̂< c
(c, d) — I

27rimla+mfd o*i&i±3!' 
c e c

C, d

0 <  — d <  c 
(c, d) =  1

(2,9)

=  O  (c2i+I) .

On the other hand, from the power series definition of lk+i{z) (1.109) we have

that

Also, we have

lk+i(z) < z k sinh 2 .

sinh z < — sinh B,  for 0 <  z <  B.
JD

(2.10)

(2 .II)
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Now by (2.9), (2.10), (2.II ) , (1.108) and tHe fact tHat k > 28, we Have, for 

m  + m-j >  0 ,

oo .u l k
m,j,l

c= 2

c = 2
E -I / t /A (il) 27r.-m*a+mj a 0-,-jam+a^

c, d 

0 <  — d <  c 
(c, d) =  I

( —̂  —m ;)fc+2 . /  . .1 . , ^
j — s m h  (  2 7 r ( m  +  m-j) 2 (—u  —  m z ) 2 )  /  y - f c + 2 5 - I

m  +  771̂ )2 

C ^ m  +  m j ) - h 2nim+m>)i{- u- mi}

c= 2

(2 .12)

Also from (2.9), (1.108) and tHe fact tHat k > 28, we Have for m  + rrij = 0 tHat

d G )
£  c,v,0 c,v,0,12tvJ 2

c = 2

THe term  for c =  I is 

27rz

2'KV~l ( V ) x ^ ’l'> e2ni(mi a+mj ̂  e27r*(dm+ai/)

E 1
c = 2

(2.13)

fe+1
-  mi

m  + m-j /

Also, by [20], we Have

7fc+l(*0 V2n z

Tk + 1 (4 7 r ( - i / -m i)2 (m  +  mj-)^)

(2.14)

(2.15)

Thus, the behavior for the term  c = I Is given by

2 « ‘ X i , f t , * * ,  =  O  +  ■ (2.16)

Thus we see th a t the series

*  ik

c = I
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converges absolutely, and tEat
OO

271" ^   ̂ Ac^u,m,j,l ^c,v,m,j,l O iijTl H~
c =  I

Corollary 2.3 The series

£
m = 0

oo

,le
27ri(m+mj)r

c = I

converges uniformly in t  on l w = { r  : T (r)  > w > 0}.

Proof 2.3

) .  (2.18)

(2.19)

For m  > 0 and J ( r )  > w, we Have tEat

OO

2tt Y  B c M l e2̂ m+m^
c = I  C

C V

< C2m  * 2 e— — — —2'irmw+4:irfi12 ( m + l ) 12

(2 .20 )

Proof 2.1

Let TZu ( t ) be tEe m atrix function defined by
OO OO .fe

=  £  2* £  (2.21)
m = 0 c = I

By Corollary 2.3 and Eemma 2.2, we Have tEat TZv’l\ r )  converges absolutely 

in m  and in c, and therefore we can cEange tEe order of sum m ation in (2.1) 

and rewrite tEe j th component of F ( r )  in tEe form

F ^ ( r )  =  b ^ e 2 m (m :j+ v )T
00 ik P

p  OO DC . U
—    —  l

£ £ ^ £  £
jj,<u< 0 m = 0  c = I  Z=I f i< u < 0

2tv itjrij +u)t

H < v<0

2n i{m .j+ v)

H<i/<0 fj.<u<0 1=1
(2 .22)

27ri(m+mj)r

2 ' j T i { r n Jr 7 n j  ) r

1=1 m = 0 c = I

P
bO)e^(m j+ u)r+ ^  Y b ^ B ^ i r ) .
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Since tEe series converges uniformly on compacts of Ti by Corollary 2.3, F ( t )  

is regular in H.. Now by (2.22) we can rewrite tEe function F ( r )  as

( biJ> \
F ( r )  =  J 2  W  i , ( 2 . 2 3 )

^ v<° lip) .\ ° u  /

wEere % ( r ) is tEe m atrix given by

T 0,0(r ) =  S..ie2* i{mj+V)r +  n ^ l\ r ) .  (2.24)

We will prove tEe result for r  = iy  and y > 0, and by analytic continuation 

tEe result will follow for all r  in 77.

Now by (2.21), (1.107) and tEe absolute convergence of tEe double series 

TZu'l) in m  and c we Eave tEat
OO OO

m = 0 c =  I
oo oo .1.lk

t> I (V’) x ^ e '
rre=0 c = I  Cj a

0 ^  — d <  c

(c,a) = i
OO T

2»E; E o'I(r)x(i-,|e2~̂ i'=E;
c =  I c<d m = 0

0 ^  ~ fi <  c

(c, a) =  i

To proceed we need tEe EipscEitz summation formula.

For n > —I, 0 <  m-j < I and Z (r) >  0,

27rz(m+rrij)T

(2.25)

- n —I

ra = 0
(2 7 T )r
v '  5 =  —OO

If n  =  0, m-j =  0 and I ( t )  >  0,

^ £ ( m  +  m j)ne2wiT(m+mj) I - I

m=I

(2.26)

(2.27)

(2.28) 

(2.29)
q= —oo

wEere £ ^ - o o  =  I i m ^ ^
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E e m m a  2.4 I f  m-j > 0, we have

= f -  e“ "*(cr  + i - c q f  f  - ± - ( 2f - V - m '\
c n\ \c (c T  +  d — cq)m= 0 q= —oo n= fc+ I '  v '

(2.30)

and if  m-j = 0 we have

2tx
OO

tlLjk \ . ,p27ri(m+TOj-)(r+|)
C m—0

. OO * OO _■ /  ,

■ScAi, + E  e2"'!'", <CT + d -  «*)‘ E  Zi ;
I  b  • V  (

/ i  =  —  rv~> r i  —  T - 4 -  T  '

(2.31)

, \ c(cT + d — cq)q=—oo n=k+1 '  '■

Proof 2.4

THe proof Is a simple application of tEe EipscHItz summation formula (2.27), 

(2.29), tHe definition of B ĉ m^i  (1.108) and of tfie power series expansion of 

lk+i(z)  (1.109). For m  +  m-j > 0, we Have:

00
 ?-fc v  B - ,p27ri(m+md(T+7)

^ m = 0
/  , . \ 2 n + f c + l

9 -tr 00 /  72 m \  ^  00 I (—̂  — m A ^ im  + to ,) 2 )

c I m  +  m ,■ /  22n+fc+In!(n +  k + I)!
772—0  X J '  7 2 = 0  V '

^  y -  f *  /2 7 T y n+fc+i { - v - m ) n+k+\ m  + m 3Y  
C n!(n +  fc +  I)!

2-7T “  /O tt-X 2n+fc+x _  ™/|n+fc+I °°
— i * E  I —  I ( ] „ E ( ™  +  m s)c f i v d  nl(n + fc +  I)l

= f  “ +‘ ( - - - m,)-+*+■ r(„+ i) ^  ^  _ \
C “ V c J  n ! ( n  +  fc +  I ) !  V V c  7

_  (cr +  d  -  c q f  E  i . ( 2,ri( - ‘/ - m' E “
7= — TVi---------------------------------------------------------/n---I-_l_ T '

n! Vc(cr +  d — cq)
g = —oo n=fc+I x v '

(2.32)
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Now For rrij =  0. we Have tEat

C Tm — 1
✓ i I \ 2 n + / c + I

00 /  \  x  “  [ t f { - v - m i ) 2 ( m  + m-j)2 )2lr -k f  - V  ~ m i  X - ^  j  c2ni(m+m,)(T+
^  \  m  + m-j J 22n+k+1n\(n  +  k  +  I)!
m =  I V J '  71= 0  v '

V '  v V  M 2" ^ 1 (~ y ~  m 0 W+fc+I(m  +  mi) n _ 2 7 rifm + m ,)(r+ -)’k V '"" ' V / 1  v— — ’’H)  yi/o ~f  11 oj j

c 1 ■“  l e y  ro!(n +  & +  !)!
m = I  n = 0  v '

2 , ,  g  / 2 , y —  ( - r m , r y  g  +  2, 1(ra+mj)(r+|)
■“  \  c J n\(n  +  k +  I)!vt —(1 '  / ' ' m — T

-%
C . _ ,  . . . . . .  , . .  , _ . .

n = 0  N /  v '  m = I

27T.fc f I / 2 7 r\fc+I {—v — rrii)k+1
’ 2 V c J  (k +  I)!

-  / 2 7 r \2-+ fc+I (—!/ — m ;)w+fc+I T(re +  I) ^  ^  /  /  d _  '
^  W  nl(n + k + l)l (27r)n+I q~ >0 \  \  c ,

™k P 1 v - 2’riom-i r - 1 I - i )k V  1 y- ( e r  +  d - c )  ^  ^  ^ _  j  .
q=—oo n = k + 1  v  v ^ y /

(2.33)

Therefore we have th a t
OO

■?fcV ' R  ■ ,p27r*(m+mT(T+7)2tT... °°

C m = 0

, V  > « / „  , ,  „ xfc Y '  1 / 2 7 T z ( - / / - m z) y
- — i W + 2 ^  ' ( c r  +  d - o j )  ^  s ( c(CT +  d _ c9)J  ’

q=—co n = k + 1  v  7

(2.34)

and we are done. (2.25) and Eemma 2.4 imply th a t

OO OO x
n (J ’l\ r )  = K,{vj 'l) +  J ]  ^  v - ' i V c ^ x ^ f e 2™ ^  ^  e2nim^  {cr + d -  cq)k x

c = I  d£D c q=—oo
oo

E l  (  2m ( —is — mi)
rt In! V c(cr +  d — cq)n = f c + I  \   ̂ 1 '*/

(2.35)
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where

— J E - i  c m j 0
0 , otherwise

and

a b
D c = { d \  3Vc,d = {  ~ ) G r(I),0 <  - d  <  c,0 <  a <  c

c d

(2.36)

(2.37)

Now let d! =  d — cq and

Vc,(P Vc,d
1

0 I

a * 

c d'
(2.38)

As q runs through all Integers and as d runs through the set D c, d! assumes 

exactly once each value in D c, where

D C= U I 3Vc,d' = \  a * ) G T ( I ) ,0 < a < c (2.39)

Now by (2.38) we have tha t

v - ^ V c J p - 1 (Vcd)

=  V -1 I Vr
I  0 I

/  £>—2nimiq \
= v~1(Vc,d,)

V
(  g—2irimiq

0—2'Kimpq
p ~ l { v c4 0

=  V {Vc'df)

^—27rirripq

X(1,1) . 
c,d' ■ x (1,p) \x c,d1

•" 
1—1 . T (P’P) Xc,d' /

T h e re fo re

Now put

= fye27rî +i/)T +  -  K.™

= T i » \ r )  -  £&'>,

(2.40)

(2.41)
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and write W v '1\ t ) using (2.35) (with d! replaced by d):

oo JV

W P ( t ) -  5 j l e 2ni('rnj+1/S>r =  5 3  I u n  ^  ( c r  +  d t  x
' TV—>00

C= I  <i — —IV
d G D c

OO

E l  z' 2 i r i ( —v  — m i )  

n!n! V c ( c r  +  d)n=k+I \  \ /

To continue we will show th a t the series

00 N I/'T/ l"(+1/

(2.42)

t- ^ l (Vc,d)Xc,’d &2 /9 tq\
Z ^ tv1- ^  ^  ^ ( d j z  +  d)  ̂ ^
c=i d = -jv \  y  >

d e  D c

converges. To do so we write (2.43) as

00 00 x/rr \ (j,l) 2nia^^-p2mmjq
V  V  V  S VcA X̂ : i l  l _ f   (2 44)z_> cfc+2 ( i v  , 4 _  0) ’
c = I  q = -o o  d&Dc \  ^  c y )

and apply the Eipschitz summation formula (2.27). for rn:j > 0. n  =  0 and 

t  =  i y  + -  to get

OO ^ OO—27rz
c

=1 deDc m=0

For m j =  0, we get a similar result. Now we see easily th a t (2.43) converges 

by applying a modified version of Eemma 2.5 in [6 ]:

Eemma 2.5 7/ k > 25 > 0, then the sum

E
c =  I

converges.
deD,

c~ fc“ 2 (2.46)

Proof 2.5

In the proof of Eemma 2.5 in [6 ], Knopp shows th a t for k > 0
OO

E  E  c_‘"2 <2-47>
c =  I  d&TDc
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converges. This, combined with tEe fact tEat k > 28 and (1.42), proves tEe 

lemma.

Now we will sEow tEat tEe Following series

n= k+ 2  c = I  d = ~ N
d S  D c

(2.48)

Is an absolutely convergent triple sum. To do so we rewrite (2.48) as

E   — k----------  ^
n = k + 2 ' c =  I  d£T)c g = —oo  ̂ +  c ^

(2.49)

Now applying Lemma 2.5 we see tEat (2.48) Is an absolutely convergent triple 

sum, and since (2.43) converges we can rewrite (2.42) as

(c\ •( \\fc+I 00 2V
WM(r) -  Sjle ^ ) +̂  = ~ m‘]) E  Iim Vv v '   ̂ ft- 4- m  z_>

fc+ I oo TV v - l ^ d ) x m e 2 . ia  ̂

(fc  +  I ) !  tv—>oo c fc+ I ( d y  +  d )
c = I  a = - j v

a e  d c

TV

E , J im E  ^ ’( ^ ^ - “ ^ ( c T  + a^x
*  /V —vrvi « ■* ’

a =  - n  
a € d c

I /27xi(—v — m i ) \ n

' TV—>oo 
c = I  a = - n

a € d c

oo

' n! V C(CT +  d) /n = /c + 2  '  '  1 /  /

(2.50)

To continue we need Lemma 2.13 In [7], with some modifications to be 

apficable in the vector-valued case.

E em m a  2.6 Let r  =  iy, with y > Q, k > 28, v a negative integer and t a 

positive integer. Then

2jiS ,  2 . (,i,+i/r,  ,r™_ 2 . 2 . cfc+I(cr + a)
c=I J6D‘ cgz a eo '

|a|  <  K  0 < c < t K  \ d \ K K

(2.51)
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P roof 2.6

Following Rademacher’s proof [17], we will show tHat

v~HVr  t t  \ Vc,d)JLc,d e  rlim > lim >  7— r -------^---------=  (
K —>oo 2V-» oo ' cfc+I (cr +  d)

c s  z  a  e  £>c
o < c < t K  k  <  |a| ^  JV

Note tEat

First we will show the result for mi > 0. Replace d by d — c 

the inner sum as

E « - I(K .,)x “ e - ^ [ 5 I +  S2],
Cfc+ I d £ Dc 

K  < \ d \ < N

where

and

Then,

where

* =  e
e2mqmi

cr + d - c q
- o o  < q < = ^

e2iriqmi

c t  +  d  — cq
^ < q <  oo *

I - s

N  + |s 2| <

s =  mm

2 (t +  I) t 
I s in ixmi\cl~s

— S

Therefore we have th a t

llm /   rrrr------ a-------?V—>oo ' cfc+I(cr +  d)
d e  D c 

K  <  \d\  <  N

2(* +  1)t  K ~ s\x°’l) I
s in 7rm;|c2,5+2+s c,d

a e D c

c 2 + s  '

a e  d c

(2.52)

(2.53) 

and rewrite

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)
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wEere C* is a constant. TEe rest of tEe argument is tEe same as in [7]. 

If mi  =  0, write

V  \ V C ,d)X C,d e   v - I ( V  r q ,  , q 1 ,  q n
r k + l ( r T ± J \  r k + I  \ .V c , d ) X ctd e  P i  +  b 2 +  o 3 J ,

(2.60)

Ar—>oo ck+1(cr + d) c‘deo-  \ ) deD(

wEere

S[ — Iim V '' (ciy + d — cq) I , (2.61)
T V — ^3V—>oo

^  =  lim (ciy + d — cq) 1 (2.62)
2V—► oo ^ '

=*±3<9<=2£=a

and

5g =  ^  (ciy + d - c q )  T. (2.63)

Now apply tEe same argument as in [7] using tEe estimate (1.42) and tEe fact 

tEat k > 26.

Now using Lemma 2.6 witE t = I, we can rewrite (2.50) as 

Wj?,l)(r) -  63 e2̂ +l/)T

v~I (Vc,d)x^i)e2nta~^:~ ( 2 m ( - u  -  m i) )k+1
oo Y 2  Y 1  cfc+I(cr +  d)(fc +  I)!

c <E Z d e  D c

0 <  c K K  |d|  <  K

m i  -\-u

Y  Y  v (cr + d)k xK—kOO *■—* '  ’
c 6  Z d e T > c

0 < c < K  |tf| S  K

I f2'Ki(—v — m i ) \ n

(2,64)

V ,' n! \  c(cr +  d) )n = k + 2  \  V 1 /  /

TEis is

W ^ 0 ( t)  -  =  Iim ^  v ^ i V c d x ^ e 2™ ^  (cr + d)k x
c  e  z  d  e  d c

0 <  c ^  K  |d|  <  X

2^t(-i/-mi) x /  2ni(—v — mi)'

6 ^  n! V C(CT +  d) .

(2.65)
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P ut

= S3le27ri{m̂ )r + H v - l {Vc4) x ^ e 2via^  { c T ^ d f .

c € Z a € Dc
0 < c < K |d| K K

(2 .66)

, a b ,
Since VCjd =  ( ) G 5 L (2, Z), we Have tHat

c o?

I - a c r  -  ad + ad -  be
-  =  - V c4 t , (2.67)

c c (cr +  d) c (cr +  d)

and tHerefore
„ . m,+v 2iri{-v-mi) „ , Wrg27ria ^ g c(cr+a) =  e27ri(x/+mi)Vc>aT_ (2.68)

THus

S g > (r )  =  5jie2ni m̂i+,/S>T + Y ,  S  (cr +  d)fc e2-(-+™ovc,ar_
c S Z JED'

0 < c <  K  |a[ 5  K

(2.69)

Now we include the first term  in the summation. Since v(T)p(I) = 7, we 

have th a t

hj7e2̂ (mi+")T =  v“ I (7)zgi0 e2wi(m,+,/)3r. (2.70)

Next we include the pair (c, d) =  (0 ,1) and we get

■ S $ M =  E  E  v - \ V c4) x ^  (cr + d)k . (2.71)
C E Z  d <=DC

0 7 c  Z K  |Sj <E K
(c, a) ^  (o, - i )

For every transform ation VCjd, included in (2.71), we next include the trans­

formation —VCtd =  V-c,-d- Since we have th a t

^ ” I (l/c,d)/o“ I (K,d) (cr +  d)k =  i T ^ - V ^ ) ? " ^ - ^ )  ( - c r  -  d)fc (2.72)

and
g27ri(mi+i/)VCiiir  _  g27ri(mi+z/)(-Vrc,a'r) ^  7 3 )
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we see tfiat if we make tHe summation including the transform ations — VCtd — 

V-c -d, every term  of (r) occurs twice and therefore

= \  E E v~\V c4) x l f  (cr + d f
c G Z d  G D G 

|c|  ^  K" 1 |̂ ^  JC

Now let S u>k (t ) be tEe m atrix with components given by (2.74). Then we 

define the m atrix Ms,v,~k{t ) =  v~1(S)p~I ( S ) r kS l/tx (ST) ,  given by

m s?J,k (t )

= \  E E ^ \ S ) v - H v c,d) j 2 4 ,]^ " r t (cSr + d)t e2' i^ v^
c  G Z d e u c S = l

|c |  <: K  |a| ^  K

= 5 E E (*• -
c 6  Z d G D c

|c | < K  \d\ < K

Now we make the transform ation d = d, and d' =  —c. This is a I-1 corre­

spondence between the pairs {(c,d)|c G Z ,d G Dc} and tEe pairs {(d,d')\d G 

Z, d' G .Dc }. Then

t 'ez d' S D c'
W \  < K  \d’ \ <  K

k  2 n i ( m i + u ) V CtdT

c e z  a e D c
o <  c 5  K  131 ^  K

Now put

U s A r )  = v - \ S ) p - \ S ) r kW v{ (2.75)
r

where 77(t ) is given by (2.24), W „(r) by (2.41) and KE is tEe m atrix given by 

(2.36). Then we have
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W g ’M

r m  r k
X Vc -dSrf S L  | "wW - E E ”- I(.V'4 s )

I C € 2 d 6 Dc
'  O < c 5  |3| <: / t

(c S V  +  rf)fc e 2 7 T i ^ ± ^  y ^ l _ ( 2 7 T i ( - £ / - 7 t t ; ) \ n^  n !  V C ( c 5 r  +  d )  /

V 2' ^ ^  +  jIim |  £  ■ £  v - ’ ( K a ) x 0 f (cT + d)>e2„ ^ )Kiir

I c 6  Z d €  £>c
V 0 <  c <  K  [ d \ <  K

c  £  Z i£ ^  j j c 

0 < C < K  |a |  ^  K

kTia_(ml+u) ^  J  ( 2 n i ( ~ l /  — ?7ty) ’e 2ni- Y -Z_^ o-iln! V cicSr  +  d)
n=0 '  v

(2.76)

Also Eemma 2.6 implies

5jie2vi{mi+l/)T +  Yim ]  ^  ^  (c r  +  d) k e 2̂ mi+v^ r
c £  Z d £  D c

0 <  c ^  K  |d|  ^  K

E E +<o‘ E ̂  ’''
c €  2  d S D c ™ = 0

0 <  c <  K  |<2| <  K

Therefore
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ŵ ’M-wgV)

=  lim <
K"—MX) Y 1  v l (v ^ s )x v!!as rk (c S r + dY

c €  Z d  €  D °
0 < c < K  \ ' d \ < K

J 2 t t  i -

—J n\ I c icSr  +  d)
7 1 = 0  X V 7

c s  z s e d ‘ n.=0

.

o < c < K  |a| < x

(2.77)

Since the factor r fc combines wltH (cS'r +  d)k~n, It produces a polynomial of 

degree at most k. On tHe otHer Hand, tHe limit of a sequence of polynomials 

of degree at most k converging at k +  I points is a polynomial of degree at 

most k. Now put

Clearly 3fg?(r") is a  polynomial in r  of degree a t most /.: and s

e g ? ( r )  =  w Im (t ) ~ u {l i \ T )  +  y ^ ( t )

=  r « ( r )  -  v ~ \ S ) T k ^ 4 " > r y ' i ( S r ) .

By (2.24) we see tHat

F ( t ) -  v - l ( S ) r kp - 1(S)F{Sr)

(  bA  \  /  W

(2.78)

(2.79)

5 =  1

y<v<0 V &
Is a column vector of polynomials of degree at most k. Now, for all V  =

a  (3 \ e r(i), put
7 H /

U v A A  = v - 1(V ) p - l ( V ) A r  + S)k W u(r), (2.81)

+  y s A A

6? >

(2.80)
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3 M r )  = K v -  v - ^ V ^ t  +  S)‘kp - \ V ) ) C u (2.82)

and

e g ’(T) -  W ^ ( t ) -  m“ ( t)  +  y O - ^ r )

J ,  -■ . (2.83)
=  T “ ‘>(t ) -  « - I (V') (7 r  +  i ) ‘ x<)’s)r j* J)(V'r).

S=I

We want to show tHat tHe m atrix <2y)t,(r)  = T v{r) —%  \-k,v,P ^ ( t )j given by

(2.83), is a m atrix oF polynomials of degree at most k. We will prove this by 

induction on L(V), the length of V  when w ritten in term s of S  and T.  By

(2.79), we Know it is true For S. By (2.24) and the normalization (1.6) it is

f  a b \
clear th a t % (r)  =  %  \-kvp  ^ ’(r )- Now, assume For M  =  I I G I '( l)\ cdJ
th a t Q jf^ (r) is a m atrix oF polynomials oF degree at most k, we want to show 

that:

1. T1/(t ) - v~1{ M S ) p^ 1{MS) (dr -  c)k % ( M S r ) = Qm s A t )> wKere Q m s A t ) 

is a m atrix oF polynomials oF degree at most k, and

2. % { t ) -  v~1(M T )p ~ 1(M T )  (ct + d + c ) k T„(MTT) = Qm t A t )> where 

Qm t A t ) 1S a mafrix of polynomials oF degree at most k.

I. Since Qm A t ) anc  ̂ Q s A T) are matrices oF polynomials oF degree <  k, 

we have th a t

Tu(t ) -  v - l (M S )p ~ l {MS) (dr -  c)k Tv( M S T )

= Tu(t ) -  Tkv - 1(S)p~1{S) ((cS t + d)k v - 1( M ) p - 1( M ) % ( M ( S r )))

=  % (r)  -  r kv~1(S ) p - l (S) (%(St ) -  Q m A S t ) )

=  QsA T) +  T kV - 1( S ) p ~ 1( S ) Q M , v ( S T ) .

(2.84)

The first term  is a m atrix oF polynomials. In the second term  r k combines 

with (— ” , For 0 < n < k, Forming a m atrix oF polynomials.
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2. Similarly, using tHe fact tEat Qt ,v{t ) =  0, we Have

% { t )  -  v - \ M T ) p - l { M T ) ( c r  +  d)k Tu(M T r )

=  Tv{ r ) - v - \ T ) p - \ T )  ({<a'T +  d)k v - \ M ) p - \ M ) % { M { T T ) ) }

=  % ( t )  -  v~I(T)p~1(T) ( % ( T t )  -  Q m A T t ) )  

- n - I (T )p -I (T )Q M>,(T r) ,

(2.85)

wHicE is a m atrix of polynomials of degree a t most k, sice Qm ,v{t ) *s-

TEerefore we Have sEown tEat if Qm ,v(t ) matrix  of polynomials in r  

of degree at most fc, so are Qm s A t ) an(  ̂ Qm t ,v(t )- We Have also sEown 

tEat Qs ,i/(t ) is a m atrix of polynomials in r  of degree a t most k, and tEat 

Qt ,u{t ) =  0 . It is clear by (2.85) tEat Qt ”,u(t ) — and tEerefore if L(V)  =  I, 

we Have tEat eitEer V  = S  or V  = T n, in eitEer case we Eave tEat Q v>(r) is 

m atrix of polynomials in r  of degree at most k. Assume tEat for ~L{V) = r, 

we Eave tEat Qv,v{r ) 18 m atrix of polynomials in r  of degree at most k. THen 

since Qvs,v{T) and QvTnA T) are a ŝ 0  matrices of polynomials in r  of degree 

at most fc, we Eave tEat tEe result is also true for ~L(V) =  r  +  I. TEerefore for 
a f3 

7 <5

Q v A r )  = Tv(r) -  %  |_MlP V(r) ,  (2 .8 6 )

wHicE is a polynomial of degree at most k. TEus by (2.83) and (2.23), we Have 

F ( t )  -  v~1( V ) A t  +  S)k p*1 (V )F  (V t )

(  bA  \  (  bA  ^

+  ^ 2  y v A r )

all V  = £ T (I), we Eave tEat

£  (W„(t ) -  Hv,„M )
H<u<0 4<?> I

y  2 m,,
H<v<  0

r

( bA \
{2.87)

= Q m (t , k, v, p),
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which is a vector of polynomials of degree at most k, since the right hand 

side is a linear combination of polynomials of degree at most k. The proof of 

Theorem 2.1 is complete.

2.2 C onstruction  o f a vector-valued  m odular  

form  o f negative w eight —k

So far we have th a t

F ( r ) —v~l {M)p~l (M) (j t  + 5)k F ( M t ) = QM(T,k,v,  p), ^ j G T(I),

(2 .88)

where Q m (t , k, v, p) is a column vector of polynomials of degree at most k.

We ash whether we can construct a vector-valued modular form of negative 

weight — k by choosing appropriately the coefficients of the principal part in 

(2.1). It turns out th a t if there are enough coefficients in the principal part, 

this is in fact possible. Note th a t the number needed depends on k.

Eet T  =  ( ) and S  = ( I . By (2 .2 2 ) , it is easy to see th a t
V o i J  V i o

for n  G Z we have

/  g27rinmi N

F (T nr)  =
J l ir inm -p  

\  e  /

F ( r )  =  v ( T n)p(Tn)F(r) .  (2.89)

This implies th a t k,v ,  p) =  0.

Since all the elements of T(I) can be w ritten as a product of T n and S  for 

n g Z ,  we want to find • • • , b $  such th a t

u - I (5 )p - I (5 ) r fcF ( (Sr) -  F ( r )  =  0, (2.90)
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or wEat is tHe same

- i (S)p I ( S ) r kF ( S r )  - F ( t ) =  Qs ,„(t )
H<v<0

I  h i ' ' \

&  )

( Q s \ t j k , v ,  p) \  

\  Q s \ T , k , v , p )  J

( o \

(2.91)

Vo J
If we do so, by tHe proof tHat tHe rigHf Hand side of (2.83) is a polynomial of de­

gree at most k,  we will Eave a function F ( r )  witE tEe following transform ation 

law, for all M  £  T(I),

T { r ) ^ v - l { M ) p ~ 1{ M ) { 1 T +  5)k 'F{MT).  (2.92)

Also since F ( r )  is regular in 7i,  and Has tEe Fourier expansion at oo given by 

(2 .1):
oo V

F 0 )(r ) =  b®e
t x<v<  0

OO .ulK
2Wi(mJ+,)r +  J -  J2 bv)27r E - ^ ^ - ^ C. ™ Ze27ri(m+m3)T,

c = I  Cm=0  n<v< 0 (=1

(2.93)

it follows tEat F ( r )  is a vector-valued modular form of weigEt —k. 

Now if we replace r  by S t  in (2.91), we see tEat

I Q s )( T ii k i v iP) \
v - 1( S ) p~1(S)Tk 

or, wEat is tEe same,
V Qs\-T>k>v’P)

f  - Q s \ r , k , v , p )  ^

V - Q s \ T’k>v ’P) J

(2.94)

v-\S)f ,- \S)TkY^Qs,-, ( — ) b~l )
=  -  £ Q s , -s (t )

» ! 2 )

5 =  1 V  T J ^  J
s = I

v  d ! >
( 2 . 9 5 )
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By (2.94), we see tHat tHe zeros of Q $ \ t , k, v, p) occur In pairs, except For 

r  =  B ,  since det(p~1(S)) ^  0 .

Now, since

 ̂ Q s , Q s - i i j i )  

Q s - 1(̂ 2) Q s ,-2(t2)

V Q s - i ( r n) Qs,-2{rn)

Q s , - r {n )   ̂
Qs- t ( t 2)

Qs,—r(j~n) J

( b- l ) ( Q s \ r i , k , v , p ) \

b{*l

b{1)—2

Q s \ n , k , v , P)

Q s \ T2 , k , v ,p )

Q s \ T2 >k,v,p)

I  ) \  Q s \ Tn,k ,V ,p)  J
(2.96)

we set up tHe Following system oF equations:

^  Q s , - i ( t i ) Q  S ,—2 ( h )

2 s,—1 (h) Q s -  2O2)
Qs,-r{Tl) ^ 

Q s - r f a )

\  2 s , i ( H i )  Q s ,- 2 (rn) . . .  Q S,-r{Tn ) ) —2

V )

{  n \

(2.97)

It is clear tHat IF n  > and r  > n, tHen tHis system is a Homogeneous system 

witH a nontrivial solution since tHe number oF unknowns, p r, is bigger tHan 

tHe number oF equations, pn. Also iF n > k, we Have tHat all polynomials

Q s \ t ,  k,v, p) Have n > k roots and t lle re fo re  tliey  a re  id e n tic a lly  zt 

ever we can use tHe Fact tHat tHe zeros oF Q ^ \ t , k, v , p) occur in pairs, so tHat 

iF rs is a root oF Q g \ r ,  k, v, p) , so is — So let S  b e  a set oF distinct points, 

S  — { r i , . . . ,  rn}, sucH tHat iF rs & S , tHen —^  is not in S.  Now we set up tHe 

linear equation (2.97) using exclusively elements in <S. THen IF n =  [ |]  +  I,

H o w -
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we will have th a t all polynomials Q g \ r , k , v ,  p) Have more tfian k zeros, and

tHerefore are identically zero.

We can now state the following theorem:

T h e o re m  2 .7  Let r  be an integer greater than [k/2] +  I. 7f  we define F ( r )  

as in (2.1) with k > 25 and 6_ i , . . .  , 6 _r column vectors of length p satisfying 

(2.97), then F ( r )  is a vector-valued modular form of weight —k.

2.3 T he supplem entary series

Let m's and v' be defined by

Since k is an integer and v is a multiplier system in weight —k For F (I), it 

Follows th a t v' is also a multiplier system For T(I) in weight —k. On the 

other hand, since p is a representation For T (I), we have th a t p' is also a 

representation. Note th a t

m'j = I — m-j, v' — — I — v, if m-j > 0 

ml =  —m-j, u' — —v, if m-j =  0 .

Note th a t to'- +  u' — —{m-j +  v). Further we can define

(2.98)

v '(V)  =  v(V)  and p'(V)  -  p{V). (2.99)

/  g27rim \

(2 .1 0 0 )

Now we dehne the series supplementary to as
OO OO .fc

t27ri(7n-\-m'j)T- (2 . I 0 I)
771=0 C=I

where

(2 .102)
c, d 

0 ^  —d <  c
(c, d) =  I
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fc-fl

p  ( ^ ? )  2 J f c + i ( f  +  , m  +  m ' .  >  0

(k+iy. \ --------- ^ — L~ )  > m  =  ^  =  0

(2.103)

and

Uc,d,i,j — Uc,d,i,j■ (2.104)

Note that 1Zv ’1\ t ) Is given by (2.21),and £lc,d,i,j by (1.96) but with v \  p ', u' 

and m's replacing v,  p. v  and m s respectively. Similarly we can define the 

supplementary series Tuj,l\ r )  (2.24), K $ ’1̂ (2.36), W v ,1\ t ) (2.41), Ty!^(r ) 

(2.82) and U $ ( t ) (2.81).

Using exactly the same arguments as before, we see that:

1. Tuj,l\ r )  Is regular for r  e H .

(  a  (3 \
2. For every M  =  I G T(I) we haveV 7  5 J

% { t ) -  v ’- ^ M j p ’- ' i M )  (7 r  +  8)k % { M t ) =  & , , ( r ) .  (2.105)

x-s,/ * J\
3. The polynomials Q ^ v{t ) are given by formulas analogous to those in

(2.83):

Qm2 (t ) =  W £ ,0 ( t)  -  ® ; 2 (r) +  T m J(t)

, J L  .. ^  (2.106)=  ( r )  — v'~l ( M ) (7 r  +  d) x v ^ ,s^T}s,1\ M t ) .
S=I

Here we have some facts:

I. From (2.42) we see th a t W v ’1\ t ) =  W ^ ’̂ ( r ) .

2 . From (2.81) we see th a t U y' lJ { r )  = U y ’*\r).

3. From (2.102) we see th a t A ĉ t0,j,; =  ^
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4. From (1.108) we see tHat B c>Vj0j,z =

5. From (2.36) and tHe above results we see tHat JC9’1̂ = —K,u'l\

6 . From (2.82) and the above results we see th a t =  — y y ’j)(r).

7. From (2.106) and the above results we see th a t

-  2  y ^ l i r ) . (2.107)

Now let 6 _ i , . . . ,  be a set of column vectors such th a t bv E Cp. b^} /  0, for 

some I <  j  < p, p  : T — ► GJj(p, C) a p-dimensional complex representation, 

v a multiplier system, and k > 25, k , —p, E Z + . Let F ( r )  be dehned as in 

Theorem 2.1. Then by (2.23), we Have tHat

F ( r )  =  Y ,  W

H< v<0 V /
(2.108)

We define the series F ( r )  supplementary to F ( t ) by

/ rm \
F(t ) = Y  W )  :

„<„<» ^  j - w  j

For M  E r(I) we have tha t

F ( t )  -  v ^ 1(M )p~1(M)  (7 r  +  h)fc F (M r)  =  <2m(n fc, u, p),

(2.109)

(2 . I I 0 )

where by (2.87),

Qm(t ) k, v, p) =  Q m ,A t )
/j,<v <0

(2.in)
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Similarly,

Y ,  ( ^ U r ) -  +  y MA t

( \

\x<v< 0

/  F (I) \

V h» v) J
(2 . 112)

=  Y  & m A t )
/j,<u< 0

=  Qia{T,k,v'  ,-p').

T~(P)
V bv /

We are now Interested in studying tHe relationship between Q s(r, k, v ', p') 

and Q s( r , k , v ,p ) .  As discussed before, if Q s ( r , k :vpp) =  0 tHen F ( r )  a 

vector-valued modular form on F (I) of welgHt —k, multiplier system v and

representation p. Also, It Is trivial tHat If F ( t )  Is a modular form tHen
_  _

Qs (t , k, v, p) =  0. Analogously we see tHat If Qs(r,  k, v', p') =  0, tHen F ( r )  Is

a modular form on F(I) of weigHt — k, multiplier system v' and representation

p and vice versa.

By tHe definition of Qs (t , k, v1, p') (2 .1 12), we Have tHat

K m  \

Q s (t , k, v', p') =  Y  QsAr)
fi<u<0 7—(p)

\ K

and by (2.107) we can rewrite Qs{r , k , v ' , p ') as

Q s ( t ,  k , v ' , p ' )  = ( QsA t ) -  2 y s A T) I 
\^<u<0 J

( K{1) \

V h» P) )
( F (I) \

(2.113)

Q s ( r , k , v , p )  -  2 Y  y s A r )
fx<y<0 J—(p)\ b y  y
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Now we Have tHat If F ( t ) Is a modular form tHen

Q {s ’l)(r, k ,v ,p )  =  Q {g l)(r, fc, v, p) = 0, (2.114)

and by(2.II3), we Have tEat

Qs (t , k, v1, p') — —2  ^ 2  y s A r )
7—(?)V K

On tHe otEer Hand, we Have tEat If Qs (r ,k ,v ' ,p ' )  Is given by tEe equation 

(2.115), tHen we Have tEat

k, v, p) = Q f l>( r , fc, u, p) =  0. (2.116)

We Have already sEown tEat k, v, p) =  0. On tEe otEer Hand , for Mi,

M2 G F (I), sucE tEat for

Mi =
* *

7i ^2
M 2 =  | ) and M 3 =  M XM 2 =  (

72 <52 /  V 53 3̂
(2.117)

we Eave tEat

P)

=  F (r) -  u_I(M iM 2)p_I(MiM2) (73t  +  H3)fc T (M iM2t )

-  v~l (M2)p~l (M2) ( 7 2 T +  H2)fc ( f ( M 2t) -  v~1(Mi)p~1(Mi)  (71  M2t  +  <Si)fc F(Mi_M: 

+  F ( r ) -  v~l (M2)p~1(M2) (7 2r  +  (52)fe F (M 2r )

=  v ~ l (M2)p~1 (M2) ( j 2t  4- 52)fc Q Wi{M2t ,  k , v ,  p) +  Q M2( T, k , v ,  p)

=  Q m2(t , k , v , p )  +  Q m t l^ p  _._2 (t),

(2.118)

wHere tEe slasE operator was defined in (1.3). TEus, by (2.118), we Eave 

tEat for every M  € T(I)

Q ^ )(r,fc,n ,p) =  0, (2.119)

2^

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



59

and tEerefore F ( t )  is a vector-valued modular form on T(I) of weigEt —k, 

multiplier system v and representation p.

Now we can state  tEe following tEeorem:

T H eorem  2.8 The function F ( r )  defined in Theorem 2.1 is a vector-valued 

modular form on I ’(I) of weight —k, multiplier system v and representation p 

if  and only if

(2 .120)
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CHAPTER 3 

Eichler cohomology and vector 

valued modular forms

3.1 T he cohom ology group H l pJ V ,  / ’

In Chapter 2 we Indicated how to choose the coefficients b^ \ , . . . ,  b $  in 

formula (2 .1 ) to obtain a vector-valued modular form of negative weight —k. 

However, In general formula (2.1) does not give rise to a vector-valued modular 

form, since for all V  £ T we have th a t

F ( t ) - F U >v,p( V t ) =  Q v (t ), (3.1)

where Q v ( r ) is a polynomial on r  of degree at most k. The vector polynomials 

Qv{r ) are called period polynomials.

Let k > 25 > 0, k £ Z, F(T,  k + 2,v, p), the space of vector-valued modular 

forms of dimension p, weight k +  2  and multiplier system v, with the represen­

tation p over T — T(I), th a t are EolomorpHIc in 7i. Let f ( r )  G T{T ,  k+2, v, p), 

and let F ( r )  be any (k +  I)-foId Indefinite Integral of f ( r ) .  Then, since F ( t ) 

Is differentiable, It satisfies BoPs Identity:

jfc+I^  ( ( 7 T  +  Sfn- - r ) )  =  h r  +  .  r )  ^

=  h r  +  S)~l ~2f ( M T ) ,
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for r  <E H  and all M  — [ ] (E T(I). Therefore,
7  5

v - \ V ) { c r  + d f  p - l {V)V{Vr)  =  F ( r )  + P v ( t ) ,  (3.3)

(* * \
J € T, where Pv(T) is a vector polynomial of 

c d )
degree at most k. The vector polynomials Pvi j )  are called period (or Eichler) 

polynomials of / ( r ) .  We call F ( r )  a vector-valued Eichler integral of weight 

—k  w ith respect to T.

As before, put (F |_ fc)Jj5PE )(r)  =  v~l (V)(cr + d)kp~l (V )F ( V r ) .  Then we 

Eave

F | -k,v,pV — F  + Pv- (3.4)

jjj \
j . Then by (3.3), we see th a t

Cj d j  J

v - l (V,)(c3r  + d3)kp ~ \ V 3)y(Vsr) = F ( r )  + p v 3(r). (3.5)

Also by the consistency condition (1.4) we get th a t

v ^ i V ^ r  +  d3)kp - I (V3)F(V3r)  (3.6)

=  v~ l (Vi) v - l {V2)(ClV2r  + d t f f o T  + d2)kp - 1(V3)F(V3r)  (3.7)

=  v - ' W f a r  +  d2)kp~1(V2) { v - ' W i a V i T  + d ^ p - ^ V ^ n V s ^ p . S )  

= v~l (V2)(c2r  + d2)kp - \ V 2) (V(V2r ) + p Vl(V2r))  (3.9)

=  F ( r )  +  Pv-2 (r ) +  (pvi\-k,vlPV2 ) (r). (3.10)

Therefore,

P v ^ i r )  = P v 3 { t )  =P v2(r) + (pVl\-k,v,PV2) (r). (3.11)

Now suppose th a t {py : V  € T} is any collection of vector polynomials of

degree at most k satisfying (3.II) . Then we call {py ■ V  G T} a cocycle. A

coboundary is a set {pv  ■ V  G T} of vector polynomials of degree at most k 

such tha t

Pv(r) = (q\-k,v,pV ) ( r ) -  q(r), (3.12)
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for all V  6  T with q(r) a fixed vector polynomial of degree at most k. THe 

coKomoIogy group H ^ p p( l \  Pk) is defined as tfie vector space obtained by 

forming tfie quotient of tfie cocycles by tfie coboundaries, wfiere p  is tfie Iengtfi 

of tfie vector of polynomials and Pk is tfie vector space of vector polynomials 

of Iengtfi p  and degree at most k.

Note tfiat given / ( r )  € F(T ,  k + 2, v, p), tfien F ( r ) ,  a (A; + I)-fo Id  Indefinite 

Integral of / ( r ) ,  Is determined up to a vector polynomial of degree <  k. Tfien 

If we replace F(r)  by P(r )  +  q{r) we find tfiat tfie cocycle {py(r) '■ V  £

T) associated to  F(r )  Is replaced by tfie cocycle { p y ( r )  : V  G T}, wfiere 

Py(r ) =  M r ) +  ((?l-M ,pKKr ) -  ?(T))» so tIie cocycle {pv (r) : V  G T} is in 
tfie same cofiomology class as Is tfie cocycle { P y { r )  : V  G T}. Tfius / ( r )  G 

{r, k +  2 , v, p,p}  determines uniquely an element of H i  (T, Pk).

3.2 T he supplem entary function

Knopp and Mason [12] defined tfie vector-valued Poincare series P(r,  p, k, v, v, T, r) 

in tfie following fasfiion. Fix u an integer and r, I < r < p, and put

j  g 2 7 r  i ( u + m r ) M T

P(r, p, k, v, v, r ,r) = -  • £  v{M]JCT + d r p- ' (M)er, (3.13)

where er Is the column vector consisting of zeros except for the r th component

( a b\wfiicfi is a I. Here M  — I I ranges over some set of coset representatives
\ c  d )

for r ^ y r .

A  normal representation p Is a representation th a t satisfies two conditions 

[12, p. 1351]:

1. p(T) is diagonal, and

2. p(S2) =  J.

Let us list some facts about vector-valued Poincare series. Let p be a 

normal representation of T(I) and k > 25 (1.42). Tfien,
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1. P ( t , p ,k  + 2, v, v, T, r) G .P (r, k + 2,p, v) is a vector-valued modular form 

of weight k + 2 [12, p!355],

2. TEe space of cusp forms S ( T , k ,p , v )  is spanned by Poincare series [12, 

p .1360].

3. The Fourier expansion for a Poincare series P(r)  =  P ( r ,  p, k + 2, v, u, T, r)) 

is given by:

P(r) =  T„*(r)er . (3.14)

Here er is a column vector of zeros, except for the r th component which is a 

I, and T*(r)  is a m atrix defined by

(3-15)

where
OO OO

K M (t) = E  2lr E  ~  Scy,„j.ic2’*lm+”,')T. (3.16)
m= 0 c= I

In (3.16) B*c vrn - X is given by

' /  /  \

2 ( f  +  > I' +  m, < 0

„  =  m i =  0

/  /  \
(s+ S )) 1 .‘4+1 ^*£(i' + mi)i(m + mJ)3j , >/+ mi > 0,

(3.17)

with 7fc+I( )̂ defined by (1.109) and Jfc+i(;z) by

00 ( Tl” ( z \ 2n+k+l
^ ) - E T (l T i +I), ■ (3.18)

n =0  v 2

[12, pp. 1355-1356].

Suppose th a t g(r)  G S '(r, fc +  2, p, u), and let s — dim S(T, k + 2, p, v). Then 

there exist complex numbers b i , . . . , b s, along w ith a set of positive integers
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Vi , . . .  ,iss, not necessarily distinct, and a set of positive integers r i , . . .  , r s, 

where I <  r-j < p, sucE tEat
S

9(r ) = k + 2,v, Ui,T,ri). (3.19)
i = I

Now we are going to define tEe function supplementary to  a cusp form in a 

way similar to  tEe definition in Section 2.3:

v — — I — v if m-j > 0, 

v — —v  if rrij — 0 ,

and
rhj =  I — m-j if m-j > 0,

m-j =  —m-j if m-j =  0 .

Also as we did in Section 2.3, let

(3.20)

(3.21)

v{M)  =  v(M), p ( M ) =  p ( M ) (3.22)

and define <?(t), tEe function supplementary to  g(r) as

5

9(T) + (3 ' 23 )
i = l

Note tEat, altEougE tEe values for u, rhj, v and p are tEe same as z /; m ' , v1

and p1 in Section 2.3. Here we form a nonentire vector-valued modular form

given a cusp form, wEile in Section 2.3 we formed an EicEler integral given an 

EicEler integral.

Now let G ( t ) be tEe (k + I)-fold integral of # (t) , defined by integrating 

term -by-term  in the expansion at ioo. Note th a t G[t)  is the (k + I)-fold 

integral of the function
S

(3.24)
i=I

normalized so th a t

(  e 2mfn\  \

G ( T t ) =  v ( T ) p { T ) G ( t ) = G(  r ) . (3.25)
y  e 2 n i f h p  j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v ~ \ V ) { ct + d f p  - \ V ) G { V t ) = G{r) + p v {r), (3.26)

for all V  € T, wEere Pv(T) is a vector polynomial of degree at most k. Now let 

G(t ) be tEe (k + I)-foId integral of g(r), defined by Integrating term-by-term 

in tfie expansion at ioo as we did before wltK <?(t). We see tEat

v - \ V ) ( ct + d)kp - l (V )G (Vr)  = G{ t ) + P v(r ) ,  (3.27)

for all V  e r.
Now we want to consider tEe relationsEIp between P v ( T) and jtfy(r). To do 

so we take tEe same steps as we did In CEapter 2. bet R ~ ^ ( t )  be defined as 

tfie (H-l-I)-foId Integral of TEerefore after cEanging tEe order of tEe

summation as we did in (2.25), we Eave tEat

/ 0 ^ \ — k  oo T _ oo p *  27r i ( m + f h j ) ( T + ^ )

^ M  = | l r E  E
c =  I  c , a V 3>

0 < — id < c
c = I  c , j  m = 0

; - a  .
(c, a) =  I

(3.28)

Applying tEe EipscEitz summation formula (2.27), as we did in Lemma 2.4, 

we get tEat

(Onr\~k °° B*~ p 2n i (m+fh j ) ( r+%)

Ĉ 2A:+I Z_/ (m  _|_ fa \k+l
m—0 v ^y

=  ( 2 7 r ) ~ fc ~  / 2 v r \  2 n + fc + I  ( - T  -  r h i ) n ( m  +  m j ) n  2 7 r i ( m + f e ) ( T + j y

c 2̂fc+i Z-^ Z -/ I c J  n\(n + k + I)\
m = 0 n = 0 x  '  V 1 ' y

\ —k oo / fv \  2n+fc+I / •',s» '***» \ri oo
(2tt) ( - Z 2 - m Z) n  ^  ^ ^ ( m + m j X r + f )E l _  |  ̂ ~  b

l e y  n!(n +  A: +  I)!
n = 0 N '  v '  m = 0

—k  oo v 2 n + fc + I  /  ^  ^  "m TV  i t ' i  00

m  +  rrij y e

( - g - m , r  r(n + i) y ,  e^ V _ V  a _ ;
c 2̂fc+i Z-c I c J  n\(n  +  k + 1 )! (27r)n+I ^  \  V c .

n = 0  v '  v / \ / q = —oo N N '

(27r)_fc_I e2™9" '̂ (cr +  d — a /)fc I (  2 m {—v — mi)
Z_/ r—■p — ^,'ifc+i Z —/^3fc+i ( _ y _ f a ' \ k + 1 n\ \ c ( c t  +  d  — c q )

Q— 00 v n —k+1  V V

(3.29)
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(Note tHat In tHIs case we do not get a different formula if rn =  m 3 = 0, 

because P(r,  p, k +  2, v, u, T, r) Is a cusp form. THus eitHer tHe tHe coefficient 

for m  = 0 Is zero, or m-j > 0 and tEerefore If we follow tEe same steps as we 

did In CEapter 2, we get a result similar to (2.107). TEe difference Here Is tEat 

we do not Eave tEe term  2 ( 2 . 3 6 ,  2.82), tE at comes from applying tEe 

LipscEItz summation formula.) TEerefore we Eave tEat

P v ( t ) = p v ( r ) ,  for all b e f ,  (3.30)

Now following Husseinl-Knopp [4] we can state  tEe following tEeorem wEicE 

is proved exactly In tEe same way as TEeorem 3 In [4],

T fieo rem  3.1 Let k > 25, g(r)  £ S ( T , k  +  2,p ,v )  and G(r) the function 

supplementary to g(r).  Then g{r) =  0 i f  and only if  G(r)  £ ^"(T, —k,p ,v ) .

P r o o f  3.1

If g(r)  =  0, tEen Its (E+I)-foId Integral G(r) Is also identically zero, and 

tEerefore P v ( t ) = 0 for all V  £ T. TEus by (3.30), we Eave tEat pV(r) =  0, 

and tEerefore

V - \ V ) { ct +  d)kp - l {y )G(VT) = G(r).  (3.31)

Also, since ^ (r )  £ T ( Y , k  +  2,p ,v ) ,  we Eave tEat g(r)  Is EolomorpEic on TL 

and meromorpEIc a t too. TEerefore G{r) £ T i l  -, —k , p , v ).

On tEe otEer Hand, If G(r)  £ !F(Y, —k ,p ,v ) ,  tEen pV(r) =  0 for all V  £ I1, 

and by (3.30), we Eave tEat p v ( t ) = 0 for all V  £ I1, and tEerefore G{t)  £ 

J - (T ,—k,p ,v) .  Now since g(r)  is a cusp form, tEen It Is EolomorpEic on TL 

and at too, and so Is its (E+I)-foId integral G(r).  By Eemma 4.1 In [II], we 

Eave tEat G{r)  =  0.

3.3 Eichler cohom ology and a m apping

o f H l P£(r, p k)

D e fin itio n  3.1 A parabolic cocycle {py ■ V  £ T} is any collection of vector 

polynomials of  degree at most k a,nd length p satisfying (3.11), in which for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

every parabolic class B in F there exists a fixed polynomial Pn( j)  of degree < k 

such that

Q b { t )  = P-b \ - k ,v,P B ( t )  -  p b ( t ) ,  VB e B. (3.32)

(Note that coboundaries are parabolic cocycles.)

Definition 3.2 The parabolic cohomology group H p (T, Pk) is defined as the 

vector space obtained by forming the quotient of the parabolic cocycles by the 

coboundaries.

In r(I) tHe only parabolic class is tHe class of T.  Note tHat in (T, Pk) 

we can always find a cocycle in wfiicfi Qt (t ) =  0 . For, suppose tfiat Qt (t ) 7  ̂ 0 ; 

tfien tfiere exists a polynomial p t (t ) sucfi tfiat (3.32) witfi B  = T.  Tfierefore 

tfie following polynomial is also in tfie same cofiomology class:

Q t (t ) =  Q t (t ) -  (PT I- k , v , p  T [ t ) -  p T {r))

=  0 .

Tfieorem 3.2 Let k a positive integer such that k > 25, v a multiplier system 

in weight k and p a normal representation o f T  = T (I). Then,

S ( l \  k + 2 ,p , v )®  S(T , k + 2,p ,v) = Pk), (3.34)

with the sam,e mapping as in Theorem 3.1.

Tfieorem 3.3 Let k a positive integer, such that k > 2a, v a multiplier system 

in weight k and p a normal representation o f T  — T (I). Then,

s(r, k + 2, p,v) © M(r, k +  2, P, v) =* H l „ (  r, p k), (3.35)

and the construction of the mapping is independent ofV, k, v and p. Moreover 

the map is the same as in Theorem 3.2.

Following Husseini and Knopp [4], we define tfie mapping

p : S ( V , k  + 2,p ,v)  © M ( T , k  + 2, p,v) -> H ) pp(F,Pk) (3.36)
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by

v{g{r) , f (T))  = a(g{T))+f3(f (T)) ,  (3.37)

wfiere /3(f) Is tfie cofiomology class of ffie cocycle of tfie tfie vector of period 

polynomials {pv  ■ V  G F} of tfie (k +  I)-foId Integral F ( r )  of / ( r ) ,  wfiile 

a(g) Is tfie cofiomology class of tfie cocycle of ffie vector of period polynomials 

{qv ■ V  £  I ’} of G(t ), ffie (k +  I)-foId integral of tfie supplem entary function 

of g(r).

R e m a rk  3.1 To avoid confusion note that

1. g(r) £ S ( T , k  + 2,p,v),

2. g(r) £ T ( r , k  + 2,p ,v),

3. G(r) is the (k +  I)-fold integral of  g{r),

4■ {qv '■ V  £ F} is the cocycle of vector polynomials corresponding to G(r),

5. G{t ) is the (k  +  I )-fold integral o fg (r )  and

/ s .

6. {qv : V  £  T} is the cocycle of vector polynomials corresponding to G(t ).

It may seem tfiat tfie map a  depends on tfie cfioice of tfie basis for <S(F, k + 2,p,v).

However our mapping is in fact independent of tfiis cfioice, since tfie periods,

{qv ■ V  £ I1}, of ffie (k + I)-foId integral of g £ S ( V ,k  + 2,p ,v),  G(r),  are 

related to tfiose of G(t ), ffie {k +  I)-foId Integral of g (r), ffie function sup­

plementary to  (?(t), by (3.30):

qv(r) = qv(r),  (3.38)

regardless of the choice of the basis.

To show th a t the map is I-1 it is enough to show th a t the kernel of p  

is (0,0). Suppose th a t p(g, f ) =  0. Then there exists a vector polynomial 

p ( t ) ,  of degree smaller than  or equal to  k ,  such th a t F ( r )  +  G(r) + p ( r )  £

F (T , —k,p ,v ) .  This is holomorphic on Tt, and since F ( r )  is the (k +  I)-fold
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integral of f ( r )  G A i ( r , H 2 ,  p, v ) and p(r)  is a vector polynomial, we Have 

tHat tHe principal part of F ( r )  +  G(r) + p ( r ) is tHe same as tHe principal part 

of G(t ), tHe (k +  I)-foId integral of g(r).  THis principal part is

Y    p^<l~{ui+mri)en ■ (3.39)
i i  (—27tz(^j +  m n ))

Since k + 2 >  2 +  25, the Fourier coefficients of F ( t ) +  G ( t ) + p ( r )  are given by

the formula (2.2) and when we apply it to (3.39) we get the Fourier coefficients
/N /S

of G(r)  as stated  by Knopp and Mason [12, Theorem 3.2], Therefore G(r) = 

F ( t )  +  G (t)  +p(r ) ,  so F ( r )  =  Since the degree of p(r)  is less than  or

equal to  k, the (k + I ) th derivative is zero, and therefore f ( r )  =  0. Also since 

G(t)  G F ( r ,  —k , p , v ), we have th a t g(r)  =  0 by Theorem 3.1. Thus p  is I-I.

Now let p  be the map p , restricted to  the space of cusp forms <S(T, k  +  2, p, v) 

We want to show th a t

p : S ( r ,  k + 2,p,v)<& S(T , k + 2 , p , v ) ^  H ^ ( T ,  Pk). (3.40)

Let f ( r )  G <S(r, fc +  2, p , v), then

E  0 G)e2«(m+mJ)rj for j  <  j  (3 .4 I)
m + r r i j> 0

and the (k +  I)-foId integral is
n0)

F <S>(r )  =  W  "  2, i (m+ro,)T +  (j)(T) for
(2 « (™ + "> 3 ))‘!+I

(3.42)

Here p ^ \ r )  is a polynomial of degree at most k. We saw a t the end of Section 

3.1 th a t the cohomology class of F ( r )  is the same as the cohomology class of 

F ( t )  — p(r),  so we can assume without loss of generality th a t p ^ \ r )  = 0. It 

is clear th a t if p(r)  =  0 , we have th a t

F |  _m >p T ( t ) =  F ( t ), (3.43)

which implies th a t P t ( t )  — 0. Therefore (3(f) G i f j  (T, Pk). On the other 

hand if g G <S(T, k +  2, p, v), then
S

9(T) = y b iP ( r , p , k  + 2 ,v ,u i , r , r i), (3.44)
i = I
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and
5

? (r ) =  ^ 2 b i P ( T , p , k  + 2,v,Vi,T,ri) .  (3.45)
i= I

In all tEe expansions of fHe Poincare series P(r, 'p ,k  + 2 ,v ,u i , r , r i) G <S(P, k + 

2,p ,v),  we Have tEat m  + rhj > 0, for all I < j  < p and all I < i < s. 

TEerefore In fEe expansions of P(r,  p , k  + 2, v, T, r{) we will also Eave tEat 

m  +  m-j > 0, for all I < j  < p  and all I <  i < s. TEus

gO!) ( r ) =  £  c{£ e 277i{m+m̂ T, f o r i  < j  < p ,  (3.46)
m+rrij>  0

and tEe (k +  I)-fold Integral Is

G ® M =  Y \  .. "  e^ { m+m,)r +  g0)(T), for I K j K p .
z — '  ( 2 7 n { m  +  m d  r

m+rrij> 0  v v J ' '

(3.47)

Here q ^ \ r )  Is a polynomial of degree at most k. We assume witfiout loss of 

generality tEat q ^ ( r )  =  0. It Is clear tEat If q(r) =  0, we Eave tEat

G \-k,v,p T{t ) = G(r),  (3.48)

wEIcE implies tEat qr(r)  =  0. TEerefore a(g) G H* (T,Pk).  TEus

K 9 (r ) ,  f ( r ) )  = a(g(r))  +  (3(f(r))  G H l pv{Y, Pk). (3.49)

TEerefore we Eave sEown not only tEat p  maps tEe given spaces into tEe EIcEIer 

coEomoIogy (T,Pk), but also tEat p  Is I-I, since p  Is.

It remains to  sEow tEat tEe maps p  and p  are onto. We use tEe vector­

valued generalized Poincare series, to sEow tEat p  Is onto.

3.4 T he vector-valued generalized  Poincare se­

ries ^ ( r ] {pv (r )} , r ,w )

EeEner [13] defined a vector-valued generalized Poincare series. Eet {Qy ( t ) }  

be a parabolic cocycle of vector polynomials of degree < k  on P(I)> witE
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k G Z + , v a multiplier system in T(I) and p a normal representation. Assume 

also tEat Qt {t ) =  0. We define tEe vector-valued generalized Poincare series 

as

wEere r  is a large positive even integer and C is any set in T(I) containing 

all transform ations witE different lower rows. Now we note tEat if M  and M* 

Eave tEe same lower row, tEen we can write M  — T lM*  and tEerefore

Q m {t ) = Qt 1m *(t )

— Qti I-k,v,p M*(t ) + (3.51)

=

so tEat does not depend on tEe cEoice of coset representatives.

To study tEe convergence of T (r; r), we need tEe following facts:

I. Eemma 4 in [9]: For real numbers c, d and r  =  x + iy, we Eave

^  (c2 +  d2) < \cr +  d\2 <  2 ( |r |2 +  y~2)(c2 +  d2). (3.52)
I +  4|t

2. Eet a^ \  . . . ,  be the coefficients of Q g \ r ) .  Then if

<3-53)
j =I t=0

we Eave tha t 

Q s \ t ) < K i  (lr |fc +  y 1) ’ for r  G 77 and I < j  < p. (3.54) 

3. Since Qt (t ) =  0 , we Eave th a t

Q rm(T) = Qt  \-k,v,p T m 1(t ) + Qt  \~k,v,p T m 2 (r) +  . . .  +  Qi'(r)

=  0 .

(3.55)
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Note th a t by (3.55), we can rewrite (3.50) as

(3.56)

4. Since Qt ™{t ) =  0, we Eave tEat

Q r mv ( j )  =  Qt m |-k,v,p V ( r ) +  Q v (t )

=  QvCO-

5. Eet qi, ■ ■ ■ ,qs G ^ + , n  G Z,

y  = S T {- 1)' 9' S T ( - I)',~lq' - IS .  . . T Q2S T - Q1 S T n = f  °  6 ) (3.57)
\  c d

and for 0  <  'j < s define tEe m atrix

nS T ~ qi S T n = |
^

M  lv - ' S  . . . T q2S T ~ qiS T n = ( ^  ^  1, (3.58)

witE M q =  T n and S M s = V,  tEen

|c| >  \a-j\, |c| >  |t j | ,  |d| >  \Pj\ and |d| >  |£,-|. (3.59)

6 . For V  G T(I), by (3.II )  we Eave tEat

Q - v { t ) = Q - j{r )  + Q v  |_fcjt,iP ( - 7 ( r ) )

=  n_I(—7)p_I(—7)(—I)fcQy(r)  +  Q _ 7 ( t)  (3.60)

= Qv (t ).

7. Finally,

Q 7{t ) =  Q - t{t ) =  0. (3.61)

Now we want to find a bound for tEe cocycle Q v i j )  for V  G F (I). By 

(1.37), we Eave tEat

V = [  a b ) =  ^ r mS T <- 1)tqaS T ^ I)a~lqa- 1S . . . T 93S T - 91S T n. (3.63) 
c d
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Recall (Eemma 1.1) tEat s is tEe number of steps in tEe Euclidean algoritEm 

applied to  tEe pair c, d .

From tEe definition of a cocycle and by (3.55), (3.II ) , (1-37) and (3.60) we 

Eave tEat

QvQ~} Q z £ T T n S T { - i ) s q s S T ( - l ')s~ 1< is - i s . . .T ci 2 S T - n S T n ('r ^

Q S T f - - 1)*1!* S T ( ~ I')s~ lq*-i- S...T42 S T - i i  S T n ( T )

— Q sm s ( t  )

= Q s - k,v,p

= Qs —k,v,p

= Q s - k,v,p

— Q s - k , v , p

= Q s - k , v , p

Y ® s  I- k , v , p  M h{r) +  Q t »(t ) 
h - 0

s

Y ® s  I- k , v , p  M h ( r ) 

h= 0 
s

' Y ^ v - 1(M h)p~1{Mh){'yhT +  Sh)kQs (M hr).
h= o

(3.64)

Now by (1.42) and tEe Fact tEat |yh\ <  |c| (3.59), we get
P  S

Q v \ t ) < 1{Mh) f 3'l)\ |7hT + 6h\k I Q ^ { M ht ) I
Z=I fe=0

< K{ Y  Y  l^ l25 l^ r +  8h\k I Q s \ M hr ) I (3.65)
1=1 fc=o

< K ^ ± ±  h h T  + dh\k I Q f ( M hr)  I,
Z=I /i=0

and From (3.54) we obtain

h h r  + S h \k Q s \ M hr) < K z  \-yh T  +  5h\k ( \M hr \k +  y 1 \^hr  + 5fe|2)
V '  (3.66)

K*2 +  +  1 |7^r +  ^ | fc+2)  ■
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By (3.52) we Eave tEat 

Icx.hr +  (3h\k 5? 2 2  ( | r | 2 +  y 2) 2 (a^ +  /?2) 2 

and 

|7, r  +  5 , r < 2 ^  ( M 2 +  , - 2) ^ ( 7 2 +  52) ^  

TEus, (3.66) becomes

(3.67)

(3.68)

h h r  + 5h\k Q (s ( M hT) <  it.? (Irl2+ <r2)“  ( W + $ ) f + i t 162  + « ) “ ) .
(3.69)

and by (3.59) we Eave tEat
fc+2  /  fc fc+ 2  \

l7  ̂+ ^lfc|Q 5(^)| i\r\2 + y~2) 2 ((c2 + d2)2+rI (c2 + c?2)“ )
<  k ;  ( c2 +  d2) ^  ( | r | 2 +  y~2) (I +  y - 1) .

(3.70)

TEerefore we rewrite (3.65) applying (3.70) as

Q f  w |  5  K | c 2 i  Y ,  ( e 2 +  d 2 ) “  ( | r | 2 +  J , - 2 ) ® ?  (I +  « , - ■ )

h=0

< K l{ s  +  I)c25 (c2 +  d2) ^  ( | r | 2 +  y~2) ^  ( l  +  y~ l ) .

Also, by (1.39) we have tha t

s +  I <  2 (c2 +  d2)

and clearly

c2^ <  (c2 + d2) 5 .

Thus, we rewrite (3.71) as

O g V )  | <  ^  (c2 +  d2) ^  ( | r | 2 +  V~2) ^  (I +  tf"1) •

Now by (3.52) we rewrite (3.74)

(3.71)

(3.72)

(3.73)

(3.74)

I +  4 | t |2

A (r) |cr +  d|

V
k+25+i

fc+ 2£+ 4
2 \  ~ 2 fc+ 2

(3.75)
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Here,

fc-f 2 6 + 4

A(r ) = K s ( l  +  f ^ - - N) ( | r |2 + y  2) 2 (I + y  1) .  (3-76)
r

THus, by (3.62), (3.75) and (3.76) we Eave tEat

|$(*)(r; r ) | <  A(r) E  ICT +  d\
(3.77)

Now we want to sEow tEat ^ (^ ( t ; r) converges uniformly on

S  — =  x  +  iy  : \x\ < - ,  y >  M  > 0 j> . (3.78)

First we note tEat for r  G S  we can bound tEe function A(r) (3.76),

A ^ i ^ S X l  +  y ^ 2), (3.79)

wEere K i ( S )  is a constant tEat depends on S .  Also, since 0, we Eave tEat

|cr +  d | fc+2 >  |c|fc+2y fc+2 >  yfc+2. (3.80)

By (3.79), (3.80) and (3.77) and for r  € S  we Eave

| 2 f c + 2 < 5 + 6 - r
T ?/^ + 2  __

| * ® ( r ; r ) |S i f l ( S ) ^ -  E  <CT + $

c^o (3.81)

<  K 2(S) ^ 2  lCT +  d\2k+2S+e~r . 
vec

Since tEe summation converges absolute-uniformly on S  for r > 2<5 +  2A; +  8  [I, 

pp. 15-16], so does \fr̂ ( r ; r ) .  TEerefore is EolomorpEic on H  and at

zoo. Moreover we Eave tEat

rKm (r; r ) =  £  J im  S L d lL  =  0,
v e c
c ^  o

since we can put tEe limit inside tEe summation by tEe uniform convergence 

on S.
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Note th a t for every M  In T(I) there is a one-to-one correspondence between
>f< \ / 5̂ \

I , V M  — [ „  G T, and using tEe
7  5 J  \  7  5 J

absolute convergence and tEe fact tEat r  £ 2Z+ , we Eave

^  |_M;P M ( t ) (3.83)

=  u “ I ( M ) ( 7 r  +  5 ) V I ( M ) $ ( M r ;  r )  ( 3 . 8 4 )
=  ^  v~l ( M )(y r  +  S)kp - l (M )Q v (M r){ c M r  + d)~r (3.85) 

vec

= ^ 2  i- ^ ’p M (r )) (c jM r+ d)~r (3-86)
vec

= J 2  (Qv m {t ) -  Qm (t )) (cM t  + d)~r (3.87)
vec

=  (7 T +  fi)r ^  (Qv m (t ) -  Qm (t )) (j t  + Tj  (3.88)
VMec

= (7 t  +  5)r ($ ( r ;  r) -  tp(r;r)QM(r )) . (3.89)

Here 4 ( r ; r ) Is tEe classical Eisenstein series

= ^ 2 ( c r  + d)~r , (3.90)
vec

wEIcE converges absolutely for r  >  2. Also we have the transform ation law

ip (Mr;  r ) =  (y r  +  5)r,ip(T; r) , for all M  £ T, (3.91)

provided r  is an even integer bigger than  2 .

Now we define tEe vector valued function

H r )  =  - ^ 4  (3-92)
i p ( r ; r )

By (3.89) and (3.91) we get

F  \ - k ,v ,p M ( r )

_  #  I- k , v , p  M ( r )

i p ( M r ;  r )

= 4 4 4 + « m m
t p ( r ; r )

= F ( r )  +  Q m (t).
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Since 4/(r; r) converges absolute-uniformly on compacts of 7i For r sufficiently 

large, it is EolomorpEic on 7i  and tEerefore 4)[r \ r ) does not Eave any pole on

n.
In order to  avoid a pole in F ( r )  at r  =  i,  and at r  =  we can cEoose

a convenient r. Basically we want to avoid a zero of tp(r; r ) at tEose points. 

To do so note tEat by (3.52) for t  — i ,  we Eave tEat

E
v e c 
|c| > 1

( c r  +  d ) r
V  €  C 
|c| > 1

c r d ) r

S 2 E  e  e
c—2 o < d < c ^ — oo

(c, d) — 1

i
(cr +  cm +  d)T

I

y E  E  E  —r
c =2  o 5  a  <  c m = — oo  C r  ( I T  (m  T  ~) J

(c, d) =  1 

r  o o  T /  OO I - i

y

I(I +  4 M 2)g ^  I ( v
cr~l l “ 1 (m 2 +  I ) 5  ' 1' ( ( m + I ) 2 +  I)^= 0  v '  m = — o o  'c =2

r  o o

=  2 F
( I  +  4 | r | 2 ) § ^  i

\TTl — 
00

E W E
I

o G  1 n ( m 2  +  2c — 2 m = 0  v 7
(3.93)

and we can cEoose an r  large enougE to  make tEe above sum m ation less than
fvf 

2I for r  =  i,  — ■. We can also choose r  large enough so th a t

OO

E
d =  —oo

I
< 1 ,

00

E
d  =  —oo

1

(i  + d ) r H  +  d)r
d W 0 d  0

< I (3.94)

and

E
d =  — oc 

d ^  0

' S 7 3 i 
- 2 + d)r

< 1, E
d =  — oc

d 7̂  0

I3Eŷ t +  d)T
< I. (3.95)
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Now If r  =  0 (mod 12) we Have tHat

, / N 1 1 1
^(*) =  1 +  7 Tvr +  3T +

00

E( - I ) r ir ( - i y  ' ^  (i + d)
d =  —oo
d^O

+ E + Er ' ' - i  +  d)r
a =  - o o  ' v  e  c

d ^ o  |c | >  i

oo

=  4 +  £
oo

E
I

j  + d)r
d  =  —oo d  =  —oo

d ^  0 tf ^  0

+ E
I

(—i +  d)r ' ' (ci +  d)7v ec
k !  >  i

(3.96)

and tHerefore ^ ( i) !  >  0 . Also ,

T I I
^  I ---- -̂---- I =  I +  ^ T T  +

“ I )r  (®A)r ( - ^ ) +  C - ^ + d ) '

E ( _ i E &  + d)’
d — —oo x Z '

+ E

ci ^  0

I

tf 7̂ 0
oo

v e c
c > 1

(c +  A

= 4 + V  _/ IEEV3i
I

d  =  —oo ^ 2
ci 96 0

+ E
v e c
c >  I

( M  +  d),

I

(c  ( a ® )  +  d )

+ E
d =  —oc 

dy£0

IS \/3 i + d)r

(3.97)

and tHerefore if) > 0. THus for r a large Integer divisible by 12, we

have th a t F(r )  does not have a pole at r  =  i or IEy ^ .

3.5 C onstruction  o f a convenient vector val­

ued m odular form of n egative w eight — k  <

-2 5  on r(I)
Next we want to modify tHe function F ( r )  by substractlng a form wltH 

tHe same principal part at all poles of F ( r )  on 77, so tHat we get an Elchler

I
(d  + d)r
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Integral witE poles only at ioo and tEe same periods as F ( r ) .  To do so, we 

want to construct a function ITlhr(r) wEIcE Eas a pole of order s at r 0 In tEe 

fundamental region of T(I) and possibly at ioo, and wEIcE is EolomorpEic 

everywhere else on the fundamental region.

In Theorem 2.7 we showed how to construct a vector-valued modular form

H{t ) on T(I) which Is analytic In 7i. We define H(r)  as In (2.1), with k > 28

and p, sufficiently large.

Now we want to modify the function H ( t ) s o  th a t we have a pole of order 

s at To.in the r th component. Eet h the order of the zero of H(r)  at r 0 In the 

rth component. We can consider the function

[ H ® ( t ) if j ^ r
=  !  m o w  -r <3-98)

I  p w W ) , - * ’ lf 3 = r

If is easy to see th a t 7T0)T-(t, s) G J~{T, —k, p, v), since H{r)  G ^ (T , —k , p , v), 

and J ( t )  Is invariant under the action of \~k,v,P-

Since J (r) a ttains every complex value only once in the fundam ental region, 

we see th a t J(r )  — J(to) will be zero of order I In the usual variable r  — tq, 

except for r  =  i, IS^ 1, where the function J(r )  — J(r0) does not have a zero 

of order I in the usual variable r  — tq.

The function defined in (3.92)

-  ~ W )  ( 3 ' 9 9 )

could have poles at H.  Those poles correspond to  zeros of ^ ( r ) ,  since we chose 

r large enough to mahe T (r)  converge in H.  Also we chose r  =  0 (mod 12), 

to make sure th a t ip(r) has no zeros at r  =  i, Therefore F(r)  will not

Have a pole at t  —  i, . N ow  if F ( t ) Has a  p o le  of a t  t 0  a t  tKe c o m p o o n e n t

r, and the principal part of F ( r )  at the component r  is given by

5 2  cir><T -  to)” (3.100)
n0<n< 0

we will construct a form ITOjT.(r) with the same principal part as F ( r )  in the
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component. P u t

( r )  
n

a{rQ,n , r )J r o , r ( r ) =  : \ Jr o A ^ n )  ̂ (3 -101)
n o < n < 0

wEere a(T0, n , r ) Is given by

I i m 7 « ( r , n ) ( r - r 0r ,  (3.102)TOr—>tq

and 7ro,r(r, n) is given by (3.98). We note tHat tEe principal parts of F ( r )  and 

l TOjr(r)  are tEe same In tEe component r.

We repeat tEe process as many times as necessary to  construct an auto- 

morpEIc vector-valued form Q(r)  £ J-(V, —k, p,v),  sucE tEat botE F ( t )  and 

Q(r) Eave tEe same poles witE tEe same principal parts on a fundamental 

region for P (l). TEerefore,

F ( r )  -  Q ( t ) (3.103)

Is EolomorpEIc on 7i  and for all M  £ F (I) we Eave tEat

(F -  Q) |-k,v,P M (r )  (3.104)

=  F  \_ktVtP M i r )  -  Q |_M>P M (r) (3.105)

= F ( t ) - Q ( t ) + p m (t ). (3.106)

(3.107)

Now let W ( t ) be defined as

dk+1

T O  =  j p f f l  ( n r )  -  Q ( r ) ) . (3.108)

wEere tEe derivative can be calculated term-by-term on tEe expansion at ioo, 

since if Is a n a ly t ic  everyw fiere  else. B y  tfie  d iscu ss io n  in  se c tio n  1 w e see tf ia f

W ( t ) £ T ( V , k  + 2,p,v).  Now let bu^e2m^ i+mj) be tEe principal part

of W ^ \ r )  at ioo, wEere 6^ ’s are a complex numbers. TEen we can write 

p - i
W ( t )  = E  E  ^ n r ,  p, k + 2 ,v ,v j , T , j )  + B(r) ,  (3.109)

j= I  Uj=-^o
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where P ( r , p , k  +  2 ,v ,V j ,T , j )  is a Poincare series w ith u-j + rrij < 0, and 

tEerefore tEe first term  Eas tEe same poles as W (r) .  B{r)  is tEerefore in 

.M(r, k +  2, p, v ). For all j ,  Vj +  rrij < 0, and tEus tEe function supplementary 

to P ( r , p , k  +  2 ,v ,u ,T , i )  is a cusp form. So let (3(B(t )) be tEe coEomofogy 

class of tEe cocycle of tEe tEe period vector polynomials {pv : V  G T} of tEe 

(k + I)-foId integral of B(r) .  Now put

It only remains to  sEow tEat tEe function B(r )  is indeed a cusp form in 

<S(r, k + 2 , p, v).  We already saw at tEe end of Section 3.3, tEat tEe coEomoI- 

ogy class a(>I(r)) is parabolic. We will sEow tEat if B ( t )  is not a cusp form, 

tEen f3(B(r)) will not be parabolic, and therefore a(A(r ) )  +  (3(B(t )) will not 

be parabolic, which is a contradiction, since we started  w ith a parabolic coho­

mology class and showed th a t a(A{r))  + f3(B(r)) equals the given parabolic 

coEomoIogy class.

Suppose th a t B (r )  € M ( T , k  + 2, p, v) — S ( F ,k  + 2, p, v),  tEen for some j ,  

we Eave th a t rrij = 0 and

and let a{^A{r)) be the cohomology class of the cocycle of the the period vector 

polynomials {qy : V  G T} of the (k +  I)-foId Integral of

v - i

'j — 1 V=-flQ

OO

B ® ( t ) = CL^e2ni7nT, ^  0, (3.112)
m=0

and its (k + I)-foId Integral will be

(j) ̂ irimr

2irim
(3.113)

and
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THerefore all cocycles of tHe coHomoIogy class of (3.113) will Eave a polynomial 

of degree k, in wEicE tEe coefficient of r k in tEe j th component will never be zero 

since tEe coefficient of r k o f p ^ ( r )  cancels witE tEe coefficent of r k of p(J)(r+ 1 ). 

And tEerefore / 3(B( t )) is not parabolic. TEus B (r )  £ <S(T, k + 2, p , v). 

TEerefore tEe map

p  : <S(r, k +  2 , p, v) © S(T, k + 2 , p, v ) ->■ H ^ PiP(r, Pk). (3.115)

is onto. TEe proof of TEeorem 3.2 is complete.

3.6 End o f proof o f T heorem  3.3

Now we want to sEow tEat tEe map p  of tEeorem 3.3 is onto. We Eave

already seen tEat

p  : <S(I\ k + 2 ,p , v ) ®  S ( F, k +  2, p, v) Pk). (3.116)

is onto. Eet {Qv (t ) : V  £ T} be a cocycle in a nonparabolic class, witE tEe

polynomial corresponding to tEe translation given by

Q f { r )  = b ^ r k +  b ^ r ^ 1 + . . . +  b ? r  +  b (3.117)

We will construct a vector-valued modular form l(r)  £ M ( T , k  + 2, p, v), such 

tha t the cohomology class of the (k +  I)-fold integral, L(t ), will give rise to  a 

cocycle (pv (r )  : V  £ T}, where

Pt (t ) = Q t (t ). (3.118)

Eet p
l(r) = - k \  b ^ P ( r ,  p, k + 2, v, 0, F, j) ,  (3.II9)

where b ^  is given by (3.117), and P ( r , p , k  + 2 ,v ,0 ,T , i )  by (3.13). Now the 

(k -fi I)-foId integral of l(r)  is given by

l P \ T) = -k \b (j) ^  cm (2 e27ri(m+m̂ r +  <^rfc+I + p (j\ r ) ,
m > m j

(3.120)
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wEere cm are tEe Fourier coefficients of P ( r , p, fc +  2, v, 0, T,'j), p ^ ( r )  is a poly­

nomial of degree at most fc, wEose coefficients can be cEosen at our convenience 

and Sj is given by

* i  =

m -  =  0 (fc+i) > " h  u
0, rrij ^  0 

Now we cEoose tEe coefficients of p ^ \ r ) :

If rrij ^  0, we want to  cEoose tEe coefficients so tEat

(3.121)

p (d(r ) _  (p (Y) \_k ^ p T ( r ) )0) =  Q j . \ r ) .  

Note tEat

+  M  -  ( p(r)  T (r))®  =  p® (r) -  e ' ^ p ^ T  +  I)

(3.122)

(3.123)

k h

=  p ® ( r )  -  e~2nimi
h

E E  I “
h=0  s = 0  \  s

a h T

(3.124)

TEerefore we can set up tEe following linear system:

(  l  — e~2nimj ^(1,2) ^(d3)

0  d(2>2) d(2’3)

0 0  d(3’3)

V 0 0 0 

wEere d^h’1̂ Is given by

d (h,l) =

d(I’fc+I) ^
d(2,k+I) 

rf(3,fc+I)

I — e— 2 7 r im w

(  a 0 ) \  a0

J i )

a k - I

\  4J) /

/  rid \

6(i)
ufc-i

\  /
(3.125)

I -  e—2-Trim,'

—e -27rzmw

/ -  1 

v / - f c  

I -  I 

/ - f c

fc =  /

h ^ l .

(3.126)

TEis linear system Eas a unique solution for tEe a ^ ’s, and satisfies (3.123).
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If m-j =  0, we want to cEoose tEe coefficients so tEat

SjTk+1 +  p w (r) -  (SjTk+l + p ( r ) \_kiViP T ( t ) ) {j) = Q ^ }(t ). (3.127)

Note tEat

>>rk+1 -  U v , e  m f  = -Sj E
s = 0

k + I 

s +  I
r k —s (3.128)

Now we can set up tEe system of equations

(  0  d W

0  0  c^2,3)

0 0 0

0 0 0

d(i,k+i) ^  

d{2,k+l)

d(s,k+i)

I  Jo) \  u0

J i )

S 3 )
l k - 1

V ak' /CO

dj)

v b® + &j (k + 1 ) j

u 3

k + I 

k

k + I 

2

wEere
I -  I 

l - h

(3.129)

(3.130)

TEIs system of equations Eas a solution for tEe a ^ ’s, since by (3.121) we see 

th a t

b(i ) + 5 j {k + I) =  0. (3.131)

And by tEe choice of the coefficients we Eave th a t (3.127) holds. Note th a t 

this solution Is unique except for a ^ \  wEicE can be chosen to be whatever 

we want since m-j = 0. Sumarizing, we Eave found a vector-valued modular 

form l{r) G A !(r , k +  2,p ,v) ,  such th a t the cohomology class, /3(l), of the 

(fc-t-l)-fold Integral, L (r), Eas the same cocycle for T  as the given nonparabolic 

cohomology class. Therefore we can say tEat a given nonparabolic cohomology 

class can be w ritten as

/? (( )+ ? , (3.132)
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wEere p  is a parabolic coKomoIogy class in H lu pp(Y, Pk)- We saw 111 TEeo­

rem 3.2 tEat

S(T , k + 2,p ,v)(B S(T, k + 2 , p , v ) ^  H lv>p>p(T, P fc); (3.133)

tEerefore, tEere exists g £ <S(T, k +  2, p,v) and h £ S ( V , k  + 2, p, v) sucE tEat

p  =  a ( g ) + m -  (3-134)

Hence tEe given nonparabolic coEomoIogy class in H l pp(T, Pk) is

a(g) + m + M ) ,  (3-135)

or, wEat is tEe same,

a ($0 +  +  0) (3.136)

wEere g £ S(T ,  k  +  2 ,p,v)  and h + I £ M { T , k  + 2,p,v).  TEerefore tEe map

p  : S(T ,  k + 2,p ,v) ® M ( T , k  + 2 , p, v) -  H l p<p{T, Pk) (3.137)

is onto and the proof is complete.
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