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A B S T R A C T 

Characterizations of Matrices Enjoying the Perron-Prohenius Property and 

Generalizations of M-Matrices Which May Not Have Nonnegative Inverses 

Abed Elhashash 

DOCTOR OF PHILOSOPHY 

Temple University, January, 2008 

Professor Daniel B. Szyld, Chair 

General matrices with a positive dominant eigenvalue and a correspond

ing nonnegative eigenvector are studied. Such matrices are said to possess 

the Perron-Frobenius property. The latter property is naturally enjoyed by 

nonnegative matrices and has a wide variety of applications. In this disserta

tion, general matrices, which are not necessarily nonnegative, that possess the 

Perron-Frobenius property are analyzed. Several characterizations of matrices 

having the Perron-Frobenius property are presented: spectral, combinatorial, 

and geometric characterizations. In some cases, a full characterization is ob

tained, while in others only certain aspects are studied. In addition, some 

combinatorial, topological and spectral properties of matrices enjoying the 

Perron-Frobenius property are presented and the similarity transformations 

preserving the Perron-Frobenius property are completely described. Further

more, generalizations of M-matrices are studied, including the new class of 

GM-matrices. Matrices in the latter class are of the form si — B where B and 

its transpose possess the Perron-Frobenius property and the spectral radius 

of B is less than s. Results analogous to those known for M-matrices are 

demonstarted. Also, various splittings of GM-matrices are studied along with 

conditions for their convergence. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

We say that a real matrix A is nonnegative (positive, nonpositive, negative, 

respectively) if it is entry-wise nonnegative (positive, nonpositive, negative, 

respectively) and we write A > 0 (A > 0, A < 0, A < 0, respectively). This 

notation and nomenclature is also used for vectors. In 1907, Perron [33] proved 

that a positive matrix has the following properties: 

1. Its spectral radius is a simple positive eigenvalue. 

2. The eigenvector corresponding to the spectral radius can be chosen to 

be positive (called a Perron vector). 

3. No other eigenvalue has a positive eigenvector. 

4. The spectral radius is a strictly increasing function of the matrix entries. 

Later in 1912, this result was extended by Frobenius [15] to nonnega

tive irreducible matrices and consequently to nonnegative matrices, using a 

perturbation argument. In the latter case, there exists a nonnegative domi

nant eigenvalue with a corresponding nonnegative eigenvector. These results, 

known now as the Perron-Frobenius theory, have been widely applied to prob

lems with nonnegative matrices, and also with M-matrices and il-matrices; 
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see, e.g., the monographs [2], [22], [44], [49]. Applications include stochastic 

processes [44], Markov chains [47], population models [28], solutions of par

tial differential equations [l], and asynchronous parallel iterative methods [16], 

among others. 

A natural question is: which matrices other than the nonnegative ones 

have some of the properties 1-4? It turns out that eventually nonnegative and 

eventually positive matrices do satisfy some of the properties 1-4. A matrix A 

is said to be eventually nonnegative (positive) if Ak > 0 (Ak > 0, respectively) 

for all k> k0 for some positive integer &0. 

Friedland [14] introduced eventually nonnegative matrices and showed that 

for such matrices the spectral radius is an eigenvalue. Other authors, [19], [20], 

[31], [40], [51], [52], studied some of the properties in the Perron-Frobenius 

theory exhibited by eventually positive and eventually nonnegative matrices, 

while others studied the combinatorial properties of nonnegative and eventu

ally nonnegative matrices, [5], [21], [42]. In particular, Carnochan Naqvi and 

McDonald [5] studied the combinatorial properties of eventually nonnegative 

matrices whose index is 0 or 1 by considering their Frobenius normal forms, 

whereas Eschenbach and Johnson [9] gave combinatorial characterization of 

matrices that have their spectral radius as an eigenvalue. 

In a series of papers, [26], [27], [48], Tarazaga and his co-authors extended 

the Perron-Frobenius theory to matrices with some negative entries by study

ing closed cones of matrices whose central ray is the matrix having all entries 

equal to one and by giving the maximal angles in which eigenvalue dominance 

and eigenvector positivity are retained. In [27], limitations of extending the 

Perron-Frobenius theory outside the cone of positive matrices are discussed. 

In [38], theorems of the Perron-Frobenius type are proved for quasi-compact 

and quasi-positive operators on cones in Banach spaces, while, in [39], [43], 

only cones of positive semidefinite matrices are considered. 

We also mention the work of Rump [36], [37], who generalized the concept 

of a positive dominant eigenvalue and defined a new quantity for real matrices 

known as the sign-real spectral radius for which he derived various properties 
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similar to those in the Perron-Frobenius theory. 

We call a column or a row vector v semipositive if v is nonzero and nonneg-

ative. Likewise, if v is nonzero and nonpositive, then we call v seminegative. 

We denote the spectral radius of a matrix A by p(A). Following [31], we say 

that a real matrix A possesses the Perron-Frobenius property if A has a pos

itive dominant eigenvalue with a corresponding nonnegative eigenvector. We 

say that A possesses the strong Perron-Frobenius property if A has a simple, 

positive, and strictly dominant eigenvalue with a positive eigenvector. If a ma

trix A satisfies Av — p(A)v for some semipositive vector v, then we say that 

A has a Perron-Frobenius Eigenpair (p(A),v). In the latter case, if p(A) > 0, 

we call v a right Perron-Frobenius eigenvector for A. Similarly, if p(A) > 0, 

and wTA = p(A)wT for some semipositive vector w, then we call w a left 

Perron-Frobenius eigenvector for A. 

Following [26], we let PFn denote the collection of n x n real matrices whose 

spectral radius is a simple, positive, and strictly dominant eigenvalue having 

positive right and left eigenvectors, or equivalently, the collection of matrices 

A for which both A and its transpose possess the strong Perron-Frobenius 

property; see, e.g., [26], [31], [52]. Similarly, WPFn denotes the collection 

of n x n real matrices whose spectral radius is a positive eigenvalue having 

nonnegative left and right eigenvectors. Equivalently, WPFn is the collection 

of matrices A for which both A and its transpose possess the Perron-Frobenius 

property 

One of the main goals of this dissertation is to characterize as much as 

possible the collection of eventually nonnegative matrices, PFn and WPFn. As 

we shall see, in some cases, a full characterization is obtained, while in others 

only certain aspects are studied. New characterizations of PFn and WPFn 

are given in terms of the spectral projector. Combinatorial characterizations 

of eventually nonnegative and eventually positive matrices are given in terms 

of walks in the graph and in terms of products and unions of graphs. Also, 

convex sets determined by the rows and columns of a matrix are used to 

characterize eventually nonnegative and eventually positive matrices. One of 
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the questions answered in this dissertation is: which similarity transformations 

leave invariant the sets WPFn, PFn, and the collection of matrices with the 

Perron-Frobenius property? Another result pertaining to the recent work of 

Tarazaga and his coauthors [26], [27], [48], is showing that the set of eventually 

positive symmetric matrices extends beyond a known cone centered at the 

matrix of all ones. Moreover, topological aspects of WPFn, theorems that are 

counterparts to those known for nonnegative matrices, and some applications 

are presented. 

Another aspect of this dissertation is the presentation of various generaliza

tions of the class of M-matrices and the proof of results that are counterparts 

to those known for M-matrices. The class of GM-matrices, which generalizes 

the class of M-matrices using the Perron-Frobenius property, is introduced. 

Also other classes, such as the class of EM- and pseudo-M-matrices, which 

generalize the class of M-matrices using eventual nonnegativity and eventual 

positivity, respectively, are studied. Complete characterizations of nonsingu-

lar GM- and pseudo-M-matrices are given. As a result, a spectral charac

terization of inverse GM-matrices is established. The latter partially answers 

the question: which nonnegative matrices are inverse M-matrices? Moreover, 

a characterization of M-matrices using positive stability on the class of Z-

matrices is presented for GM-matrices using the generalized Z-matrices, the 

GZ-matrices. The latter are introduced in this dissertation. Other generaliza

tions of this type for GM- and pseudo-M-matrices are proved. Furthermore, 

some combinatorial properties of 2?M-matrices are studied. 

New splittings for an arbitrary nonsingular matrix and for a GM-matrix 

are introduced in this dissertation. One of them, the splitting having the 

Perron singular property, is a splitting for an arbitrary nonsingular matrix. 

The other splittings are the G-regular splitting, the GM-splitting, the over

lapping splitting, and the commuting bounded splitting. The latter splittings 

are for a GM-matrix. The G-regular splitting and the GM-splitting general

ize the known regular splitting and M-splitting, respectively. Conditions for 

convergence of all of these new splittings are explored and an example on each 
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splitting is given. 

1,2 Notation and Preliminary Definitions 

The spectrum of matrix A is denoted by <T(A). We call an eigenvalue of A a 

simple eigenvalue if its algebraic multiplicity in the characteristic polynomial 

is 1. We call an eigenvalue A G &{A) dominant if |A| = p(A). We call an 

eigenvalue A € cr(A) strictly dominant if |A| > |/i| for all // G (r(A), [X ^ A. 

The algebraic multiplicity of an eigenvalue A G cr(A) is its multiplicity as a 

root of the characteristic polynomial of A and is denoted by mult\(A), while 

the index of an eigenvalue A € cr(A) is its multiplicity as a root of the minimal 

polynomial of A and is denoted by index\(A). Sometimes, as a shorthand, we 

write index of A for indexo(A). 

The ordinary eigenspace of A for the eigenvalue A is denoted by Ex(A). 

By definition, E\(A) = M{A — XI), the null space of A — XI. The nonzero 

vectors in E\(A) are called ordinary eigenvectors of A corresponding to A. The 

generalized eigenspace of A for the eigenvalue A is denoted by G\(A). Note 

that GX(A) = {v | (A - Xlfv = 0 where k = indexx{A)} = M{A - Xlf. 

The generalized eigenspace G\{A) is also known as the algebraic eigenspace of 

A for the eigenvalue A. The nonzero vectors of G\(A) are called generalized 

eigenvectors for A corresponding to A. We call the projection operator onto 

G\(A) a spectral projector if |A| — p(A) and the projection is along the direct 

sum of the other generalized eigenspaces. For any A G C, J3(X) denotes the s x 

s Jordan block corresponding to A, i.e., JS(A) = A/s + Ns where Is is the s x 

s identity matrix and Ns is the matrix whose first superdiagonal consists of 

1's while all other entries are zeroes. Note that Ns — 0 if s = 1. The s x s 

zero matrix is denoted by Os. When the dimension of the zero matrix is clear 

we just write O. If A is another real or complex r x r matrix, then A © A 

is the direct sum of A with A. The Jordan canonical form of matrix A is 

denoted by J(A). By Box(\) wc denote the Jordan box corresponding to an 

eigenvalue A in J {A), i.e., Box(X) is the direct sum of all of the Jordan blocks 
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corresponding to A in J (A). 

We say that A € C l x l is reducible XA= [0]. We say that A e Cnxn (n > 2) 

\ B O] 
is reducible if A is permutationally similar to where B and D are 

square matrices. We say that a matrix A € C" x " (n > 1) is irreducible if J4 

is not reducible. We call a matrix A € K n x n normal if A commutes with its 

transpose. 

1.3 Relations among Sets 

We present in this short section the inclusion relations among the different 

sets mentioned in the previous two sections. We begin by mentioning that 

PFn = {Eventually Positive Matrices}. (1.1) 

This equality follows from [26, Theorem 1], [31, Theorem 2.2], and [52, The

orem 4.1 and Remark 4.2]. Obviously, every eventually positive matrix is 

eventually nonnegative. However, the converse is not true, e.g., one could take 

the identity matrix. Moreover, part of the collection of eventually nonnegative 

matrices is in WPFn. 

We begin by Lemma 1.1 whose proof can be found in [31]. Here, we have 

added the necessary hypothesis of having at least one nonzero eigenvalue or 

equivalently being nonnihpotent. 

Lemma 1.1 If A £ Rnxn is eventually nonnegative and has at least one 

nonzero eigenvalue, then, both matrices A and AT possess the Perron-Frobenius 

property, i.e., A € WPFn. 

We illustrate with the following example the need of at least one nonzero 

eigenvalue in the hypothesis of Lemma 1.1. 

Example 1.1 It is essential for an eventually nonnegative matrix A to have a 

1 1 
nonzero eigenvalue for A to be in WPFn. Let A 

- 1 - 1 
, then A2 = 0. 
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Hence, A is eventually nonnegative. But, 0 is the only eigenvalue of A, the 

0 1 
Jordan canonical form of A is 

t 0 0 
, and all the ordinary eigenvectors of 

A are of the form [a — a] for some a G M., a ^ 0. Therefore, A does 

not possess the strong Perron-Frobenius property nor the Perron-Frobenius 

property. To avoid such a situation, we have to stipulate that at least one of 

the eigenvalues of A is nonzero or equivalently that A is nonnilpotent. 

Corollary 1.1 Not all eventually nonnegative matrices are in WPFn. 

In fact, we can see from Example 1.1, Lemma 1.1, and Corollary 1.1, that 

all eventually nonnegative matrices are inside WPFn with the exception of 

nilpotent matrices. Moreover, the set of nonnilpotent eventually nonnegative 

matrices is a proper subset of WPFn as we show in the following proposition. 

Proposi t ion 1.1 The collection of eventually nonnegative matrices with at 

least one nonzero eigenvalue is properly contained in WPFn. 

Proof. It suffices to find a matrix A in WPFn which is not eventually 

nonnegative. Consider the matrix A — E ® [—1] where E is the matrix of 

dimension (n — 1) having all its entries equal to 1. Then, Ak = [(n—l)(-k~1'1 E]® 

[(—l)fe]. Clearly, A is not eventually nonnegative because the (n,ro)-entry of 

A keeps alternating signs. However, A G WPFn since p(A) = n — 1 and there 

is a semipositive vector v = [1 • • • 1 0]T G R™ satisfying vTA — p{A)vT and 

Av — p(A)v. D 

Remark 1.1 This case is to be taken in contrast with eventually positive ma

trices which fill all of PFn. 

Thus, Proposition 1.1 tells us that if we exclude nilpotent matrices from 

the collection of eventually nonnegative matrices, then still we do not cover 

all of WPFn. Hence, Proposition 1.1 establishes that all the containments are 



proper in the following statement: 

PFn = {Eventually Positive Matrices} 

C {Nonnilpotent eventually nonnegative matrices} 

C WPFn. 

Moreover, it turns out that an irreducible matrix in WPFn does not have 

to be eventually nonnegative as the following example inspired by [5, Exam

ple 3.1] shows. 

Example 1.2 Let 

A = 

1 1 1 - 1 

1 1 - 1 1 

1 1 - 1 - 1 

1 1 - 1 - 1 

B = 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

- 1 

- 1 

0 

0 

- 1 

- 1 

, and C — 

0 0 

0 0 

0 0 

0 0 

1 

- 1 

0 

0 

- 1 

1 

0 

0 

Note that A is an irreducible matrix. Also, note that p(A) — 2 and that if 

v = [2,2,1,1]T and w = [1,1,0,0]T then Av = p(A)v and wTA = p(A)wT. 

Thus, A is an irreducible matrix in WPFn. Furthermore, it is easy to see that 

A = B + C and that BC = CB = C2 = 0. Hence, Aj = Bj for all j > 2. But, 

using an induction argument, it is easy to check that 

2^' 22j 0 0 

B2i+1 = 
22J 

2 2 j 

22j 

22J 

22:> 

22i 

0 

_ 2 = y 

- 2 2 > 

0 

_ 2 2 J 

-22i 

for all j > 1. Hence, B is not eventu

ally nonnegative, and thus, A is not eventually nonnegative. 
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CHAPTER 2 

CHARACTERIZATIONS 

2.1 Spectral Characterizations 

In this section, we give characterizations of all matrices in PFn and some 

matrices in WPFn in terms of the positivity or nonnegativity of their spectral 

projectors. We mention first Theorem 2.1, which is a known result that can 

be derived from the usual spectral decomposition that can be found, e.g., in 

[6, page 27] or [46, pages 114, 225] and its method of proof is similar to that of 

[52, Theorem 3.6]. After that, we prove, using the spectral decomposition, our 

main results in this section, Theorems 2.2 and 2.3, which say that if A G Wixn 

has the spectral decomposition A — p(A)P + Q, then the following statements 

are true: 

1. Ae PFn o P > 0, rank P = 1, and p(Q) < p(A). 

2. A £ WPFn and p(A) is simple, positive, and strictly dominant 

«• P > 0, rank P = 1, and p(Q) < p(A). 

We present a number of preliminary results leading to the main results. For 

clarity of exposition, we postpone the proofs of the preliminary results (The

orem 2.1 through Lemma 2.2) until Appendix A. 

Theorem 2.1 If A e Cnxn has d distinct, eigenvalues |Aa| > |A2| > • • • > |Ad| 

then A has a decomposition: A = X\P + Q satisfying the following: 
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(i) P is the projection matrix onto G\x (A) along © J = 2 G\3 (A). 

(ii) PQ = QP. 

(in) fW) < P(A). 

(iv) If indexXl {A) = 1 then PQ = QP = 0. 

Remark 2.1 Let X be the similarity matrix that gives the Jordan canonical 

form of A, J{A) = X~1AX, in which the Jordan blocks corresponding to Ai, a 

dominant eigenvalue of A, appear first on the diagonal. For mi = multx^A), 

the projection matrix P, which appears in Theorem 2.1, can be expressed in 

terms of the columns of X and rows of X"1: 

P = X [Imi @ 0„_mi] X-1 = [Xex • • • Xemi] 

sfX"1 

elX~l 

The following lemma says that every Jordan block is permutationally sim

ilar to its transpose via a symmetric involutory permutation matrix. 

Lemma 2.1 For any Jordan block Js{\), there exists a permutation matrix 

Rjs such that: 

(i) Rjs - RrJ- = Rjs, and 

("> [Js^yf = Rjs Js(\j) R •}s 

Corollary 2.1 Box(Xj) is permutationally similar to its transpose [Box(Xj)]T. 

Corollary 2.2 For any matrix A € C"xn , we have the following: 

(i) J (A), the Jordan form of matrix A, is permutationally similar to its 

transpose by means of a permutation matrix R satisfying the property: 

R = R~ = R . 

(ii) AT is similar to A. 
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The existence of the matrix R in Corollary 2.2 was already noted by Nout-

sos [31]. 

Lemma 2.2 Let A be a matrix in Cnxn such that indexx^A) = 1, multx^A) — 

mi, and J(A) = X~lAX = Box(Xi) © Box{\2) © ••• © Box{Xd). Then, 

[efX -1] : 1 < i < mi > is a basis for G\1(A
T), i.e., transposing the first 

mi rows of X~x gives a basis for G\1(A
T). 

Theorem 2.2 The following statements are equivalent: 

(i) A£PFn. 

(ii) p(A) is an eigenvalue of A and in the spectral decomposition 

A — p(A)P + Q we have P > 0, rank P = 1 and p(Q) < p{A). 

Proof. Suppose that A € PFn. Then, each of A and AT has a positive (or 

negative) eigenvector corresponding to a simple, positive, and strictly dom

inant eigenvalue p — p(A). We use some expressions from the Appendix. 

Let J(A) = XAX~X be the Jordan decomposition of A as in (A.l), in which 

the Jordan box corresponding to p — Ai appears first on the diagonal of 

J(A). Moreover, let v = Xex and let w = [eJX^1]7. Then, v and w 

are respectively right and left eigenvectors (each of which is either positive 

or negative) corresponding to p and vTw = 1. Then, by (A. 2), we have 

P = vwT. Note that P is either positive or negative since each of v and w is 

either positive or negative. Since wTv = 1, it follows that the vectors v and 

w are either both positive or both negative. Therefore, P = vwT > 0. 

Moreover, since the range of P = vwT is spanned by v, it follows that 

rank P = 1. By (A.2) and (A.3), we have p(Q) < p(A) in the spectral 

decomposition A = p{A)P + Q. Conversely, suppose that p = p(A) is an 

eigenvalue of A and that in the spectral decomposition A = p(A)P + Q, we 

have P > 0, rank P — 1 and p(Q) < p(A). Since rank P =1, it follows that 

the algebraic multiplicity of p is 1. Thus, indexp(A) — 1 and by Theorem 2.1 
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we conclude that PQ = QP — O. Therefore, 

and consequently, 

lim (-A) = P + lim f -Q ) = P > 0. 
fe-»oo yp J fc->oo yp y 

Since p > 0 and the matrix -A is real and eventually positive, it follows that 

the matrix A is also real and eventually positive. By (1.1), A € PFn. D 

The proofs of the following two results are very similar to that of Theo

rem 4.2, and are therefore omitted. 

Theorem 2.3 The following statements are equivalent: 

(i) A € WPFn has a simple, positive, and strictly dominant eigenvalue, 

(ii) p(A) is an eigenvalue of A and in the spectral decomposition 

A —p(A)P + Q we have P > 0, rank P — 1 and p(Q) < p(A). 

Theorem 2.4 Let one of the two real matrices A and AT possess the strong 

Perron-Frobenius property but not the other. Then, the projection matrix P 

in the spectral decomposition of A satisfies the relation P = vwT where one of 

the vectors v and w is positive while the other is neither positive nor negative. 

Corollary 2.3 If one of the two real matrices A andAT has a Perron-Frobenius 

eigenpair of a strictly dominant simple positive eigenvalue and a nonnegative 

eigenvector but the other matrix does not, then the projection matrix P in the 

spectral decomposition of A has positive and negative entries, and rank P = 1. 

Corollary 2.4 If one of the two real matrices A andAT has the strong Perron-

Frobenius property but not the other, then the projection matrix P in the spec

tral decomposition of A is neither positive nor negative, and rank P = 1. 
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Example 2.1 Let A 

1 1 

1 2 

0 1 

is given by: X~XAX = J (A) 

0 

- 1 

1 

2 0 0 

0 1 1 

0 0 1 

, then, the Jordan canonical form of A 

where X 

1 

1 

1 

- 1 

0 

- 1 

0 

- 1 

- 1 

and, 

as a result, X x 

1 1 

0 1 

1 0 

Thus, p(A) = 2 is a simple, positive, and 

strictly dominant eigenvalue of A with a corresponding eigenvector v = Xe\ = 

[111] . Hence, A has the strong Perron-Probenius property. The matrix 

AT also has p(AT) — p(A) — 2 as a simple, positive, and strictly dominant 

eigenvalue but with a corresponding eigenvector w = [e\X~l]T = [11 — 1] • 

Thus, AT does not have the strong Perron-Probenius property, i.e., A £ PFn. 

From Remark 2.1, the spectral projector P is given by P = [Xei][efX_1] — 

1 1 - 1 

1 1 - r 

1 1 - 1 

positive nor negative, rank P = 1, and P — vwT where v > 0 and w is 

neither positive nor negative, and this is consistent with Theorem 2.4 and 

Corollary 2.4. 

vw = [11 I f [11 - 1 ] which shows that P is neither 

2.2 Combinatorial Characterizations 

In this section, we focus on the combinatorial properties of eventually non-

negative matrices. We look at the necessary and sufficient conditions for a 

matrix to be eventually nonnegative. In particular, we look at how even

tual nonnegativity is reflected in the walks of the graph, in the graphs of 

the positive and negative parts of a matrix, etc. In subsections 2.2.1, 2.2.2, 

and 2.2.3 our main focus will be on the combinatorial properties of eventually 

nonnegative matrices, in general, which may include nilpotent matrices. In 
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subsection 2.2.4, we shift our focus to the combinatorial properties of WPFn 

which includes the collection of nonnilpotent eventually nonnegative matrices. 

We begin first by recalling some basic definitions which can be found, e.g., in 

[2], [4]. 

For a n n x n matrix A, we define the (directed) graph G(A) to be the graph 

with vertices 1 ,2 , . . . , n in which there is an edge (i,j) if and only if a^ =£ 0. 

If atj ^ 0 then we call a^ the weight of the edge (i,j). A walk from i to j of 

length k is a (finite) sequence of vertices v\,... , v&+i where V\ = i, v^+i — j , 

and (vi,vi+i) is an edge in G(A) for i — 1 , . . . , k. We define the weight of 

a walk in G(A) to be the product of the weights of the edges in this walk. 

We say that a walk is positive (negative, respectively) if its weight is positive 

(negative, respectively). We define the total weight of a collection of walks 

from vertex i to vertex j in G(A) to be the sum of the weights of each of the 

walks in this collection. We say vertex % has access to vertex j if i = j or else if 

there is a walk from i to j . Hi has access to j and j has access to i then we say 

i and j communicate. Equivalence classes under the communication relation 

on the set of vertices of G(A) are called the classes of A. By A[a] we denote 

the principal submatrix of A £ Mnxn indexed by a C {1, 2 , . . . , n } . The graph 

G(J4[GJ]) is called a strong component of G(A) whenever a is a class of A. We 

say that G(A) is strongly connected whenever A has one class, or equivalently, 

whenever A is irreducible. We call a class a basic if p(vl[a]) = p(A). We call 

a class a initial if no vertex in any other class /? has access to any vertex in a. 

We call a class a final if no vertex in a has access to any vertex in any other 

class p. 

2.2.1 Eventual Nonnegativity and Walks in the Graph 

We begin with a theorem that characterizes eventual nonnegativity of a 

matrix in terms of walks in the graph of that matrix. We say that a sequence 

of real numbers {xk}™=i eventually majorizes (eventually majorizes and strictly 

dominates, respectively) another sequence of real numbers {yk}%Li if xk > Vk 
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(xfe > j/fe, respectively) for all k > ko for some positive integer k$. 

Theorem 2.5 A matrix A — (ay) in M.nxn is eventually nonnegative if and 

only if for any fixed pair of vertices i and j the total weight of positive walks 

from i to j of length k eventually majorizes the absolute value of the total 

weight of the negative walks from i to j having the same length in G(A). 

Proof. Suppose A 6 Rnxn is eventually nonnegative, i.e., there exists 

k0 € N such that Ak > 0 for all k > k0. Equivalently, for every k > k0 and 

every i, j e {1,2, . . . , n}, we have Akj > 0, where Akj denotes the (i, j')-entry 

of Ak, which can be written as 

n n n 

where lo = i and Ik — j - Let us define 

{ l , 2 , . . . , n } x - - - x { l , 2 , . . . , n } 
Sk,n — " • 

k — 1 times 

In other words, the set Sk,n is the Cartesian product of k — 1 copies of the set 

{1,2, . . . , n}. And, for every a - (h,l2,.-, k-i) e Sk,n we define Aa(i, j) := 
ai0h

ahh ''' ah-iik' w n e r e ô — i a n d 4 = j - Note that Aa(i,j) is the weight of 

the walk i, Zi, 1%, ..., h-i, j going from i to j in G(A). 

Thus, with this notation, saying that A is eventually nonnegative is equivalent 

to saying that there exists fc0 € N such that ^2aeS Aa(i,j) > 0 for all k > k0 

and all i,j € {1,2, . . . ,n}. 

Let 

Stn{hJ) •= ia € Sk>n\Aa(i,j) > 0}, S°kn(i,j) := {a e Sk,n\Aa(i,j) = 0}, 

and 

SkJiJ) •= {a€Sktn\Aa{i,j)<0}, 
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we can then write 

Y, MhJ) = Yl MhJ) + Y A<*^J) + S Aa(hJ) 
Q e S * . " «€S+n(»j) «eSO i n(ij) «eS" n ( i , i ) 

wherein a sum is equal to zero if it is taken over an empty set. Hence, A is 

eventually nonnegative if and only if there is an integer ko € N such that for 

all k > k0 and all i, j € {1,2, . . . , n} 

53 4»(»,j) > - 5^ Mhj) = J2 \A<*dJ)\ 
«eS+n(i , j) oi£S^n(i,j) >*eS^Ji,j) 

which means that the total weight of positive walks of length k from i to j 

in G(A) majorizes the absolute value of the total weight of negative walks of 

length k from i to j in G(A) for all k > k0. • 

Using the same technique in the proof of Theorem 2.5 and in light of 

Remark 1.1, we have the following characterization of PFn. 

Theorem 2.6 If A £ Wixn then the following statements are equivalent: 

(i) Ae PFn. 

(ii) A is eventually positive. 

(Hi) For any fixed pair of vertices i and j , the total weight of positive walks 

from i to j of length k eventually majorizes and strictly dominates the 

absolute value of the total weight of the negative walks from i to j of the 

same length in G(A). 

Example 2.2 Let A = 

2 1 0 

1 - 1 0 

0 0 3 

. Then, Ak > 0 for all k > 4. Henee, 

A is e v e n t u a l l y n o n n e g a t i v e . T h e o r e m 2.5 i n d i c a t e s t h a t for a n y fixed pair of 

vertices i and j the total weight of positive walks from i to j in G(A) majorizes 
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the absolute value of the total weight of the negative walks from i to j of length 

k > 4. In particular, the walks of length 4 from vertex 2 to vertex 1 must 

satisfy this property. We list, respectively, all positive walks and all negative 

walks of length 4 from vertex 2 to vertex 1 in Tables 2.1 and 2.2. In these two 

tables, an edge is represented by an arrow and the weight of an edge is placed 

over the arrow. Hence, we see from Table 2.1 and Table 2.2 that the total 

Table 2.1: Positive walks of length 4 from vertex 2 to vertex 1 

Positive Walk 

2 - M - ^ 1-^> 1-?-» 1 

2 - U 1 - ^ 1 -U 2 -i-> 1 

2 . - ^ 1 - ^ 2 - ^ 1 - ^ * 1 

2 - ^ 2 — ^ 2 - ^ 1 ^ 1 

Total Weight 

Corresponding Weight 

8 

2 

2 

2 

14 

Table 2.2: Negative walks of length 4 from vertex 2 to vertex 1 

Negative Walk 

2 ^ 2 - 1 * 1 - ^ 1 - ? -

2 - ^ * 2 - ^ 1 - l f 2 — 

2 - ^ 1 - ^ 2 ^ 2 — 

2 ^ 2 4 2 - i 2 — 

• 1 

• 1 

• 1 

• 1 

Total Weight 

Corresponding Weight 

- 4 

- 1 

- 1 

- 1 

- 7 

weight of positive walks of length 4 from vertex 2 to vertex 1 in G(A) majorizes 

the total weight of negative walks of length 4 from vertex 2 to vertex 1 because 

14 > | - 7 | . 
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Example 2.3 Let A . Then, Ak > 0 for all k > 3. Hence, 

3 2 3 

3 6 - 1 

- 1 2 7 
A is eventually positive. Theorem 2.6 indicates that for any fixed pair of 

vertices i and j the total weight of positive walks from i to j majorizes and 

strictly dominates the absolute value of the total weight of the negative walks 

from i to j of length k > 3. In particular, the walks of length 3 from vertex 3 

to vertex 1 must satisfy this property. And, just like in Example 2.2, we can 

see that the total weight of positive walks from vertex 3 to vertex 1 is 101, 

while the total weight of negative walks is -85. And thus, the total weight of 

positive walks strictly dominates the corresponding total weight of negative 

walks because 101 > | — 851. 

For completeness, we make now a couple of observations that relate G(Ak) 

to G(A). They follow using the same tools as in the proof of Theorem 2.5. 

Proposit ion 2.1 For any A e R" x " and any k > 1, the graph G(Ah) contains 

an edge (i,j) if and only if the total weight of positive walks of length k from 

i to j in G(A) is not equal to the absolute value of the total weight of the 

negative walks from i to j of length k in G(A). 

Corollary 2.5 Let A be an arbitrary matrix in R n x n and let Akj denote the 

(i,j)-entry of Ak. Then, the following statements are true: 

If Akj ^ 0, then there is a walk of length k from i to j in G(A). 

If Akj = 0, then either 

- there is no walk of length k from i to j in G(A), or 

— there is a collection of walks of length k from i to j in G{A) contain

ing at least two walks whose total weight of positive walks is equal 

to the absolute value of its total weight of negative walks. 
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2.2.2 Eventually Nonnegative Product of Two Matrices 

We next characterize when a product of two matrices is eventually non-

negative, and in particular, when the product of two eventually nonnegative 

(or eventually positive) matrices maintains this property. 

We begin by defining an j4i?-alternating walk for a pair of square matrices 

A and B. Let A and B be two matrices in R"xn and let G{A) and G(B) be 

their respective graphs. We define the graph G(A) U G(B) to be the graph 

on the set of vertices {1,2, . . . , n} satisfying (i,j) 6 G(A) U G(B) if and only 

if (i,j) G G(A) or (i,j) € G(B). We call a walk l0, Z1; l2,... ,hk of length 

2k in G(A) U G(B) an AZJ-alternating walk if the edges in the odd positions 

are in G(A), while the edges in the even positions are in G(B). The following 

theorem gives a necessary and sufficient condition for a product of two matrices 

to be eventually nonnegative. 

Theorem 2.7 Let A, B £ M.nxn then the following are equivalent: 

(i) The product AB is eventually nonnegative. 

(ii) For all 1 <i,j < n, the total weight of positive AB-alternating walks of 

length k from i to j in G{A) U G{B) eventually majorizes the absolute 

value of total weight of negative AB-alternating walks from i to j of the 

same length in G(A) U G(B). 

Proof Let C = AB. Furthermore, let a -̂, bij, and Cy, denote the (i,j)-

entries of A, B, and C, respectively, and let C^ denote the (i, j)-entry of Ck. 

Then, AB is eventually nonnegative if and only if there is an integer ko > 1 

such that for all 1 < i,j < n and for all k > k0, we have C*- > 0, where, as in 

(2.1), we write 

n n n 

k _ i = l Z 2 =Ui=l 
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with l0 = i and lk = j . Then, writing qwiu+1 = E"ro=i " U ^ t + i 

for 0 < w < k — 1, we have: 

n n n n 

^5 = 2_/ •"2_/zJa'0, i0&u°'1)'"( z J °«*-i«*-i&«fc-i«*) 
/fc_l = l / l = l M 0 = 1 « ) b - l = l 

n n n n 

= / j " ' / j / j ' ' ' / j [fllouo^uoh ' ' " alk-lUk-l"uk~lh) 
ifc_l=l / i = l « o = l «Jb-l=l 

Note that all the indices in the above summation are between 1 and n. Hence, 

after relabeling the indices and setting lo — i and l-iu — j , the (£, j)-entry of 

Ck can be written as: 
n n 

Ci,3 ~ 2_/ '"2LahhbhhahhbhU---ahk-2hk~lbhk-ll2k 
'21b—1=1" / t = l 

n 

= 2_̂  alolibhhahl3bl3h • • • ahk-2hk-ibhk-ihk 

i < h , - , *2fc-x<i 

Note that alollbill2ai2i3bl3h • • • ai2k_2i2k^bi2k^li2k is the weight of the ^-al ternat ing 

walk i = l0, h, l2, • • • , hk = j from i to j of length 2fc in G{A) U G(B). Having 

noted that, consider the following sets 

T+ = {(h, h,--' > hk-i) I aiah
bhhal2lzbhh ''' ahk-2hk-ibhk-ihk > °} 

7 1 = { ( ' 1 , h, • • • , hk-l) I ai0h
bhl2al2hbl3U • • • ahk-2hk-ibhk-ihk = ° } 

T~ — {(h, ' 2 , • • • ) k k - l ) I 0,hhhxhal2l3bhli " " " ahk-2hk-ibhk-ihk < ° } -

And thus, C^ > 0 if and only if the following condition holds, 

/ , alohbhh • ' • ahk-2l2k-ibhk-ihk - ~ 2 ^ aiohbhh " • ' ahk-2hk-iKk-ihk 
T+ T~ 

= I 2 ^ a W l ^ l i 2 / • •a«2fc-2i2fc-1^2fc-li2fcl' 

which is what we wanted to show. D 

A similar proof leads to the following result. 

Theorem 2.8 Let A,B€ R™xn. Then, the following are equivalent: 
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(i) The product AB is eventually positive. 

(ii) For all 1 < i,j < n, the total weight of positive AB-alternating walks 

from i to j in G{A) U G{B) eventually majorizes and strictly dominates 

the absolute value of total weight of negative AB-alternating walks from 

i to j of the same length in G(A) U G(B). 

Remark 2.2 It is easy to see that if A,B € M.nxn are eventually nonnegative 

(eventually positive, respectively) and AB = BA then AB is also eventually 

nonnegative (eventually positive, respectively). However, if AB ^ BA then 

AB does not have to be eventually nonnegative (eventually positive, respec

tively). Moreover, AB might be eventually nonnegative (eventually positive, 

respectively) yet neither A nor B is so. 

We illustrate this in the following examples. 

Example 2.4 Let A 

2 1 0 

1 - 1 0 

0 0 1 

and Let B — 

3 2 3 

3 6 - 1 

- 1 2 7 

. Then, 

both A and B are eventually nonnegative. In fact, Ak > 0 for all k > 4 and 

Bk > 0 for all k > 3. However, 

9 10 5 

0 - 4 4 

- 1 2 7 

= AB^BA 

8 1 3 

12 - 3 - 1 

0 - 3 7 

and neither AB nor BA is eventually nonnegative because, by Lemma 1.1, they 

have nonzero eigenvalues yet neither AB nor BA has the Perron-Frobenius 

property. 

Example 2.5 Let A 

3 2 3 

3 6 - 1 

- 1 2 7 
trix B is from [26]). Then, Ak > 0 for all k > 3 and 

and let B = 

all k > 3 anc 

20 1 1 

1 -10 1 

1 1 -10 
Bk > 0 for all Jfe 

(ma-

> 10 
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Hence, both A and B are eventually positive. However 

= A B # B A = 
65 -14 -25 

65 -58 19 

-11 -14 -69 

62 48 

-28 -56 

16 -12 

66 

20 

-68 

and neither AB nor BA is eventually positive because neither possesses the 

strong Perron-Frobenius property. 

Example 2.6 If A = — I and B = —27, where I is the identity matrix, then 

neither A nor B is eventually nonnegative, yet their product AB = 21 is 

nonnegative, thus eventually nonnegative. Another nontrivial example is the 

following: let A — 

- 2 - 1 0 

- 1 2 0 

0 0 - 1 

and let B = 

-5 - 1 0 

0 - 3 0 

0 0 - 1 

Then, 

neither A nor B is eventually nonnegative because the (3,3)-entry in both 

10 5 0 

of them keeps on alternating signs yet their product AB = 5 — 5 0 

0 0 1 
is eventually nonnegative. In fact, [AB)k > 0 for all k > 4. Theorem 2.7 

indicates that for all 1 < i, j < n, the total weight of positive AS-alternating 

walks from i to j in G(A) U G(B) of length 2k majorizes the absolute value of 

total weight of negative AS-alternating walks from i to j of the same length 

for all k > 4. In particular, for k = 4 there is only one Ai?-alternating walk of 

length 8 from vertex 3 to itself and the weight of such a walk is 1. Hence, it is a 

positive walk. On the other hand, there are 74 ./IB-alternating walks of length 

8 from vertex 1 to vertex 2. Among these 74 walks, the total weight of positive 

AS-alternating walks of length 8 majorizes the absolute value of the total 

weight of the corresponding negative AB-alternating walks, and these positive 

walks exceed in weight the absolute value of their corresponding negative walks 

by 4375. 
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2.2.3 Eventual Nonnegativity in G(A+) and G(A~) 

We study the eventual nonnegativity of a matrix using the graphs of the 

positive part and the negative part of the matrix. We begin with some prelimi

nary material followed by some lemmas on products and unions of graphs that 

will be needed for Theorem 2.9, which is the main theorem of this subsection. 

Let A be a matrix in R™xr\ We define the matrix A+, the positive part of A, 

as the matrix obtained from A by replacing the negative entries with zeroes. 

Similarly, we define A~, the negative part of A, as the matrix obtained from A 

by replacing the positive entries with zeroes. And thus, A = A+ + A~, where 

A+ > 0 and A~ < 0. For every k > 2, we look at the collection of maps from 

the set of integers { 1 , 2 , . . . , k} to the set of symbols {+, —} and we divide this 

collection of maps into two sub-collections: a sub-collection of maps that take 

an even number of integers to the symbol "—" and a sub-collection of maps 

that take an odd number of integers to the symbol "—". In other words, we 

define: 

• Everik = { r | r : { 1 , 2 , . . . , k} —> {+, —} and the cardinality of r_ 1{—} 

is even}, and 

• Oddk = {r | r : { 1 , 2 , . . . , k} —> {+, —} and the cardinality of r_ 1{—} is 

odd}. 

If A € Rnxn and r is any map from the set { 1 , 2 , . . . , k} to the set {+, —}, 

then for any i G { 1 , 2 , . . . , k} we define the following: 

(i) J A+ (the positive part of ^4) if r(z) = + 

[ A" (the negative part of ^4) if r(i) = — 

Note that the product ( J4~) ( J4~) = (A~)2 is nonnegative. Similarly, A+A~ and 

A~A+ are nonpositive. In general, if r is any map from the set { 1 , 2 , . . . , k} to 

the set {+, - } , we have that if T G Evenk, then Ar^AT^ • • • AT^ > 0, and 

if r G Oddk, then ATWATW • • • AT^ < 0. 
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Let G\ and G2 be two graphs on the set of vertices { 1 , 2 , . . . , n} . We say 

G2 dominates G\ in weight (or G2 is weight-dominant over G\), denoted by 

Gi >- G\, if for all 1 < i, j' < n, 

1. whenever an edge (i,j) is in G\ then (i,j) is also in G2, and 

2. the weight of (i,j) in Gi does not exceed the weight of (i,j) in G2. 

Note that if (i,j) is not an edge in G2 and G2 >- G\ then (i, j ) is not an edge 

i n d . 

If A, B are either nonnegative or nonpositive, then the "product" graph 

G(A)G(B) is the graph on the set of vertices {1,2, . . . , n } defined by 

(i,j) E G(A)G(B) if and only if there is an m E {1, 2 , . . . , n} such that 

(i ,m) € G(A) and (m,j) E G{B). 

The following three results follow immediately from the definitions. 

L e m m a 2.3 Let A,BE Mnx™ be nonnegative and let 7 be a nonzero scalar, 

then G(jA) = G(A), and G(A + B) = G(A) U G(B). 

L e m m a 2.4 If Ai, A2, A3 E R™x™ and Ai is either nonnegative or nonpositive 

for i = 1,2,3, then G{AXA2) = G(A1)G(A2), and [G(A1)G{A2)]G(A3) = 

G(A1)[G(A2)G(A3)]. 

Coro l l a ry 2.6 If {Ai, A2,... ,Ak} is any collection consisting of k matrices 

in M"x™ with the property that each Ai is either nonpositive or nonnegative for 

i - 1 ,2 , . . . , k, then G(A,A2 • • • Ak) = G(Al)G(A2) • • • G(Ak). 

T h e o r e m 2.9 A E M.nxn is eventually nonnegative if and only if there is a 

k0EN such that \JTeEvmknliG(AW) >- \JreOMkULG(\A^\) for all 

k > ko. 

Proof. A E Mnxn is eventually nonnegative if and only if there is a k0 E N 

such that for all k > k0 we have Ak = (A+ + A~)k > 0. Note that (vl+ + A~)k 

equals a sum of products of k matrices each of which is either A+ or A~. 
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And thus, (A+ + A~)k = Y^T AT^ • • • AT^k\ where the sum runs over all maps 

r : { 1 , 2 , . . . , k} —• {+, —}. Such maps have either an even or an odd number 

of integers mapping to "—", i.e., r € Everik or r € Odd^. Thus, for all k > k0, 

we have 

Ak = y ^ AT{I)AT{2) • • • Ar{k) + y ^ ^ ( 1 ) ^ ( 2 ) . . . j\r(k) > Q 

& J2 AT^AT^---AT^- Y, \AT^AT^.--AT^\>0 
T&Evenk T€Oddk 

** G { E AT{l)AT(2) • • • AT(-kn >- G ( J2 \AT(1)ATW ...A* 
\T£Evenk / \TtOddk 

k k 

* u iiG(AT{i})>- u nG(i^TWi)- ° 
T€Everik «=1 reOddk i=l 

E x a m p l e 2.7 Let A 
2 1 

1 - 1 
, then A+ = 

2 1 

1 0 
, and A = 

0 0 

0 - 1 

It is easy to verify that A4 > 0 and A5 > 0. Thus, by [26, Theorem 1], A is 

eventually positive (hence eventually nonnegative) and Ak > 0 for all k > 4. 

From Theorem 2.9, we have 

k k 

| J Y[G(AT^)y ( J J J G ( | J 4 T W | ) forallfc>4. 
TEEvenk i—1 TGOddf- i=l 

In particular, for k = 4, we have 

(J JjG(ATW)>- (J rjG(K«|). 
T£Even4 i=l r€Odd<i i—X 

We can see in Figure 2.1 that the graph of \JTeBveni F l t i G(A^) (on the left) 

is weight-dominant over the graph of UreOd^ 
UliG(\A^\) (on the right). 

2.2.4 The Classes of Matrices in PFn and WPFn 

It was shown in [2, Chapter 2, Section3] that a nonnegative matrix A 

has positive left and right eigenvectors corresponding to p(A) if and only if all 

file:///TtOddk
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1 14 2 1 7 2 »ooo o o o 
14 7 

Figure 2.1: The graph on the left dominates in weight the graph on the right. 

classes of A are basic and final. Note that the latter statement is not equivalent 

to saying that A € PFn because p(A) may not be a simple eigenvalue of A. In 

this subsection, we consider arbitrary real matrices and try to obtain analogous 

results for WPFn. We study the necessary and sufficient conditions on the 

classes of a matrix so that it is in WPFn. However, we note that we do 

not present a full characterization of WPFn in terms of classes. Instead, 

we present necessary conditions in Theorem 2.11 and sufficient conditions in 

Theorem 2.12. See also the end of Section 3.1 for a special case. We first 

review some definitions and well-known results, which can be found, e.g., in 

[2], [4]. 

We call a collection {a.\, a-i, • • • , am} of subsets of {1,2, . . . , n} a partition 

of {1,2, . . . , n} if U ^ a j = {1,2, . . . , n} and at C\aj — </> whenever i ^ j . More

over, we call the m-tuple (ai, «2> • • • , «m) an ordered partition of {1,2, . . . , n}. 

If A € Rnxn, v € Rn, and a,/3 C {1, 2 , . . . ,n}, then A[a,0\ denotes the sub-

matrix of A whose rows are indexed by a and whose columns are indexed by 

j3. If a — /?, then we write A[a] for the principal submatrix of A whose rows 

and columns are indexed by a. Moreover, by v[a] we denote the subvector of 

v indexed by a. If A is in M.nxn and « = (ai, as, • • • , am) is an ordered parti

tion of {1,2, . . . , n}, then AK denotes the block matrix whose (i,j)th block is 
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A[«j,aj]. In other words, we have a representation of the following form: 

Oil Otj Oim 

AK = 

A[ai] A[ai,otj] ... A[ai,am] 

A[aci,aj] 

«! 

Oii 

A[am,ai] ... A[am] 

Lemma 2.5 For any ordered partition K = («i, a^, • • • , am) of { 1 , 2 , . . . , n} 

and any matrix A € R n x n , the matrix AK is permutationally similar to the 

matrix A. 

Lemma 2.6 For any matrix A £ M.nxn there is an ordered partition K — 

(otx:
 a2, • • • , i m ) o / { l , 2 , . . . , n} such that AK is a block lower triangular matrix 

with m diagonal blocks. Moreover, each of the m diagonal blocks is either an 

irreducible block or a 1 x 1 zero block. Such a form is known as the (lower 

triangular) Frobenius normal form of A. 

Theorem 2.10 If A is a matrix in PFn, then A is irreducible. Hence, A has 

one class, which is basic, final, and initial. 

Proof. Let K = (ai,ot2, • • •, am) be an ordered partition of the set of vertices 

{ 1 , 2 , . . . , n} that gives the Frobenius normal form of A. It is enough to show 

that the Frobenius normal form of A has only one class, i.e., m = 1. Assume 

with the hope of getting a contradiction that m > 1, then a lower triangular 

Frobenius normal form of A is given by the partition K as follows: 

AK = 

Ai 0 

/ i n 

where At — A[ctj]. By (1.1), A is in PFn if and only if A is eventually positive 

if and only if AK is eventually positive. If m > 1 then for all s € {1 ,2 ,3 , . . . } 
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the matrix (AK)S will always have a zero in the (l,m)-block. And thus, AK 

can not be eventually positive, a contradiction. Hence, A has only one class, 

which is basic, final, and initial. D 

Theorem 2.11 Let A be a matrix in WPFn. Then, 

(i) If a. is a final class of A and v[a] is nonzero for some right eigenvector 

v of A corresponding to p(A), then a is a basic class. 

(ii) If a is an initial class of A and w[a] is nonzero for some left eigenvector 

w of A corresponding to p(A), then a is a basic class. 

Proof. In general, for any class a of A, we have 

(Av)[a] = A[a]v[a] + J^ A[a,0\v\0\, 
P 

where the sum on the right side is taken over all classes /3 that have access 

from a but are different from a. When a is a final class and v is an eigenvector 

of A corresponding to p(A), we have 

p(A)v[a] = (Av)[a] = A[a]v[a] 

If, in addition, v[a] is nonzero, we can conclude that a is a basic class. 

This proves (i) and the proof of (ii) is analogous. D 

Theorem 2.12 IfAG M.nxn has two classes a and (3, not necessarily distinct, 

such that: 

(i) a is basic, initial, and A[a] has a right Perron-Frobenius eigenvector 

and 

(ii) (5 is basic, final, and A[f}] has a left Perron-Frobenius eigenvector, 

then A e WPFn. 
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Proof. There is a semipositive vector v such that A[a]v — p{A)v. Define the 

vector v € W1 as follows: for any class 7 of A, £[7] = v if 7 = a, and £[7] = 0 if 

7 / a. It is easily seen that v is semipositive and that Av — p(A)v. Similarly, 

using the class /3, there is a semipositive vector w for which wTA = p(A)wT. 

Hence, A G VKPF„. D 

2.3 Eventual Nonnegativity and Convexity 

In this section, we study eventual nonnegativity in terms of the relations 

that exist between certain convex subsets obtained from the rows and columns 

of the matrix and we use these relations to characterize eventual nonnegativity 

of a matrix. First, let us introduce some notation needed in this section. The 

zth row of matrix A is denoted by A^. The j t h column of matrix A is denoted 

by A*j. By Hull(A) we denote the convex hull of the transposed rows of 

matrix A, i.e., Hull(A) is the convex hull of the (column) vectors {(-Ai*)r}iLi-

If y is a vector in Mn, then H(y) denotes the closed half-space consisting 

of vectors that are orthogonal to y or making an acute angle with y, i.e., 

H(y) = {x G W1 I xTy > 0}. 

Theorem 2.13 Let A be annxn real matrix and suppose that k is a positive 

integer. Then, the following statements are equivalent: 

(i) Ak+1 > 0. 

(ii) Hull{Ak) c C\"=1H(A.j). 

(Hi) Hull(A) c (^=1H((A%j). 

Proof. Let A^1 denote (i,j)-entry of Ak+1 and note that Ak+1 = AkA. 

Thus, AQ1 is the tth row of Ak multiplied by the j t h column of A, i.e., Akjl = 
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(Ak)^Atj. Therefore, 

Ak+1>0 <=> Ak+l >0for all 1 <i,j <n 

<s> (Ak)i,A*j > 0 for all 1 < i,j < n 

«• ((Ak)it)
T eH(Aifj) ioi&lll< i,j<n 

* {((AfLcflw 
3 = 1 

But fl?=i H{A<,j) is a convex set since it is the intersection of convex sets. 

Hence, the later statement is equivalent to Hull(Ak) C f]"=1H(A^j). This 

establishes the equivalence of (i) and (ii). The equivalence of (i) and (Hi) is 

shown in a similar manner by noting that Ak+1 = >L4fe and using the fact that 

the (i, j)-entry of ^4fe+1 can be alternatively written as Akjl = Aif(A
k)^j. D 

Corollary 2.7 Let A be annxn real matrix and suppose that k is a positive 

integer. Then, the following statements are equivalent: 

(i) Ak+1 > 0 and Ak+2 > 0. 

(ii) Hull(Ak) U Hull(Ak+1\ c D"=i H(A^). 

(Hi) Hull(A) c O ^ i {H((A^%)nH((Ak+%)). 

Corollary 2.8 Let A be annxn real matrix. Then, the following statements 

are equivalent: 

(i) A- is eventually nonnegative. 

(*) IXfco Hull(Al) c fi;=i H(A,j) for some k0 > 0. 

(Hi) Hull(A) c lX fco (1"=i H((A%) for some k0 > 0. 

Similar results hold for eventually positive matrices by replacing the closed 

half-spaces with open half spaces. 
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CHAPTER 3 

SPECTRAL, 

COMBINATORIAL, AND 

TOPOLOGICAL 

PROPERTIES 

3.1 The Classes of an Eventually Nonnegative 

Matrix and Its Algebraic Eigenspace 

Carnochan Naqvi and McDonald [5] showed that the matrices A and A9 

share some combinatorial properties for large prime numbers g if A is even

tually nonnegative and mdexo(A) £ {0,1}. In this section, we give slight 

improvements of their result by expanding the set of powers g for which their 

result is true and by using this set of powers to prove our main theorem in 

this section, Theorem 3.3, which generalizes Rothblum's Theorem [35] about 

the algebraic eigenspace of a nonnegaive matrix and its basic classes. First, 

we begin by some definitions. 

By R(A) we denote the reduced graph of G(A), i.e., the graph whose 

vertices are the strong components of G(A) and there is an edge from vertex 
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a to vertex b in R(A) if and only if there is an edge from the component that 

a represents to the component that b represents in G(A). By R(A) we denote 

the (reflexive) transitive closure of R(A), i.e., the graph whose vertices are the 

same as those of R(A) and there is an edge from vertex a to vertex b in R(A) 

if and only if vertex a has access to vertex b in R(A). 

Following the notation of [5], for any real matrix A, we define a set of 

integers DA (the denominator set of the matrix A) as follows: 

DA = {d\0-a = % where re2wie, re27ria e a{A), r > 0, c £ Z+, 

d e Z\{0}, gcd(c, d) = 1, and \6-a\i {0 ,1 ,2 , . . .}} . 

The set DA captures the denominators of those lowest term rational num

bers that represent the argument differences (normalized by a factor of ^£) of 

two distinct eigenvalues of A lying on the same circle in the complex plane. 

In other words, if two distinct eigenvalues1 of A lie on the same circle in the 

complex plane and their argument difference is a rational multiple of 27r, then 

the denominator of this rational multiple in the lowest terms belongs to DA-

Note that the set DA defined above is empty if and only if one of the following 

statements is true: 

1. A has no distinct eigenvalues lying on the same circle in the complex 

plane. 

2. The argument differences of the distinct eigenvalues of A that lie on the 

same circle in the complex plane are irrational multiples of 27r. 

Note also that DA is always a finite set and that 1 is never an element of DA-

Moreover, d € DA if and only if — d, € DA-

We define now the following sets of integers: 

PA = {kd | k <E Z, d > 0, and d € DA} (Problematic Powers of A) 

NA = { 1 , 2 , 3 , . . . } ^ (Nice Powers of A) 

file:///6-a/i
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Since DA is finite and 1 is never an element of DA, NA is always an infinite 

set. In particular, NA contains all the prime numbers that are larger than the 

maximum of DA-

Lemma 3.1 Let A G Cnxn and let A , / J 6 a (A), then for all k G NA, Xk = fik 

if and only if X~ JJL. 

Proof. The necessity is trivial. For the sufficiency, pick any k G NA and 

suppose that Afe = fj,k for some X,/J,<E <r(A). If Afe = fik = 0 then obviously 

A = // = 0. Suppose that Afe = fj,k ^ 0. Then, in such a case, there is an 

r > 0 such that A = re2*™9, fj, = re2ma for some 0, a G [0,1). In such a case, 

Afc = fj,k <£> r
ke2wike = r

ke2irika <S> e2itik{6-a) = \ <$. k(Q _ a} = m for s o m e 

m € Z. Assume (with the hope of getting a contradiction) that m ^ 0. It is 

enough to consider the case when m > 0, since the other case is analogous. If 

d = gcd(k, m) then we have two cases. Either d = k or d < k. If d = k then 

(9 - a = f G Z. But, 0 and a are in [0,1). Hence 6 > - a = 0<£>m = 0, a 

contradiction. Suppose now that gcd(k, m) = d < k, , then 0 — a = J T J € Z 

and gcd(^, ^ ) = 1. Hence, ^ G l ^ ^ f c G P A ^ f c ^ AA, a contradiction. D 

Lemma 3.2 Lei A G Craxw and let A G <T(J4), A ̂  0, taen /or o« /b G AA we 

/iave i5x(A) = EXk(Ak) and the Jordan box of Xk in J(Ak) is obtained, from, the 

Jordan box of X in J (A) by replacing X with Xh. 

Proof. Since EX(A) C EXk(Ak), it suffices to show that dim EX{A) = 

dim EXk{Ak). To prove the latter statement and the claim of this lemma, 

it is enough to show that there is a one-to-one correspondence between the 

collection of Jordan blocks of A in A and the collection of Jordan blocks of Afc 

in Ak that respects the multiplicity and the order of the Jordan block. Suppose 

that JS(X) = XIS 4- Ns is an s x s Jordan block of A corresponding to A and 

suppose that the Jordan canonical form of A is given for some X in Gl(n, C) 

by 

J(A) = X~lAX = JS(X) 0 • • • © J r(//). 
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Then, 

[J{A)f = X-1AkX = [Js(X)}k © • • • © [Jr(/i)]
fc. (3.1) 

If 0 € a(i4) and Jsr (0) is an s' x s' Jordan block corresponding to 0 that appears 

in J {A), then whenever Js '(0) is raised to the power k then it becomes [Js/(0)]fc 

which is either a block whose kth superdiagonal consists entirely of ones and all 

other entries are zeroes (if k < s') or it becomes a block consisting entirely of 

zeroes (if k > s'). In all cases, [Js'(0)]fc becomes either zero or permutationally 

similar to a direct sum of Jordan blocks corresponding to 0 of smaller order, 

i.e., there is a similarity matrix which is also a, permutation matrix that gives 

the Jordan form of [Js'(0})k and it is a direct sum of J r '(0) for some r' < s'. 

If the Jordan block JS(A) of a nonzero eigenvalue A is raised to the power k 

then it becomes 

WA)]fc = £ 
m=0 

k 

m 

k—m fk—m ATTTI xk—mj. N: s ' 

where I I denotes k combinations taken m at a time. Hence, 
\ m I 

[^(A)]fe 

Afc A fc-i 

A* 

ifc-2 

ik-1 

xk k-1 
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Since, the first superdiagonal of \Js(X)]k consists of nonzero entries, it follows 

that the Jordan canonical form of [Js(X)]k is Js(X
k). Hence by looking at the 

kth power of the Jordan canonical form of A in (3.1), one can see that there 

is a matrix S consisting of a direct sum of similarity matrices for each of the 

individual blocks [Js(A)]fe, • • • , [Jr(l^)]k that appear in [J(A)}k such that 

S-1X-1AkXS = Js(X
k) 0 • • • = J{Ak) = the Jordan canonical form of Ak. 

Hence, if A € o~(A), X ^ 0, and JS(X) is a Jordan block for A, then Js(X
k) is also 

a Jordan block for Ak and it appears in J(Ak) at least as many times as JS(X) 

appears in J (A). Moreover, suppose (with the hope of getting a contradiction) 

that the collection of Jordan blocks corresponding to Xk in J(Ak) has more 

blocks than the collection of Jordan blocks corresponding to A in J (A). Then, 

this could only happen if there is a /w € <r(A) such that fxk = Xk but fj, j^ X. 

Since k € NA, it follows from Lemma 3.1 that fi = A, a contradiction. Hence, 

J{Ak) has the same number of of Jordan blocks for Afe as J(A) has for A with 

the same orders and multiplicities. The only difference is that in J(Ak) the 

eigenvalue Afc appears instead of A. D 

The following corollaries follow directly from Lemma 3.2 with the same 

proofs as in [5]. 

Corollary 3.1 Suppose thai A e M"x™, indexo(A) £ {0,1}, and As > 0 for 

all s > ra. Them, for all g € N& D {m, m + 1, m + 2 , . . . } , if for some ordered 

partition K = («i ,a 2) of { 1 , 2 , . . . , n} we have (A9)[oti, a2] = 0 and (A9)[a2} is 

irreducible or a 1 x 1 zero block, then A[a,\,a^\ = 0. 

Corollary 3.2 Suppose thai A e Rnxn, inde^A) <E {0,1}, As > 0 for all 

s > m. Then, for all g € NA D {TO,, m + \,m + 2 , . . . } , if (A9)K is in the 

Frobenius normal form, for som,e ordered partition K, then AK is also in the 

Frobenius normal form.. 

Corollary 3.3 Suppose thai A € Rnxn, indexo(A) <E {0,1}, and As > 0 for 

all s > m,. Then, for all g € A ^ n { m , rn +1, ra + 2 , . . . } , the transitive closures 

of the reduced graphs of A and Ag are the sam,e, i.e., R{A) = R{As). 
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Theorem 3.1 Suppose that A £ Rnxn, indexo(A) = v, and As > 0 for all 

s>m. Let k = \~] = inf{s £ N | vs > m}. Then, for all 

geNA,n{k,k + l,k + 2,...}, 

we have R(A"a) = R{AV). 

Proof. Consider the matrix B = Av. Then B is eventually nonnegative. 

In fact, B9 > 0 for all g > k where k — inf{s £ N | us > m}. It is easy to see 

that k is the smallest integer larger than —, denoted by [™]. By Corollary 3.3, 

for all g £ NB n {fc, k + 1, k + 2 , . . . } , we have WW) = R(B). In other words, 

for all g £ NA* n {k, k + 1, k + 2 , . . . } , we have R(A"t>) = H(A"). 0 

Corollary 3.4 Suppose that A £ Rnxn, indexo(A) = i/, and As > 0 /or a/Z 

« > m . Ze*fc = |~f~|. 7%en, 

«/ A does not have distinct eigenvalues with the same modulus, or 

if the argument differences of the distinct eigenvalues of A having the 

same modulus are irrational multiples of 2%, 

then for all g > k, we have R(AV<>) = R{AV). 

Proof. If A does not have distinct eigenvalues with the same modulus then 

neither does A". Also, if the argument differences of the distinct eigenvalues 

of A having the same modulus are irrational multiples of 2-n then so do the 

argument differences of the distinct eigenvalues of Av that have the same 

modulus. Hence, if either of these conditions is satisfied, then 

DA* = DA = <J>^PA»=PA=<I>^ NA» =NA = {1 ,2 ,3 , . . . } . 

Thus, by Theorem 3.1, for all g>k,we have R(AV<>) = RjM), where k = [ ^ ] . 

D 

Recall that v £ Cn is a generalized eigenvector of A £ Cnxn having order 

ra > 1 and corresponding to A £ C if 

(A - XI)mv = 0 but (A - XI)m-lv £ 0. 
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In the following lemma, we collect some known properties of generalized eigen

vectors, and then we prove a result needed for our main theorem. 

L e m m a 3.3 Let A £ C"x". 

(i) A vector v £ Gx (A) is a generalized eigenvector of order m > 2 if and 

only if there is a generalized eigenvector w £ GX(A) of order m — \ such 

that Av = Xv + w. 

(ii) Let A £ Cnxn. If v is a generalized eigenvector in G\(A) of order m, 

then Av is also a generalized, eigenvector in GX(A) of order m. 

(in) Let A £ Cnxn. If v and w are generalized, eigenvectors in G\(A) having 

orders m and I, respectively, and 1 < I < m, then v + w is a generalized 

eigenvector that has an order m, corresponding to A. 

Lemma 3.4 Let A e Cnxn and let X e a (A), X^O, then GX(A) = GXk(Ak) 

for all k e NA. 

Proof. We know from Lemma 3.2 that the Jordan box corresponding to 

Afc in J(Ak) is obtained from the Jordan box corresponding to A in J(A) by 

replacing A with Afc. And thus, dim G\(A) = mult\(A) = multXk(Ak) = 

dim GA/i(Afc). Hence, to prove that GX(A) = GXk(Ak), it is enough to show 

that GX(A) C GXh(Ak). To do that, it is enough to show that v is a generalized 

eigenvector of order m in GXk (Ak) whenever v is a generalized eigenvector of 

order m in GX(A) for all m € {1,2,... ,indexx(A)}. We prove the latter 

statement by induction on m, the order of v. If m = 1, then v € GX(A) is an 

ordinary eigenvector of A corresponding to A. Hence, Av = Xv which implies 

Akv = Xkv. And thus, v € GXk(Ak) is a generalized eigenvector of Ak of 

order 1. Suppose that for all 1 < / < m whenever v £ GX(A) is a generalized 

eigenvector of order /, then v £ GXk(Ak) is a generalized eigenvector of Ak 

of order I. Let v £ GX(A) be a generalized eigenvector of order m. By 

Lemma 3.3 (i), there is a generalized eigenvector w £ GX(A) of order m, — 1 
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such that Av = Xv + w. And thus, 

Av — Xv + w, 

A2v = X2v + Xw + Aw, 

Ah) = X3v + X2w + XAw + A2w, 

Akv = Xkv + X^w + Xk~2Aw + ••• + XAk-2w + Ak^w. 

By Lemma 3.3 (ii), the vectors Aw, A2w, • • • , Ak~1w are all generalized eigen

vectors in G\{A) having order m — 1. Hence, by Lemma 3.3 (iii), the vector 

Xk~1w + Xk~2AwH \-XAk~2w + Ak~1tv is a generalized eigenvector in G\(A) 

having order m — 1. By the induction hypothesis, the vector Xk~1w+Xk~2Aw + 

1- XAk~2w + Ak~1w is a generalized eigenvector in GXk (Ak) of order m — 1. 

But, in such Lemma 3.3 (i), implies that v is a generalized eigenvector 

in G\k (Ak) of order m. • 

Rothblum [35, Theorem 3.1] proved the following result: 

Theorem 3.2 Let A e Rnxn be nonnegative and let M(A - p{A)I)k with 

k = indexp(A)(A) being the algebraic eigenspace corresponding to p(A). As

sume that A has m, basic classes a\,... ,am. Then, k = m and the algebraic 

eigenspace Af(A - p(A)I)m contains nonnegative vectors v^\--- ,v^m\ such 

that Vj > 0 if and only if the index j has access to a, in G(A), the graph of 

A. Furthermore, any such collection is a, basis of J\f{A — p(A)I)m. 

We now show that the latter theorem holds for eventually nonnegative 

matrices A whose indexo(A) € {0,1}. 

Theorem 3.3 Suppose that A 6 Rnxn is eventually nonnegative with 

indexo(A) € {0,1} and let M{A — p(A)I)k with k = indexP(A)(A) being the 

algebraic eigenspace corresponding to p(A). Assume that A has m basic classes 

a i , . . . , am. Then k = ra and the algebraic eigenspace J\f(A — p(A)I)m contains 

nonnegative vectors iM\ • • • , v^m\ such that v^ > 0 if and only if the index j 

has access to c*i in G(A), the graph of A. Furthermore, any such collection is 

a basis ofAf(A - p(A)I)m. 
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Proof. Since A is eventually nonnegative, it follows that there is 

p € NA such that As > 0 for all s > p. Let k' = i?xdex/,(^p)(Ap) and 

let K = (cti, • • • , am') be an ordered partition of { 1 , 2 , . . . , n} that gives the 

Frobenius normal form of Ap. By Theorem 3.2, k! = m' and the algebraic 

eigenspace ftf(Ap — p(Ap)I)k' contains nonnegative vectors ?M\ • • • , v^m'\ such 

thatVj > Oif and only if the index j has access to ttj in (7(ylp). ByLemma3.2, 

fc' = k. Moreover, Corollary 3.2 implies that m' = m and the ordered partition 

K also gives the Probenius normal form of A. Hence, k = m and the classes 

of A are the same as the classes of Ap. Moreover, we know from Lemma 3.4 

that M{A - p(A)I)k = M{AP - p{Ap)I)k. Thus, u « , • • • Mm) is a basis of 

J\f(A — p(A)I)k. Furthermore, we claim that j has access to a* in G(AP) if 

and only if j has access to a-i in G(A). To prove the latter claim, let /? denote 

the class to which the index j belongs and consider the reduced graphs of A 

and Ap. By Corollary 3.3, the transitive closures of the reduced graphs of A 

and Ap are the same. Hence, the reduced graphs of A and Ap have the same 

access relations. Thus, j3 has access to a.i in the reduced graph of A if and 

only if /? has access to ati in the reduced graph of Ap. Since j communicates 

with any vertex in /3, it follows that j has access to a* in G(AP) if and only if 

j has access to «j in G(A), and thus, the claim of this theorem is true. • 

Corol lary 3.5 Suppose that A € Wl><n is an eventually nonnegative matrix 

with indexQ^A) € {0,1}. Then, there is a positive eigenvector corresponding 

to p(A) if and only if the final classes of A are exactly its basic ones. 

Corol lary 3.6 Suppose that A € M.nxn is an eventually nonnegative matrix 

with index0(A) € {0,1}. Then, there are positive right and left eigenvectors 

corresponding to p{A) if and only if all the classes of A are basic and final, 

i. e., A is permutationally similar to a direct sum of irreducible matrices having 

the same spectral radius. 
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3.2 Matrices That Are Eventually in WPFn 

and PFn 

As we have seen, nonnilpotent eventually nonnegative matrices have the 

Perron-Frobenius property. It is natural then to ask, what can we say of 

matrices whose powers eventually belong to WPFn (or PFn). We show in this 

short section that these matrices must belong to WPFn (or PFn). 

Theorem 3.4 A £ WPFn if and only if for some integer m, Ak £ WPFn, 

for all k>m. 

Proof. Suppose that A £ WPFn. For any A € cr(A), A ^ 0, and all k > 1, 

we have E\{A) C EXk(Ak). In particular, this is true for A = p(A) > 0. Using 

the fact that p(Ak) = {p(A))k, we see that EP(A)(A) C Ep(A)k{Ak). Thus, if A 

has the Perron-Frobenius property, then so does Ak for all k > 1. Likewise, 

(AT)k has the Perron-Frobenius property for all k > 1. Thus, Ak G WPFn 

for all k > 1. Conversely, suppose that there is a positive integer m such that 

Ak G WPFn for k > m. Since the eigenvalues of A are the kth roots of the 

eigenvalues of Ak for all k > m, it follows that 0 ^ p(A) € o{A). Moreover, 

by picking k £ NA D {m, m + 1,m + 2,.. .} ("nice powers" A: of >1 that are 

larger than m), we have ^P(A)(J4) = Ep^)k(Ak) (this follows from Lemma 3.2). 

Hence, we can choose a nonnegative eigenvector of A corresponding p{A). So, 

A has the Perron-Frobenius property. Similarly, AT has the Perron-Frobenius 

property. Thus, A e WPFn. D 

Similarly, we obtain the following result. 

Theorem 3.5 A £ PFn if and only if for some integer m, Ak £ PFn, for all 

k >m. 
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3.3 Similarity Matrices Preserving the Perron-

Frobenius Property 

If S is a positive diagonal matrix or a permutation matrix then clearly 

S~1AS possesses the Perron-Frobenius property whenever A does. This ob

servation leads to the following question, which we answer in this section: 

which similarity matrices S preserve the Perron-Frobenius property, the strong 

Perron-Frobenius property, or being in WPFn, or in PFnl We first prove a 

preliminary lemma that leads to answering the latter question. 

L e m m a 3.5 Let S be an n x n real matrix which has a positive entry and a 

negative entry. If S is of rank one but not expressible as xyT with x being a 

nonnegative vector, or S is of rank two or more, then there is a positive vector 

v € Rn such that Sv has a positive entry and a negative entry. 

Proof. If S is a rank-one matrix with the given property, then S is ex

pressible as xyT, where a; is a vector which has a positive entry and a negative 

entry. Choose any positive vector v such that yTv ^ 0. Then Sv, being a 

nonzero multiple of x, clearly has a positive entry and a negative entry. 

Suppose that S is of rank two or more. If S has a column which has 

a positive entry and a negative entry, say, the fcth column, then take v to 

be the positive vector in M.n whose A;th entry is 1 and all of whose other 

entries equal c. It is readily seen that for e > 0 sufficiently small, Sv has a 

positive entry and a negative entry. It remains to consider the case when every 

nonzero column of S is either semipositive or seminegative. Because S is of 

rank two or more, it is possible to choose two linearly independent columns 

of S, with one semipositive and the other seminegative; say the j t h column 

is semipositive and the fcth column is seminegative. If the j ' th column has a 

zero entry such that the corresponding entry for the kth column is negative, 

then clearly S(ej + Sek) (where e* denotes the zth standard unit vector of Rn) 

has a positive entry and a negative entry for sufficiently small S > 0, hence 

so does the vector Sv where v is the positive vector of W1 with 1 at its jth 
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entry, 5 at its kih entry and e at its other entries, where e > 0 is sufficiently 

small. Similarly, if the fcth column has a zero entry such that the corresponding 

entry for the jth column is positive, then by a similar argument we are also 

done. So, the jih and the kth columns of S have zeroes at exactly the same 

positions. Consider ^ ( ( l — A)e,- + Aefc). Let A0 be the largest A € [0,1] such 

that S*((l — A)e, + Aefc) is nonnegative. Because we assume that the j t h and the 

A;th columns of S are linearly independent, it is clear that 5((1 — Ao)e,, + Aoefc) 

is in fact semipositive, i.e., a nonzero vector. Choose Xx > A0, sufficiently close 

to Ao- Then ^ ( ( l — Ai)&j + Axe*;) has a positive entry and a negative entry. 

Now let v be the positive vector in R™ whose j t h entry is 1 — Ai, whose fcth 

entry is Ai, and all of whose other entries are e. Then, for e > 0 sufficiently 

small Sv has a positive entry and a negative entry. • 

We call a matrix S monotone if S e GL(n,R) and S - 1 is nonnegative. 

Theorem 3.6 For any S £ GL(n, E) , the following statements are equivalent: 

(i) Either S or —S is monotone. 

(ii) S~1AS has the strong Perron-Frobenius property for all matrices A hav

ing the strong Perron-Frobenius property. 

Proof. Suppose (i) is true. Assume without loss of generality that S is 

monotone. If A is a matrix with the strong Perron-Frobenius property and v 

is a right Perron-Frobenius eigenvector of A, then S~xv is an eigenvector of 

S~rAS corresponding to p(A). The nonsingularity of S implies that none of 

the rows of S"1 is 0. Therefore, S~xv is a positive vector. Also, p(A) is a 

simple positive and strictly dominant eigenvalue of S^AS since S~1AS and 

A have the same characteristic polynomial. This shows that (i) =$> (ii). 

Conversely, suppose (i) is not true, i.e., S and —S are both not monotone. 

Then, in such a case, S~l must have a positive entry and a negative entry. 

By Lemma 3.5, there is a positive vector v such that 5 _ 1 v has a positive 

entry and a negative entry. For any scalar p > 0, wo can construct the ma

trix A — (p/vTv)vvT € PFn, having v as a right Perron-Frobenius eigenvec-
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tor. Moreover, for such a matrix A, we have EP(A)(A) = Span{v}. Since 

the eigenvectors in EP^A){S~1AS) are of the form S~1w for some eigenvector 

w G Ep(A)(A), it follows that Ep^AjiS^AS) does not have a positive vector. 

Thus, S~1AS does not have the strong Perron-Frobenius property. Hence, (ii) 

is not true, which shows that (ii) =>• (i). • 

The following results follow in the same manner. 

Theorem 3.7 For any S G GL(n, M); the following statements are equivalent: 

(i) Either S or —S is monotone. 

(ii) S^AS has the Perron-Frobenius property for all matrices A having the 

Perron-Frobenius property. 

Corollary 3.7 For any S e GL(n,M), the following statements are equiva

lent: 

(i) S and S^1 are either both nonnegative or both nonpositive. 

(ii) 5~M5 € PFn for all A e PFn. 

(Hi) S^AS E WPFn for all A € WPFn. 

3.4 The Perron-Frobenius Property and Real 

Symmetric Matrices 

In this section, Sn denotes the collection o f n x n real symmetric matrices 

and e £ l " denotes the vector that consists entirely of ones. We study the 

boundary of the cone in Sn of maximal angle centered at E — eeT (the matrix 

of ones) in which the nonnegativity of both the dominant eigenvalue and its 

corresponding eigenvector is retained. Tarazaga, Raydan, and Hurman studied 

this cone forn > 3 [48, Theorem 4.1] and showed that the angle of such a cone 

is 

y@E?H±\. (3.2) a = arccos 
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The authors of [48] do not claim that PFn or WPFn is a cone. In fact, it 

is shown by Johnson and Tarazaga [26] that PFn is not even convex. Thus, 

neither PF„ nor WPFn is necessarily a cone. We explore this further and show 

that there is a curve of matrices with the strong Perron-Frobenius property 

extending outside the cone centered at E — eeT and making an angle a given 

in (3.2). 

Proposit ion 3.1 The maximal subset of Sn (n > 3) for which there is a 

nonnegative Perron-Frobenius eigenpair extends outside the cone centered at 

E — eeT whose angle a is given by (3.2). 

Proof. Consider a matrix A in Sn (n > 3) of the form: 

A = A(x) = 

x x 

X 1 

X 

1 

X 

1 

1 
X 

where x is a positive scalar. Obviously, the matrix A is a positive matrix in Sn, 

and thus, it possesses the strong Perron-Frobenius property for every positive 

scalar x. 

We will show that there exists a 5 > 0 such that Angle(A,eeT) > a (i.e., 

cos(A, eeT) < cos a) whenever 0 < x < S. First, let us compute the cosine of 

the angle between A and eeT. Let a^ denote the (i, j)-entry of A. Then, 

cos(v4, ee ) = 
E, ,j aiJ _ 2nx+n2—2n 

ny/J2i,j(aij)2 nV2nx2+n2-2n 

And thus, cos(A, eeT) < cos a if and only if J ^ / J ^ n < ^ B 2 ± i . 

Define the functions f„(x) (n > 3) by: 
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Then, we want to see when fn{x) > 0. Note that for all n > 3: 

y/(n - I)2 + 1 _ n2-2n _ y/n2 - 2re + 2 - Vn2 - 2n 
Jn{<J) / „ == —: -> U 

n n\Jn2 — 2n n 

By continuity of the function fn(x), there exists Sn > 0 such that /„(x) > 0 

whenever 0 < x < 6n. Hence, when 0 < x < 5n the matrix A possesses the 

strong Perron-Frobenius property yet it lies outside the cone centered at ee 

with angle a. Indeed, we can define a curve Ay : [0,1) —> Sn of the matrices 

Ay(£) = A(l — t), which lie outside the cone centered at eeT with angle a, 

for 1 — 6n < t < 1, while they satisfy the strong Perron-Frobenius property. 

Furthermore, since the eigenvalues and the eigenvectors depend continuously 

on the matrix entries (see, e.g., [3], [22]), it follows that there is a neighborhood 

of the curve Ay(t) defined for 1 — 5n < t < 1, in which the strong Perron-

Frobenius property holds as well. The intersection of this neighborhood with 

Sn further extends the known collection of such matrices lying outside the cone 

mentioned above. D 

3.5 Topological Properties 

In this section, we prove some topological properties of the collections of 

matrices with the Perron-Frobenius property and other subcollections. 

The following lemma was asserted and used by Johnson and Tarazaga in 

the proof of [26, Theorem 2}; it& proof can be found in {31]. 

Lemma 3.6 Let A be a matrix in Mnxn with the Perron-Frobenius property, 

and let v be its right Perron-Frobenius eigenvector. If w & Rn, m ^ O , is such 

that vTw > 0 then for all scalars e > 0 the following holds: 

(i) The matrix B = A + tvwT has the Perron-Frobenius property. 

(it) p(A) < p(B). 

(Hi) If A has the strong Perron-Frobenius property then so does B. 
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Theorem 3.8 The collection of matrices in M"x™ with the Perron-Frobenius 

property is path-connected. 

Proof. Let A G Rnxn be any matrix with the Perron-Frobenius property. 

Since the collection of positive matrices is convex, it is enough to show that 

there is a path connecting matrix A to some positive matrix B. The proof goes 

as follows: connect matrix A to a matrix A having a positive right Perron-

Frobenius eigenvector and then connect A to a positive matrix B. 

If A has a positive right Perron-Frobenius eigenvector then define A — A, 

otherwise, consider J (A), the Jordan canonical form of A. We know that 

A = VJ(A)V~l where V — [v u>2 u>3 • • • wn] and v is a right Perron-Frobenius 

eigenvector of A. For every scalar t > 0, we construct the vector vt by replacing 

the zero entries of v by t, and we construct a new matrix Vt = [vt w<i w% • • • wn]. 

Since Vo = V € GL(n, C) and since GL(n, C) is an open subset of C"x™, there 

is a positive scalar 5 such that whenever 0 < t < 5 we have Vt G GL(n,C). 

Define At = Vt J(A)Vt~
1 for 0 < t < 6. Then, At is a path of complex matrices 

having a positive dominant eigenvalue p(A) with a corresponding nonnegative 

eigenvector vt. We show now that the real part of At is a path of real matrices 

connecting matrix A to our desired matrix A, which will be defined soon. 

Note that vt is positive for all 0 < t < 5 and that At — Ct + iDt where Ct 

and Dt are paths of real matrices. Since Atvt = Ctvt + iDtvt — p(A)vt € W1 

for all 0 < t < 6, it follows that Dtvt = 0 and that Ctvt = p(A)vt for all 

0 < t < 5. Moreover, Co = AQ = A. Hence, Ct is a path of real matrices 

connecting A to C$, and each matrix Ct has a positive dominant eigenvalue 

p{A) with a corresponding nonnegative eigenvector vt, therefore having the 

Perron-Frobenius property. Let A = C$ and let v$ be its corresponding positive 

eigenvector. 

Let w be any positive vector. For all scalars e > 0, define the path of real 

matrices Ke = A + evswT. By Lemma 3.6, Kc possesses the Perron-Frobenius 

property for all e > 0. Since vswT is a positive matrix, Kf is positive for large 

values of e. Hence, there is a positive real number M such that KM is positive. 
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Let B = KM- Hence, Ke is a path connecting A to B. • 

Similarly, we have the following result. 

Theorem 3.9 The collection of matrices in Rnx™ with the strong Perron-

Frobenius property is path-connected. 

Corollary 3.8 PFn is simply connected. 

Proof. Johnson and Tarazaga proved in [26, Theorem 2] that PFn is path-

connected. Thus, it is enough to show that any loop in PFn can be shrunk to 

a point. Let At : [0,1] —> PFn be a loop of matrices in PFn. For all 0 < t < 1, 

let vt and wt be respectively the right and the left Perron-Frobenius unit 

eigenvectors of At. Also, for all scalars e > 0, define the loop B\ — At + evtwf. 

By Lemma 3.6, the loop B\ is in PFn for all scalars e > 0. Note that for 

large values of e the loop B\ is a loop of positive matrices. Hence, At can be 

continuously deformed to a loop that can be shrunk t o a point. D 

Corollary 3.9 The collection of matrices in R n x n with the strong Perron-

Frobenius property is simply connected. 

Proposit ion 3.2 The closure WPFn = WPFn U {nilpotent matrices with a 

pair of right and left nonnegative eigenvectors}. 

Proof. Since the eigenvalues and eigenvector entries are continuous func

tions of the matrix entries, it follows that for any matrix A in WPFn we have 

p(A) > 0 and A has a pair of left and right nonnegative eigenvectors corre

sponding to p(A). If p(A) = 0 then A is nilpotent with a pair of right and 

left nonnegative eigenvectors, otherwise A is in WPFn. Conversely, suppose 

that A is in WPFn or A is a nilpotent matrix with a pair of right and left 

nonnegative eigenvectors. If A is in WPFn then obviously A is in WPFn. If 

A is a nilpotent matrix with a pair of right and left nonnegative eigenvectors 

v and w, respectively, then A has a Jordan canonical form A = VJ(A)V~1, 

where V and V~l are real matrices, all the Jordan blocks in J(A) are of the 
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form Js(0) for some s E { 1 , . . . , n} , the ith column of V is v, and the j t h row 

of V"1 is ioT for some i,j E { 1 , . . . ,n}. Let e* denote the ith standard unit 

vector of M.n. For every positive scalar e, let Jt = J (A) + e^ef + e^-ej), and 

A£ = VJeV'1. Note that Aev = ev and wTA€ = ewT. Hence, Ae E W P F n for 

all e > 0. Moreover, Ae converges to A as e —> 0. D 

Lemma 3.7 For any semipositive vector vx and for any scalar e > 0, there is 

an orthogonal matrix Q such that \\Q — I\\2 < e and Q^i > 0. 

Proof. Assume without loss of generality that v\ is a unit vector. If v\ is a 

positive vector then let Q — I, otherwise pick any scalar e > 0 and replace the 

zero entries of v\ by positive entries that are small enough then normalize so 

that the obtained vector, say v, is a positive unit vector and j|{; — i>i||2 < e/n. 

Let S = I — v^vf be the projection matrix onto v^, the hyperplane orthogonal 

to vi, and let v2 = Sv/\\Sv\\2- Then, v2 is a unit vector which is orthogonal 

to v\. Moreover, v lies in the 2-dimensional plane determined by v\ and v2. 

Let 9 = Angle(i;1,{;) = arccos^;^) . Extend {^1,^2} f° a n orthonormal basis 

{vi, v2, • • • , vn} of Rra. Define Q to be the Givens rotation (see, e.g, [18]) by the 

angle 8 in the 2-dimensional plane determined by v\ and v2. Then, v = Qvx, 

\\Qti2 — W2II2 = \\Qvi ~~ '-'lib < e/n, and Qvi = Vj, for all « > 3. Therefore, 

Q%h =v>0 and \\Q - I\\2 = sup\\x\\2=1\\(Q - I)x\\2 < e. D 

Propos i t ion 3.3 Every normal matrix in WPFn is the limit of normal ma

trices in PFn. 

Proof. Let A be a normal matrix in WPFn. Then, A = VSVT where V is 

an orthogonal matrix, S = [p(A)] © M2 • • • © Mk, and each Mj 

(i = 2, . . . , k) is a real l x l block or a nonzero real 2 x 2 block of the form 

a b 

—b a 

which we denote by v, is both a right and a left Perron-Frobenius eigenvector 

of A. For any scalar e > 0, consider the matrix B = V\\p{A) + e} © • • • © Mk] VT 

which has a simple positive and strictly dominant eigenvalue p(A) + e. Note 

a, 6 G R . Moreover, one of the columns of V, say the first column 

file:////Qti2
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that B converges to A as e —> 0. By Lemma 10.7, there is an orthogonal matrix 

Q such that Qv > 0 and ||Q - I\\2 < e. Let C = QBQT. Then, C is a normal 

matrix having p(A) + e as simple positive and strictly dominant eigenvalue. 

Moreover, C satisfies the following vector equalities CQv = (p(A) + e)Qv, 

and (Qv)TC = (p(A) +e)(Qv}T. Therefore, C is a normal matrix in PFn. 

Furthermore, 

l|C-i4||2 < HC-S||2 + ||J5-^||2 

= \\QBQT-B\\2 + \\B-A\\2 

= \\QB-BQ\\2 + \\B-A\\2 

< \\QB-B\\2 + \\B-BQ\\2 + \\B-A\\2 

< 2\\B\\2 \\Q - I\\2 + \\B - A\\2-^ 0 as e ^ 0. U 

3.6 Singular Values and Singular Vectors 

We explore in this section some sign properties of the singluar value de

composition of matrices in WPFn. Recall that every rectangular matrix in 

A € Mm x n can be expressed as A = UY;VT, where U —\u\--- um] is an m x m 

orthogonal matrix (UJ is the j t h column of U), V = [vi • • -vn] is an n x n 

orthogonal matrix (VJ is the j t h column V), and £ = diag(a\,a2,..., crp) is an 

m x n matrix satisfying u\ > <r2 > • • • > ap > 0 and p — m,in{m, n}. Such 

a decomposition is known as the singular value decomposition of A or simply 

as the SVD of A. It is easy to check that Avi = OiUi and ATUi = aiVi for 

all i € {1 ,2 , . . . ,p}. The r^'s are known as the right singular- vectors of A, 

the ui's are known the left singular vectors of A, and the <7j's are known as 

the singular values of A; see, e.g, [18], [22]. In the following three results, the 

SVD's of matrices that are eventually nonnegative or in general enjoying the 

Perron-Frobenius property are analyzed and sufficient conditions for the non-

negativity of the right and left singular vectors corresponding to the maximum 

singular value are given. 

T h e o r e m 3.10 If A is a normal matrix in PFn, then the maximum singular 
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value is strictly larger than the other singular values and its right and left 

singular vectors are positive. 

Proof. Let A = UTlV7 = [ui u2 • • • un] diagfa, o2, • • •, on) [vx v2 • • • vn]
T 

be the singular value decomposition of Ay where U and V orthogonal, and 

o\ > o~2 > • • • > on > 0 are the singular values of A. Note that V\ and 

u\ are, respectively, the right and the left singular vectors corresponding to 

<Ti, i.e., Avi = o\U\ and ATux = o\vx. Since A € PFn, then both A and 

AT are commuting eventually positive matrices. Hence, ATA is eventually 

positive, and thus, it possesses the strong Perron-Probenius property. But, 

AT A = VY?VT = [vi v2 • • • vn] diag(af, o\,..., on) [vx v2 • • • vn]
T is the Jordan 

decomposition of ATA. Therefore, vx must be positive and a\ > Oi > 0 for all 

i € { 2 , . . . , n } . Similarly, by noting that AAT is eventually positive, we show 

that u\ is positive. • 

Proposition 3.4 / / A is a, nonzero, normal and, eventually nonnegative ma

trix, then its right and left singular vectors corresponding to its maximum 

singular value are nonnegative. 

Proof. If A is a nonzero, normal and eventually nonnegative matrix, then 

both A and AT are commuting eventually nonnegative matrices. Hence, ATA 

is eventually nonnegative. Since the maximum eigenvalue of ATA is | |A| | | ^ 0 

(because A ^ 0), it follows that ATA € WPFn, and thus, it possesses the 

Perron-Probenius property. And thus, the right singular vector corresponding 

to its maximum singular value must be nonnegative. Similarly, by noting 

that AAT is eventually nonnegative, we show that the left singular vector-

corresponding to its maximum singular value is also nonnegative. D 

Note that a matrix A which satisfies the conditions required by Proposi

tion 3.4 is automatically nonnilpotent since there is no normal nonzero nilpo-

tent matrix. The next result is a more general result that applies to WPFn. 

Theorem 3.11 If A is a normal matrix in WPFn, then its right and left 

singular vectors corresponding to its maximum singular value are nonnegative. 
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Proof. If A is a normal matrix in WPFn, then by Proposition 3.3 there is a 

sequence of normal matrices {Ak}<^L1 C PFn that converges to A. For each k € 

{1 ,2 , . . . } , the matrices At and A\ are commuting eventually positive matrices. 

And just like in the proof of Proposition 3.10, the matrix A^Ak possesses the 

strong Perron-Frobenius property and its (positive) Perron-Frobenius eigen

vector, say Vk, is the right singular vector of the maximum singular value of Ak. 

By continuity of eigenvector entries as functions of matrix entries and since 

A^Ak —• ATA as k —• oo, it follows that the positive unit vector Vk which is 

an eigenvector of A^Ak converges to some nonnegative unit vector v which is 

an eigenvector of ATA, i.e., to the right singular vector of A corresponding to 

the maximum singular value. Similarly, we show that there is a sequence of 

positive unit vectors converging to the left singular vector of A corresponding 

to the maximum singular value. D 

Example 3.1 If a matrix in PFn or WPFn is not normal or, equivalently, 

not unitarily diagonalizable, then the singular vectors may have positive and 

negative entries. For example, consider the matrix 

C = 
1 

11 
7 

7 

30 
2 

30 

- 9 
23 

- 5 

The matrix C is a diagonalizable matrix in PF3, but it is not unitarily diago

nalizable. In fact, the Jordan decomposition of C is given by C — XJ(C)X~1, 

where 

X = AC) 
8 0 0 

0 - 7 0 

0 0 1 

X - l 

1 

0 

2 1 

- 2 2 

0 1 

The singular value decomposition of C yields that the right singular vector 

corresponding to the maximum singular value is [—0.2761, —0.9311, 0.2385]T 

and the corresponding left singular vector is [—0.7289, 0.0372, — 0.6836]T, 

each of which has a negative entry and a positive entry. Similarly, by taking 
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direct sums of matrix C with positive matrices, one can find counter-examples 

in WPFn in which the right and left singular vectors corresponding to the 

maximum singular value have positive and negative entries. 
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CHAPTER 4 

GENERALIZATIONS OF 

M-MATRICES 

4.1 Introduction and Preliminaries 

Closely related to the subject of nonnegative matrices and their generaliza

tions is the subject of M-matrices. A matrix A e R n x n is called an M-matrix 

if it can be expressed as A = si — B where B is nonnegative and p(B) < s. In 

this chapter, we study generalizations of M-matrices of the form A = si — B 

where B 6 WPFn and p(B) < s. We call such matrices GM-matrices. We also 

study other generalizations of this type and present some of their properties 

which are counterparts to those of M-matrices. Among the generalizations of 

M-matrices we study are matrices of the form A — si — B with p(B) < s and 

B being an eventually nonnegative or an eventually positive matrix. Johnson 

and Tarazaga [26] termed the latter class, pseudo-M-matrices. Le and Mc

Donald [29] studied the case where B is an irreducible eventually nonnegative 

matrix. We mention also other generalizations of M-matrices not considered 

in this chapter; namely, where J3 leaves a cone invariant (see, e.g., [45], [50]) 

or for rectangular matrices; see, e.g., [34]. 

It is well-known that the inverse of a nonsingular M-matrix is nonnegative 

[2], [49]. This property leads to the natural question: for which nonnegative 
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we study analogous questions, such as: for which matrices having the Perron-

Frobenius property is the inverse a GM-matrix? 

Another aspect we address in Section 4.3 is the study of splittings 

A — M — N of a GM-matrix A with conditions for their convergence. 

Recall that a matrix A € M.nxn is a Z-matrix if A can be expressed in the 

form A = si — B where s is a positive scalar and B is a nonnegative matrix. 

Moreover, if A = si — B is a Z-matrix such that p(B) < s, then we call A an 

M-matrix. 

If A 6 R"xn can be expressed as A — si — B where B € WPFn, then we 

call A 

• a GZ-matrix. 

• a GM-matrix if 0 < p{B) < s. 

• an i?M-matrix if 0 < p(B) < s and B is eventually nonnegative. 

• a pseudo-M-matrix if 0 < p(B) < s and B e PFn [26]. 

When the inverse of a matrix C is a GM-matrix then we call C an inverse 

GM-matrix. 

It follows directly from the definitions that every M-matrix is an EM-

matrix, that every EM-matrix is a GM-matrix, and that every pseudo-M-

matrix is an EM-matrix. We show by examples below that the converses do 

not hold. 

Furthermore, an M-matrix may not be a pseudo-M-matrix. Consider, for 

example, a reducible M-matrix. We illustrate the relations among the different 

sets of matrices in Figure 4.1. 
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Figure 4.1: This diagram summarizes the relations between the sets of various 
generalizations of M-matrices using the Perron-Frobenius property. 

Example 4.1 

Let A = si - B where B 

2 2 

2 2 

1 1 

1 1 

0 0 

0 

0 

1 

1 

0 0 0 

0 0 0 

1 0 0 

1 0 0 

1 - 1 2 2 

and s > 4. 

0 0 - 1 1 2 2 

Note that matrix B, which is taken from [5, Example 4.8], is a reducible 

nonnilpotent eventually nonnegative matrix with p{B) — 4. Hence, A is an 

.EM-matrix. Since A is reducible, it follows that, for any positive scalar S, we 

have SI—A reducible and any power of SI—A reducible. Hence, for any positive 

scalar S, the matrix SI — A is not eventually positive (i.e. (SI — A) £ PF6). 

And thus, A is not a pseudo-M-matrix. Moreover, A is not an M-matrix 

because A has positive off-diagonal entries. 
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Example 4.2 

Let A = si - B where B 

1 1 0 

1 1 0 

0 0 - 1 

0 0 - 1 

and s > 2. 

Note that p(B) = 2 is an eigenvalue having [110 0]T as a right and a left eigen

vector. Hence, B e WPF4 and A is a GM-matrix. However, B is not eventu

ally nonnegative because the lower right 2 x 2 block of B keeps on alternating 

signs. Moreover, for any positive scalar 8, the lower 2 x 2 block of SI — A is the 

S-s-1 - 1 
matrix C — . Note that for any positive integer k, the 

- 1 S - s - 1 

lower 2 x 2 block of (SI — A)k is the matrix Ck which is, using an induction ar

gument, the matrix \ 
(5-s-2)k + (S-s)k (5 

(S-s-2)k-(S-s)k {S 

s-2)k-{S- s)k 

s-2)k + (S- s)k 
It 

is easy to see that for any choice of a positive scalar S the matrix SI — A is not 

eventually nonnegative because the (2,l)-entry of Ck will always be negative 

for odd powers k. 

4.2 Properties of GM-Matrices 

In this section, we generalize some results known for M-matrices to GM-

matrices. For example, if A is a nonsingular M-matrix, then A'1 is nonneg

ative; see, e.g., [2], [49]. We show analogous results for GM- and pseudo-

M-matrices. However, we show by an example that no analogous result for 

EM-matrices holds. 

Theorem 4.1 Let A be a matrix in Rnx™ whose eigenvalues with multiplicity 

are arranged in the following manner: \\x\ > |A2| > ••• > |A„|. Then the 

following statements are equivalent: 

(i) A is a nonsingular GM-matrix. 
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(ii) A"1 e WPFn and 0 < A„ < i?e(A;) /or a// A; ^ A„. 

Proof. Suppose first that A — si — B is a nonsingular CrM-matrix 

{B € WPFn and 0 < p(B) < s). Then, there are semipositive vectors v 

and w such that Bv — p{B)v and wT i? = p(B)wT. This implies that A~lv = 

(s — p(B))~1v and that toT.A_1 = (s — p(B))"1wT. Thus, v and u; are eigenvec

tors of A~x and furthermore p{A~l) — |A„|_1 = (s — p(B))~1 > 0. Therefore, 

A*1 £ WPFn. Moreover, |A„| = A„, i.e., Re(Xn) > 0 and Im(\n) = 0, oth

erwise, if we have Re{\n) < 0, then the eigenvalue (s — A„) e cr(B) satisfies 

Is ~ \i\ > Is — |A„|| = p{B), which is a contradiction. Or, if Re(Xn) > 0 but 

Im(Xn) 7̂  0, then again, \s — A„| > |s — |A„|| = p(B), which is a contradiction. 

Therefore, |A„| = A„ > 0. Similarly, one could show that if |Aj| = A„ for some 

i G { 1 , . . . , n — 1} then Aj = A„ > 0. Furthermore, suppose that A„ > Re(Xi) 

for some Aj ^ A„, then |Aj| > A„ (otherwise, A; = A„). If Re(Xi) = A„, then 

|Aj| > Re(Xi), therefore |im(Aj)| > 0. Thus, 

| s -Ai | = y/\s-Re{Xi)\2 + \Im(Xi)\2 > \s-Re(\i)\ > | s -A„ | = s-Xn = p(B), 

which is a contradiction because s — Aj is an eigenvalue of B. On the other 

hand, if Re(Xi) < A„, then s — Re(Xi) > s — A„ > 0. Thus, 

|s - Aj| >\s — Re(Xi)\ > \s - A„| = s - A„ = /?(£), 

which is again a contradiction because s — Aj is an eigenvalue of B. Therefore, 

A„ < Re(Xi) for all A; ^ A„. 

Conversely, suppose that A-1 £ WPFn and that 0 < A„ < Re(Xi) for all 

Aj ^ A„. Then, there are semipositive vectors v and u> such that A~lv — 

p(A~1)v = X~xv and wTA~1 = p(A~1)wT — X~lrw. Note that for every A» such 

that |Aj| — Xn we have Aj = A„ (otherwise, 0 < A„ < Re(Xi) < \Xt\ = A„, 

which is a contradiction). Moreover, the set of complex numbers 

{XiGaiA) : |A,| + An} = a(A)\{Xn} 

lies completely in the set fi defined by the intersection of the following two 

sets: 
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Figure 4.2: The gray region represents the set O, which is the intersection 
of the open right half-plane determined by the vertical straight line passing 
through An and the closed annulus centered at 0 with radii Xn and |Ai|. 

• The annulus {z : A„ < \z\ < |Ai|}, and 

• The (open) half-plane {z : Re(z) > Re(Xn)}. 

It is easy to see that there is a real number s large enough so that the circle 

centered at s of radius s — X„ surrounds all the complex numbers A, E (T(A), 

A, 7̂  A„ lying in f2; see Figure 4.2. For such an s, define the matrix Bs := 

si — A. Then the eigenvalues of Bs are s — Ai, s — A 2 , . . . , s — A„. Moreover, 

by our choice of s, we have the following: 

|s — Aj| < s — A„ for all A, ^ A„. 

Therefore, 0 < p(Bs) = s — A„ < s. Moreover, Bsv — (s — \n)v and that 

wTBs = (s - \n)w
T. Thus, Bs £ WPFn. And therefore, A = si - Bs is a 

nonsingular GM-matrix. D 

In [26, Theorem 8], Johnson and Tarazaga proved that if A is a pseudo-

M-matrix, then A~l £ PFn. We extend this theorem by giving necessary and 

sufficient conditions for a matrix i to be a pseudo-M-matrix. The proof is 

very similar to that of Theorem 4.1, and thus, it is omitted. 
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Theorem 4.2 Let A be a matrix in Wnxn whose eigenvalues with multiplicity 

are arranged in the following manner: |Ai| > jA21 > ••• > |A„|. Then the 

following statements are equivalent: 

(i) A is a pseudo-M-matrix. 

(ii) A*1 exists, A^1 is eventually positive, and 0 < A„ < Re(Xi), for i — 

l , . . . , n - 1. 

Remark 4.1 Since every M-matrix is a GM-matrix, it follows that condi

tion (ii) in Theorem 4.1 can be used to check if a matrix is not an inverse 

M-matrix. In particular, if the real part of any eigenvalue is less than the 

minimum of all moduli of all eigenvalues then the given matrix is not an in

verse M-matrix. 

Remark 4.2 The set WPFn in Theorem 4.1 is not completely analogous to 

the set of nonnegative matrices. In other words, if we replace in Theorem 4.1 

WPFn by the set of nonnegative matrices and if we replace a GM-matrix by an 

M-matrix, then the statement of the theorem would not be correct. Similarly, 

in Theorem 4.2, PFn is not completely analogous with the set of positive 

matrices. For example, we may find a nonnegative matrix whose inverse is a 

GM-matrix but not an M-matrix. An example of the latter is the positive 

matrix C = ^ 

where s = 10, B 

7 6 5 

5 12 1 

1 6 11 

3 2 

3 6 

- 1 2 

Note that C -1 _ 

7 - 2 - 3 

- 3 4 1 

1 - 2 3 

= sI-B 

€ WPF3, and p{B) = 8. Hence, C " 1 is a 

nonsingular GM-matrix. However, C l is not an M-matrix since it has some 

positive off-diagonal entries. 

Corollary 4.1 A matrix C € Wixn is an inverse GM-matrix if and only if 

C € WPFn and ^(A" 1 ) > p(C)~l for all A e a{C), A ̂  p{C). 
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Corollary 4.2 Every real eigenvalue of a nonsingular GM-matrix is positive. 

Example 4.3 In this example, we show a nonsingular £JM-matrix whose in

verse is not eventually nonnegative. This implies that no result analogous to 

2 - 1 - 1 1 

Theorems 4.1 and 4.2 holds for this case. Let A 
- 1 

- 1 

- 1 

2 1 - 1 

-1 2 - 1 

-1 - 1 2 

3/ -

1 

1 

1 

1 

1 

1 

1 

1 

1 

- 1 

1 

1 

- 1 

1 

1 

1 

3 / — B. Then, p(B) = 2 and, using an in

duction argument, Bk 

2 * - i 

2 * - i 

fc2*"1 

k2k~1 

2*-i 

2fc-i 

fc2fe-1 

fc2fc"1 

0 

0 

2fc-i 

2*-1 

0 

0 
2*-i 

2fc-i 

> 0 for all integers 

& > 2. Hence, A is an EM-m&trix. But, A - 1 = 3~2(.E + F) where 

E = 

6 3 0 0 

3 6 0 0 

9 9 6 3 

9 9 3 6 

a n d F = 

0 0 

0 0 

0 0 

0 0 

1 

-1 

0 

0 

. Note that EF = FE = 3F 

and F2 — 0. Therefore, using an induction argument, it is easy to check that 

(A-1) = 3~2kEk+k3~~k~1F. Hence, A-1 is not eventually nonnegative because 

the (1,4) and (2,3) entries are always negative. 

It is well-known that a Z-matrix A € Rnx™ is a nonsingular M-matrix 

if and only if A is positive stable, i.e., the real part of any eigenvalue of A 

is positive; see, e.g., [2, p. 137]. In the following proposition, we prove an 

analogous result with C?Z-matrices and GM-matrices. 

Proposition 4.1 A GZ-matrixAe MnYn 

only if A is positive stable. 

is a nonsingular GM-matrix if and 
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Proof. Let A be a GZ-matrix in R"x™ with eigenvalues |Ai| > |A2| > 

•' • > | A„ |. If A is a nonsingular GM-matrix, then Theorem 4.1 implies that 

0 < An < Re(Xi) for all A, ^ A„. Thus, i?e(A;) > 0 for i = 1 ,2 , . . . , n. Hence, 

A is positive stable. Conversely, suppose that A is positive stable, then it 

follows that 0 is not an eigenvalue of A, which implies that A is nonsingular. 

Moreover, since A is a GZ-matrix we can decompose A in the following manner 

A = si - B where B € WPFn and s > 0. If s < p(B) then (s - p(B)) is 

a nonpositive eigenvalue of A, which contradicts the positive stability of A. 

Hence, s > p(B), which shows that A is a nonsingular GM-matrix. D 

Another useful result is the following; see, e.g., [2, p.136]. 

Theorem 4.3 A Z-matrix A £ Rnxn is a nonsingular M-matrix if and only 

if there is a positive vector x such that Ax is positive. 

In Theorem 4.4 below, we prove an analogous result for pseudo-M-matrices. 

The results in the following lemma are proved in [31, Theorem 2.6]. 

Lemma 4.1 If B € M n x n has a left Perron-Frobenius eigenvector and 

x = [xi • • • xn]
T is any positive vector then either i=x '3 3 — p[B) for all 

t 6 { l , 2 n} o r f f l < = 1
E ^ 6 i , I i < p{B) < m a x ^ 1 ^ 6 . 

Theorem 4.4 If A = si — B where B 6 PFn, then the following are equiva

lent: 

(i) A is a pseudo-M -matrix. 

(ii) There is a positive vector x such that Ax is positive. 

Proof. Suppose A = si — B is a pseudo-M-matrix and let a; be a right 

Perron-Frobenius eigenvector of B. Then, Ax = (si — B)x — (s — p(B))x is 

a positive vector. Conversely, suppose there is a positive vector x such that 

Ax — (si — B)x = sx — Bx is positive. Then, max™=1
 ?~~ .̂'J J < s, and by 

V"?_ bi x • 

Lemma 4.1, p(B) < max"=1—i-x ll 3. Hence, p(B) < s which proves that A is 

a pseudo-M-matrix. D 
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We next give a characterization of nonsingular GM-matrices which has the 

flavor of Theorem 4.3. 

Theorem 4.5 If A = si—B is a GZ-matrix (B 6 WPFn), then the following 

are equivalent: 

(i) A is a nonsingular GM-matrix. 

(ii) There is an orthogonal matrix Q such that Qx and QAx are positive 

where x is a right Perron-Frobenius eigenvector of B. 

(Hi) There is an orthogonal matrix Q such that Qy and QATy are positive 

where y is a left Perron-Frobenius eigenvector of B. 

Proof. We prove the equivalence of (i) and (ii) and we omit the proof of 

the equivalence of (i) and (Hi) since it is analogous. Suppose A = si — B is 

a nonsingular GM-matrix and let x be a right Perron-Frobenius eigenvector 

of B. Then, by Lemma 3.7, there is an orthogonal matrix Q such that Qx is 

positive. Moreover, 

QAx = Q(sl - B)x = (s- p(B))Qx 

is positive since A is nonsingular having p(B) < s. Hence, (i) =$• (ii). Con

versely, suppose (ii) is true. Then, 

QAx = Q(sl - B)x = (s- p(B))Qx 

is positive, and thus, p(B) < s. D 

We end this section with a result on the classes of an £"M-matrix. 

Proposi t ion 4.2 Let A = sI—B be an EM-matrix (B eventually nonnegative 

and 0 < p(B) < s). If A is singular, then for every class a of B the following 

holds: 

1. A[a] is a singular irreducible EM-matrix if a is basic. 
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2. A[a] is a nonsingular irreducible EM-matrix if a is not basic. 

Proof. If A is a singular .EM-matrix and a is a class of B, then A [a] = 

si — B[a], where / is the identity matrix having the appropriate dimension. 

If a is a basic class of B, then B[a] is an irreducible submatrix of B and 

p(B[a\) = p(B) > 0. Since the eigenvalues of A are of the form s — p where 

p € o-(B) and since A is singular, it follows that p(B) = s. Hence, p(B\a\) = s 

and A[a] = si — B[a] must be singular, as well. Moreover, since B[a] is ir

reducible, it follows that the graph G(B[a\) is strongly connected. Note that 

the graph G(A[a]) — G(sl — B[a\) may differ from the graph G(B[a\) only 

in having or missing some loops on some vertices. This means that the graph 

G(A[a]) is also strongly connected because adding or removing loops from ver

tices of a strongly connected graph does not affect strong connectivity. Hence, 

A[a] is irreducible. Moreover, if K = ( a i , . . . , am) is an ordered partition of 

{ 1 , 2 , . . . , n} that gives the Frobenius normal form of B (see, e.g., [4]), then BK 

is block triangular and it is permutationally similar to B. Thus, BK is even

tually nonnegative and so is each of its diagonal blocks. In particular, there 

is a diagonal block in BK which is permutationally similar to B[a] (because a 

is a class of B). Hence, B[a] is eventually nonnegative, which proves part 1. 

Similarly, if a is not a basic class of B, then part 2 holds. • 

4.3 Splittings and GM-Matrices 

Recall that a splitting of a matrix A = (ay-) is an expression of the form 

A = M — N where M is a nonsingular matrix. The matrix M~lN is called 

the iteration matrix of the splitting A = M — N. If M = diag(an,..., o„„), 

then we call such a splitting a Jacobi splitting. If the (i,j)-entiy of M is Oy 

whenever i > j and 0 otherwise, then we call such a splitting a Gauss-Seidel 

splitting. If p(M~1N) < 1 then we say that the splitting A = M — N is 

convergent; see, e.g., [2], [18], [49]. In this section, we define various splittings 

of a GM-matrix, give sufficient conditions for convergence, and we illustrate 
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this with examples. We begin by listing some preliminary definitions. 

Definition 4.1 Let A — M — N be a splitting. Then, such a splitting is called 

• weak (or nonnegative) if M~1N > 0. 

• weak-regular if M~XN > 0 and M " 1 > 0 [32]. 

• regular if M~l > 0 andN>0 [49]. 

• M-splitting if M is an M-matrix and N > 0 [41]. 

• Perron-Frobenius splitting ifM~1N possesses the Perron-Frobenius prop

erty [31]. 

We list now the new splittings introduced in this section. We begin first by 

defining the splitting having the Perron singular property, which is a splitting 

for an arbitrary nonsingular matrix. Then we proceed to define the splittings 

specific to nonsingular GM-matrices. 

Definition 4.2 Let A be nonsingular. We say that the splitting A = M — N 

has the Perron singular property ifryM+ (1 —-y)N is singular for some 7 € R, 

7 ^ 0 and M~lN has the Perron-Frobenius property. 

Note that a splitting with the Perron singular property is, in particular, a 

Perron-Frobenius splitting. 

Definition 4.3 Let A — M — N be a splitting of a nonsingular GM-matrix 

A = si — B (BE WPFn and p(B) < s). Then, such a splitting is called 

• a G-regular splitting if M~x and N are in WPFn. 

• a GM-splitting if M is a GM-matrix and N € WPFn. 

• an overlapping splitting if for a dominant eigenvalue X of M~1N the 

vector space Ex(M~lN) n Eptg\(B) contains a right Perron-Frobenius 

eigenvector of B. 
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• a commuting bounded splitting if M and N commute and p(M) < s. 

Remark 4.3 A GM-splitting is a G-regular splitting but not conversely. For 

example, consider the GM-matrix A — diag(l, 4,4) = si — B where s = 5 and 

B — diag(4,1,1). An example of a G-regular splitting of A is the splitting 

A = M - N where M = diag(2,32, -4 ) and N = diag(l, 28, -8 ) . Note that 

M~l is in WPFn yet, by Theorem 4.1, M is not a GM-matrix. Hence, this 

G-regular splitting is not a GM-splitting. 

Lemma 4.2 Let A — M — Nbea splitting of a nonsingular matrix A. Then, 

the following are equivalent: 

(i) The splitting is convergent. 

(ii) min {Re(X) | A € aiNA'1)} > -\. 

(Hi) min {Re(X) | A € a(A_1JV)} > - § . 

Proof. We prove first the equivalence of (i) and (ii). Let P = M^1NA~1M. 

Thus, P and NA_1 are similar matrices, and therefore, they have the same 

eigenvalues with the same multiplicities. Moreover, the following relation be

tween P and M-1iV holds: 

- l P = M^NA^M = M~lN{M - N)~lM = M~lN(I - M~XN) 

Hence, the eigenvalues of NA~l and M~XN are related as follows: 

/j, € a(M~~lN) if and only if there is a unique A € a(NA~1) such that 

fi = 3 ^ . The splitting is convergent, i.e., p(M~lN) < 1 if and only if for 

all fi € a(M~1N), we have |/z| < 1. That is, if for all A € c^AM-1), we have 

\JTX\ < 1, or equivalently, n+ite(A)P+(TmO0)2 < >̂ w n i c h holds only whenever 

2i?e(A) + 1 > 0, or whenever (ii) is true. As for the equivalence of (i) and 

(in), it follows similarly by noting the following relation between A~lN and 

A~lN = (M-N)-lN = (I-M-1N)-lM~1N. D 
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Corollary 4.3 Let A = M — N be a splitting of a nonsingular matrix A. 

If A~lN or NA*1 is an inverse GM-matrix, then the splitting is convergent. 

Proof. Let P denote A-1N or NA~X. If P is an inverse GM-matrix then, 

by Corollary 4.1, i ^ A " 1 ) > (p (P) ) - 1 > 0 for all A 6 a(P), A / p(P). 

This implies that Re(X) = |A|2Jfe(*_1) > - § for all A € a(P), A ^ p{P). 

Thus, Re(X) > —\ for all A e cr(P), which is equivalent to condition (ii) of 

Lemma 4.2 if P = NA_1, or equivalent to condition (Hi) of Lemma 4.2 if 

P — A~1N. Hence, the given splitting is convergent. D 

The following lemma is part of Theorem 3.1 of [31]. 

Lemma 4.3 Let A — M — Nbea Perron-Frobenius splitting of a nonsingular 

matrix A € R" x n . Then, the following are equivalent: 

(i) The splitting A — M — N is convergent. 

(ii) A-1N possesses the Perron-Frobenius property. 

(m)p{M-^N) = 1 ^ l r ) . 

Corollary 4.4 Let A = M — N be a splitting of a nonsingular matrix A such 

that N is nonsingular and N~XM is a nonsingular GM-matrix. Then, the 

following are equivalent: 

(i) The splitting A — M — N is convergent. 

(ii) A~lN possesses the Perron-Frobenius property. 

(Hi) P(M-iN) = - g - % 

Proof. Since N~XM is a nonsingular GM-matrix, it follows that 

(N^M)'1 = M-*N € W P F n . Hence, M_1JV satisfies the Perron-Frobenius 

property, which implies that the splitting A = M — N is a Perron-Frobenius 

splitting and the equivalence of the statements in the corollary follows from 

Lemma 4.3. D 
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Theorem 4.6 If A = M—N is a splitting having the Perron singular property, 

then any of the following conditions is sufficient for convergence: 

Sign Conditions 

(Al) A~lN is eventually positive. 

(A2) A^1N is eventually nonnegative. 

Spectral Conditions 

(Bl) A~lN £ WPFn. 

(B2) A~XN has a simple positive and strictly dominant eigenvalue with a pos

itive spectral projector of rank 1. 

Combinatorial Conditions 

(CI) For all 1 < i,j < n, the total weight of positive A*1 N-alternating walks 

from i to j in G{A~l)VJ G(N) eventually majorizes the absolute value 

of the total weight of negative A"1 N-alternating walks from i to j of the 

same length in G(A _ 1) U G{N). 

(C2) For all 1 < i,j < n, the total weight of positive A'1 N-alternating walks 

from i to j in G(A~1)uG(N) eventually majorizes and strictly dominates 

the absolute value of the total weight of negative A_1N-alternating walks 

from i to j of the same length in G(A~X) U G(N). 

(C3) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(A~XN) eventually majorizes the absolute value of the total weight of 

negative walks from i to j of the same length in G(A~1N). 

(C4) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(A~1N) eventually majorizes and strictly dominates the absolute value 

of the total weight of negative walks from i to j of the same length in 

G{A-XN). 



68 

for all k > k0 for some k0 > 1. 

(C6) A~lN has a basic and an initial class a such that (j4_1A^)[a] has a right 

Perron-Frobenius eigenvector. 

Geometric Conditions 

(Dl) IXco Hull^A^N)1) C fi;=i H((A-lN\5) for some k0 > 0. 

(D2) HullHA^N)) C fXfa, (111 H(((A-lN)%) for some k0 > 0. 

Proof. We prove first (A2) =*> (Bl) =$• convergence of the given splitting. 

Suppose that A~XN is eventually nonnegative. Since A = M — N is a spliting 

having the Perron singular property, it follows that there is a nonzero complex 

scalar 7 such that 7 M + (1 — 7)7V is singular. Hence, jA + TV is singular 

•«• det(jA + JV) = 0 » det(jl + A~*N) = 0 ^ c fe i ( - 7 / - A~*N) = 0. 

In other words, —7 is a nonzero eigenvalue of A~lN. By Lemma 1.1, A~lN 

and its transpose possess the Perron-Frobenius property, i.e., A~lN € WPFn. 

And thus, the given splitting converges by Lemma 4.3. As for the rest of the 

sufficient conditions, we outline the proof using the following diagram: 

(Al) ^ (A2) => 

t 
(52) 

t 
(C2) 

t 
(C4) 

t 
(CI) 

t 
(C3) 

$ 
(C5) 

(Dl) 

t 
(D2) 

(Bl) => convergence 

1t 
(C6) 
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The equivalencies and implications in the above diagram follow from the 

spectral, combinatorial, and geometric characterizations of eventually posi

tive matrices, eventually nonnegative matrices, and matrices in WPFn proved 

in Chapter 2. D 

Remark 4.4 Recall that a regular splitting A = M—N of a monotone matrix 

(i.e., when A~l > 0) is convergent [49]. Thus, Theorem 4.6 is a genaralization 

of this situation since we do not require that A"1 nor N, nor their product 

A~1N to be nonnegative. 

Example 4.4 Let A 

M - N, where M = \ 

7 

- 3 

1 - 2 

29 - 6 

-11 18 

2 - 3 

4 1 

3 

-11 

5 

and consider the splitting A = 

For 

-6 13 

N = I 
4 

1 2 1 

1 2 1 

1 2 1 

7 = —i the matrix jM + (1 — j)N = \ 

- 1 3 6 7 

7 - 6 - 1 

- 1 6 - 5 

is singular. More

over, M-lN = ^ 
12 

is a positive matrix and thus it possesses the 

1 2 1 

1 2 1 

1 2 1 
Perron-Frobenius property. Hence, this splitting is a splitting with the Per-

1 2 1 

ron singular property. Since A^1N = | 1 2 1 is a positive matrix (and 

1 2 1 

hence eventually positive), it follows from Theorem 4.6 that this splitting is 

convergent. In fact, p(M~xN) = \ < 1. 

Proposit ion 4.3 If A = si — B is a GM-matrix and the splitting 

A = M — N is an overlapping splitting (for which E\(M~1N) D Ep^B){B) 

contains a right Perron-Frobenius eigenvector of B and |A| = p{M~lN)), then 
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such a splitting is convergent if and only if there is n = s
 t_A ' € cr(M) such 

that Re(r)) >•!=$&••. 

Proof. Note first that if A — si — B = M — N is an overlapping splitting 

then we can pick v € Ep(B) (B)nEx(M~1N) where v is a right Perron-Probenius 

eigenvector of B. And for this vector, we have: 

(si - B)v =Av = (M- N)v = M~l{I - M~lN)v 

<̂> (s ~ p(B))Mv = (/ - M~lN)v = (1 - X)v 

<$• Mv 
{s - p{B)) 

( 1 - A ) 

(s-p(B)) 

3 77 <E a(M) 3 rj = 

<£> 3 77 € a(M) 9 A = 

(s - p(B)) 

V-(s~ p(B)) 

Hence, if A — M — N is an overlapping splitting then there is an eigenvalue 

77 € a(M) such that A = 2^i2z£LJ) Therefore, an overlapping splitting is 

convergent, i.e., p(M~lN) = |A| < 1, when \rj — (s — p(B))\ < \rj\ for some 

77 € <y(M), or equivalently whenever 77 lies in the right-half plane determined 

by the perpendicular bisector of the segment on the real axis whose endpoints 

are 0 and (s — p(B)), i.e., whenever Re(77) > s y K D 

Corollary 4.5 Let A = M — N be an overlapping splitting of a nonsingular 

GM-matrix A and suppose that M~lN € WPFn. If ^M-^N)
 e a(M) then 

p(M~lN) < 1, i.e. the splitting is convergent. 

Example 4.5 Let A be as in Example 4.4. Then, A is a nonsingular GM-

3 2 3 " 

matrix. In fact, A = si - B, where s = 10, B = 3 6 - 1 € WPF%, 

- 1 2 7 

and p(B) = 8. An overlapping splitting of the matrix A is A = M — N 

where M 

55 - 1 8 - 2 5 

-25 30 7 

7 - 1 8 23 

and N = g 

- 1 - 2 - 1 

- 1 - 2 - 1 

- 1 - 2 - 1 

Note that 
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M-XN and that for A = - | € a{M~xN) we have 

- 1 - 2 - 1 

- 1 - 2 - 1 

- 1 - 2 - 1 

|A| = I = p(M~1N) and EX(M-1N) = Ep{B)(B) = Span{[\ 1 1]T}. Hence, 

this overlapping splitting is convergent. Proposition 4.3 predicts the exis

tence of an eigenvalue r\ of M such that r\ = S~^A ' = 1_
1/̂ ~1y3x = § and 

i?e(?7) = I > S~^B> = 1. If we look at the spectrum of M we see that 

I € (T(M) = {§,6} just as predicted by Proposition 4.3. On the other hand, if 

A = M -N where M 

then M~lN = /V - 1 

- 1 

27 - 1 0 

13 14 

3 - 1 0 

1 - 2 - 1 

- 2 - 1 

- 2 - 1 

-13 

3 

11 

andiV 

- 1 - 2 - 1 

- 1 - 2 - 1 

- 1 - 2 - 1 

and for A = - 1 € a(M~1N) we have 

|A| = 1 = p{M-lN) and Ex(M~lN) = Ep{B)(B) = Span{[l 1 1]T}. Hence, 

the latter splitting is an overlapping splitting but it does not converge. Propo

sition 4.3 predicts that for all 77 € <r(M) either rj ^ ^ = ^ = ^ ^ = 1 or 

Re(v) < 8~2 ~ 1) w r i ich is true about the spectrum of M since 

<r(M) = {1,6}. 

Theorem 4.7 Y4 GM-matrix A = si — B having a commuting bounded split

ting A = M — N induces a splitting of B of the form B — M' — N' where 

M' = i ( s 7 - M), u> eR andu ^0. Moreover, if \u\ < min | ^ ? ) , JpW))> 

then the commuting bounded splitting is convergent. 

Proof. Suppose that the GM-matrix A — sI—B has a commuting bounded 

splitting A = M - N and let M' = ±(sl - M) and N' = A - si + M' 

for some ui € M, w ^ 0. Then, M ' is nonsingular because p(M) < s and 

M — si - uM'. Moreover, we can write A = (si - uiM') - ((1 - J)M' - N'). 

Note that the iteration matrix of the commuting bounded splitting of A is 

M~XN = (si — u M ' ) " ' ( ( l — UJ)M' — TV'). Since M and N commute, so do 

M' and iV'. Furthermore, there is a single unitary matrix U that produces 
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the Schur decomposition (see, e.g., [22, p.81]) of both M' and N'. Hence, an 

eigenvalue of M~lN would have the form (s — wA)_1((l — o;)A — p) where 

A € a(M') and p € cr(N'). But, since M' and N' are simultaneously Schur 

decomposable, it follows that the same unitary matrix that produces the Schur 

decomposition of M' and N' also produces the Schur decomposition of B and 

A. Therefore, A — // is an eigenvalue of B which does not exceed s in modulus 

(since A is a GM-matrix). Thus, 

\(s - WA)-1((1 - *)\ - P)\ < | A ^ I + H | A | < S + M " ( M , ) 

|s — wA| |s — wA| 

Moreover, if we choose M < 
p(M') 

then s - \u)\p(M') > 0. Hence, 

l<.-„*)-.((1-„»-rtl<q-^<!±H*£j 
Therefore, if 

s + Mp(M') 

wA 

< 1 - ~ (4.1) 

then the splitting A = M — N is convergent. But (4.1) is equivalent to 

M < Hence, if \u>\ < 
2p{M') • 

A = M — N is convergent. D 

mm {jwvmm}^ then the sP l i t t i n§ 

Example 4.6 Let A 

where s = 1, B 40 

3 1 2 

1 5 0 

1 1 4 

37 - 1 - 2 

- 1 35 0 

- 1 - 1 36 

Then, A = si - B is a GM-matrix, 

e WPF3, and p{B) = 0.95. A com

muting bounded splitting of A is A = M — N, where M — ^ 

73 2 1 

1 74 1 

1 2 73 

and N = i 

67 0 - 3 

- 1 64 1 

- 1 0 65 

Note that p(M) = 0.95 < 1 = s and that 
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MN = NM = — 
j v ivi 1 6 0 0 

let M> = '-{si -M) = ^ 

1222 32 - 3 8 

- 2 1184 34 

- 2 32 1186 

7 - 2 - 1 

•1 6 - 1 

-1 - 2 7 

Furthermore, let a; = 5 and 

Then, /9(M') = 0.02 making 

M 5 < min {^)>MMo} = """ {o32' 2(^02)} = 12'5' H e n C e> 
by Theorem 4.7, the splitting A — M 

p(M-lN}&0.9M4< 1. 

TV is convergent. In fact, 

Theorem 4.8 If A — M — N is a splitting of a GM-matrix A, then any Type 

I condition (listed below) implies that such a splitting is a G-regular splitting. 

Moreover, if the splitting A = M — N is a G-regular splitting that satisfies one 

of Type II conditions (listed below), then any one of Type III conditions (listed 

below) is sufficient for convergence. 

Type I Conditions 

(Dl) M~l and N are eventually positive. 

(D2) M _ 1 and N are eventually nonnegative with N being nonnilpotent. 

(D3) Each of M~ J and N has a simple positive and strictly dominant eigen

value with a positive spectral projector having a rank equal to 1. 

(D4) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(M~l) and G(N) eventually majorizes the absolute value of the total 

weight of the negative walks from i to j of the same length and N is 

nonnilpotent. 

(D5) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(M~l) and G(N) eventually majorizes and strictly dominates the ab

solute value of the total weight of the negative walks from i to j of the 

same length. 
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(D6) N is nonnilpotent and the following statement is true for X = M 1 and 

for X — N: there is k0 € N such that for all k > k®, 

\JT,Evenk UtMx^) y Ure0ddk IIL G(\x^\). 

(D7) The following statement is true for X = M _ 1 and for X = N: 

X has two classes a and ft, not necessarily distinct, such that: 

(i) a is basic, initial, and X[a] has a right Perron-Frobenius eigenvec

tor. 

(ii) ft is basic, final, and X[0\ has a left Perron-Frobenius eigenvector. 

(D8) N is nonnilpotent and the following statement is true for X = M _ 1 and 

for X = TV: 

IXfe0 Hull(Xl)c n ; = 1 H{X.j) for some k0 > 0. 

(D9) N is nonnilpotent and the following statement is true for X — M _ 1 and 

for X = N: 

Hull(X) C (Xfco lT=i -H({X%) for some k0 > 0. 

Type II Conditions 

(El) M~lN is eventually positive. 

(E2) M~lN is nonnilpotent eventually nonnegative. 

(E3) M~XN e WPFn. 

(E4) M~lN has a simple positive and strictly dominant eigenvalue with a 

positive spectral projector of rank 1. 

(E5) For all 1 < i,j < n, total weight of positive M~lN-alternating walks 

from i to j in G{M~X) U G{N) eventually majorizes the absolute value 

of the total weight of the negative M~lN-alternating walks from i to j 

of the same length, and M~1N is nonnilpotent. 
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(E6) For all 1 < i,j < n, total weight of positive M~1N-alternating walks 

from i to j in G(M~1) U G(N) eventually majorizes and strictly dom

inates the absolute value of the total weight of the negative M~lN-

altemating walks from i to j of the same length. 

(El) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(M~1N) eventually majorizes the absolute value of the total weight of 

negative walks from i to j of the same length in G(M~1N), and M~XN 

is nonnilpotent. 

(E8) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(M~1N) eventually majorizes and strictly dominates the absolute value 

of the total weight of negative walks from i to j of the same length in 

G{M-lN). 

(E9) UreEvenk IliLi G((M-1Ar)-W) y ^ ^ n * = i G(\(M-iN)^\) 

for all k > k0 for some fc0 > 1, and M~XN is nonnilpotent. 

(E10) M_1N has a basic and an initial class a such that (M^N^a] has a 

right Perron-Frobenius eigenvector. 

(Ell) {JZ^HulldM^N)1) c fl}=1H{{A-1N).j) for some k0 > 0, andM^N 

is nonnilpotent. 

(E12) Hull{{M-lN)) C |X f c o n"=i HidA-iN)1).,) for some k0 > 0, and 

M~XN is nonnilpotent. 

Type III Conditions 

(Fl) A~XN is eventually positive. 

(F2) A_1N is nonnilpotent eventually nonnegative. 

(F3) A~*N € WPFn. 



76 

(F4) A ^^N has a simple positive and strictly dominant eigenvalue with a pos

itive spectral projector of rank 1. 

(F5) For all 1 <i,j < n, total weight of positive A-1 N-alternating walks from 

i to j in G(A~1) U G(N) eventually majorizes the absolute value of the 

total weight of the negative A'1 N-alternating walks from i to j of the 

same length, andA^N is nonnilpotent. 

(F6) For all 1 < i, j < n, total weight of positive A~lN-alternating walks from 

i to j in G(A~l)uG(N) eventually majorizes and strictly dominates the 

absolute value of the total weight of the negative A~lN-alternating walks 

from i to j of the same length. 

(F7) For all 1 < i, j < n, the total weight of positive walks from i to j in 

G(A_1N) eventually majorizes the absolute value of the total weight of 

negative walks from i to j of the same length in G(A^1N), and A~lN is 

nonnilpotent. 

(F8) For all 1 < i,j < n, the total weight of positive walks from i to j in 

G(A~1N) eventually majorizes and strictly dominates the absolute value 

of the total weight of negative walks from i to j of the same length in 

GiA^N). 

(F») U e i ^ n l U ^ - 1 ^ ) ^ -LUo^n t iGdCA^iV)^! ) 

for all k> ko for some feo > 1, and A~XN is nonnilpotent. 

(F10) A~lN has a basic and an initial class a such that (A-1./V)[a] has a right 

Perron-Frobenius eigenvector. 

(Fll) [JZ^Hull^A^N)1) C n™=i HdA^N)^) for some k0 > 0, and A~*N 

is nonnilpotent. 

(F12) Hull{(A-lN)) C |Xfe0 D"=i H{{{A-xN)%j) for some k0 > 0, andA^N 

is nonnilpotent. 
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Proof. We prove the theorem for the following Type I, Type II, and Type 

III conditions, respectively: (Dl) , (El) , and (Fl) , and then we outline the rest 

of the proof. Suppose that the splitting A = M — N satisfies condition (Dl) . 

Then, (Dl) is true if and only if M~l and N are in PFn C WPFn. Hence, 

the splitting A — M — N is a G-regular splitting. Moreover, suppose that 

A = M - N is a G-regular splitting and that (El) is true. Then, M~lN € 

PFn and thus M~XN has the Perron-Frobenius property. In particular, the 

given G-regular splitting becomes a Perron-Frobenius splitting. If (Fl) is true 

then A~1N € PFn and thus A"1N possesses the Perron-Frobenius property. 

Hence, by Lemma 4.3, the G-regular splitting converges. With regards to 

the remaining of the conditions, we use the following diagrams to outline the 

proofs: 

(Dl) 

t 
(D3) 

t 
(Z?5) 

=*> (D2) 

t 
(D4) 

t 
(D6) 

t 
(Z?8) 

t 
(D9) 

=*> M- L, N e WPFn 4$ A = M - N is a G-regular 

-ft splitting 

(D7) 
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(El) => 

t 
(E4) 

t 
(EG) 

t 
(E8) 

(E2) 

t 
(E5) 

t 
(E7) 

t 
(E9) 

t 
(Ell) 

t 
(E12) 

(£710) 

(E3) =r- M~lN has the Perron-Probenius property 

A — M — N is a Perron-Frobenius 

splitting as well as a G-regular splitting 

(Fl) => 

$ 
(F4) 

$ 

(F6) 

$ 

(F8) 

All the above i 

(F2) =» 

t 
(F5) 

t 
{Fl) 

I 
(F9) 

I 
(FU) 

(F12) 

(F3) =• A-

(F10) 

4 
lN has the Perron-Frobenius 

property 

4 
The splitting converges 

by Lemma 4.3 

implications and equivalencies follow from the combinatorial, 

spectral, and geometric characterizations of eventually nonnegative matrices, 

eventually positive matrices. , and matrices in WPFn proved in Chapter 2. D 
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Example 4.7 Let A = 81 - B = 81 -

0 

4 

0 

3 4 " 

4 0 

3 5 

lar GM-matrix from the previous examples) and TV G WPF3. 

8 - 3 - 4 

-4 4 0 

0 - 3 3 

Then, A is a nonsingular GM-matrix and p{B) = | (7 + \/73) RJ 7.7720 < 8. 

7 - 2 - 3 

Consider the splitting A — M — N where M — —3 4 1 (a nonsingu-

1 - 2 3 

1 1 1 

1 0 1 

1 1 0 
Thus, this splitting of A is a GM-splitting, and hence, a G-regular splitting. 

4 12 13 

8 6 17 

16 12 7 j 

r 25 28 33 

28 28 36 

32 32 36 
an eventually positive matrix, a Type III condition in Theorem 4.8. Hence, 

Theorem 4.8 predicts the convergence of this G-regular splitting. In fact, 

piM^N) •« 0.8859 < 1. 

Note that M~XN = 4 
36 

is an eventually positive matrix, a 

Type II condition in Theorem 4.8. Moreover, A lN — j~ is 

We end this section with few results on the relation between the Jacobi and 

Gauss-Seidel splittings on one hand and the GM~ and G-regular splittings on 

the other hand. 

Lemma 4.4 If D = diag(di,..., dn) € M.nxn then the following are equivalent: 

(i) D is a positive diagonal matrix, 

(ii) D is a nonsingular GM-matrix. 

Proof. If D is a posit ive diagonal m a t r i x t h e n so is D 1 = diag{dx , . . . , dn
 1 ) . 

Hence, D~l £ WPFn. Moreover, min™=idi < dj — Re.{dj) whenever 
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dj 7̂  min"=1di. Thus, the minimum modulus eigenvalue of D is strictly less 

than the real part of any other eigenvalue of D. Theorem 4.1 implies that D 

is a nonsingular GM-matrix. Conversely, if D = (di,..., dn) is a nonsingular 

GM-matrix then, by Theorem 4.1, D'1 G WPFn and min?=1\di\ = piD'1) < 

Re(dj) = dj whenever dj + p{D~l). But, p(D_1) > 0 because D~x € WPFn. 

Therefore, D is a positive diagonal matrix, D 

Corollary 4.6 A GM-spliting A = M — N of a GM-matrix A = (a^) is a 

Jacobi splitting if and only if M — diag(an,... ,ann) is a positive diagonal 

matrix and M - Ae WPFn. 

Remark 4.5 If A = M — N is a Gauss-Seidel splitting then such a splitting 

can not be a G-regular splitting. If A — M — N is a Gauss-Seidel splitting 

then N is a strictly upper triangular matrix. Hence, N is nilpotent, and thus, 

N $ WPFn. Therefore, the Gauss-Seidel splitting A = M - N can neither be 

a GM-splitting nor a G-regular splitting. 
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CHAPTER 5 

CONCLUSION 

We summarize below some of the main results of this dissertation. 

1. We gave a complete characterization of the collection of eventually pos

itive matrices, PFn, in terms of the spectral projector. 

2. We gave a characterization of the sub-collection of WPFn for which the 

maximum modulus eigenvalue is simple, positive and strictly dominant 

in terms of the spectral projector. 

3. We gave combinatorial characterizations of the collections of eventually 

nonnegative and eventually positive matrices in terms of walks in the 

graph and in terms of products and unions of the graphs of the positive 

and negative parts of a matrix. 

4. We gave characterizations of the collections of eventually nonnegative 

and eventually positive matrices in terms of the hull of a matrix and the 

half-spaces determined by their columns. 

5. We established that all the containments in the following statement are 
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proper: 

PFn = {Eventually Positive Matrices} 

C {Nonnilpotent Eventually Nonnegative Matrices} 

C WPFn 

6. We showed that Rothblum's result [35] on the algebraic eigenspace for the 

spectral radius of a nonnegative matrix carries to eventually nonnegative 

matrices whose index is 0 or 1. 

7. We showed that a matrix is eventually in WPFn (PFn) if and only if 

that matrix is in WPFn (PFn, respectively). 

8. We characterized all similarity transformations that preserve WPFn, 

PFn, matrices with the Perron-Frobenius property, and matrices with 

the strong Perron-Frobenius property. 

9. We gave an example that illustrates the fact that the collection of sym

metric matrices with a Perron-Frobenius eigenpair is not a cone. 

10. We proved that the collection of matrices with the Perron-Frobenius 

property and the collection of matrices with the strong Perron-Frobenius 

property are path-connected. 

11. We proved that the eollection-otmatrices with-the strong Perron-Frobenius 

property and PF„ are simply connected. 

12. We established that the closure WPFn — WPFn U {nilpotent matrices 

with a pair of right and left nonnegative eigenvectors}. 

13. We established that every normal matrix in WPFn is the limit of normal 

matrices in PFn. 

14. We gave sufficient conditions for the nonnegativity of the right and left 

singular vectors corresponding to maximum singular value of a normal 

matrix in WPFn. 
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15. We introduced the class of GM-matrices, which is a class of matrices that 

generalizes the class of M-matrices using the Perron-Frobenius property. 

16. We showed how the collections of GM-, EM-, pseudo-M-, and M-

matrices are related to one another. 

17. We gave a spectral characterization of nonsingular GM-matrices (pseudo-

M-matrices) and as a result we determined a condition on the spectrum 

that must be satisfied by a matrix in WPFn (PFn) to be an inverse 

GM-matrix (the inverse of a pseudo-M-matrix, respectively). 

18. We showed by a counter-example that the inverse of a nonsingular EM-

matrix does not have to be eventually nonnegative and thus a spectral 

characterization analogous to that of nonsingular GM- or pseudo-M-

matrices does not hold for nonsingular .EM-matrices. 

19. We proved that the positive stable GZ-matrices are precisely the nons-

ingluar GM-matrices. 

20. We proved that the GZ-matrices of the form A — sI — B where B € PFn 

that map at least one positive vector to a positive vector are precisely 

the pseudo-M-matrices. 

21. We proved that the GZ-matrices A = si - B where B € WPFn for 

which the right (left) Perron-Frobenius eigenvector of B and its image 

under A (under AT, respectively) can be rotated to become positive are 

precisely the nonsingular GM-matrices. 

22. We determined those classes of an eventually nonnegative matrix B in 

an i£M-matrix A = si — B, that result in singular (nonsingular, respec

tively) irreducible principal submatrices of A. 

23. We introduced the following splittings with sufficient conditions for con

vergence and we illustrated this by examples: the splitting having the 



84 

Perron singular property for an arbitrary nonsingular matrix, the G-

regular splitting of a GM-matrix, the GM-splitting of a GM-matrix, 

the overlapping splitting of a GM-matrix, and the commuting bounded 

splitting of a GM-matrix. 
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CHAPTER 6 

FUTURE WORK 

We list below other problems which are related to the work discussed in 

this dissertation and which are to be considered as projects for future work: 

• Characterizing the matrix functions or linear transformations that pre

serve PFn. 

• Characterizing the matrix functions or linear transformations that pre

serve WPFn. 

• Characterizing the matrix functions or linear transformations that pre

serve nonnilpotent eventually nonnegative matrices. 

• Characterizing the matrix functions or linear transformations that pre

serve C?M-matrices. 

• Proving comparison theorems for the splittings defined in Chapter 4 for 

GM- matrices. 

• Generalizing the characterizations proved for <7M-matrices to the ana

logues of Af-matrices defined using cones in Banach spaces, in particular, 

the cone of positive semidefinite matrices in the space of Hermitian ma

trices. 
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APPENDIX A 

PROOFS OF 

PRELIMINARIES 

We present here the postponed proofs of some of the results in sections 2.1. 

Proof of Theorem, 2.1, Let A be any n x n complex matrix with d distinct 

eigenvalues |Ai| > IA2I > • • - > |Ad|. Then, there exists a matrix X € Gl(n, C) 

such that the Jordan canonical form of A is given by 

J {A) = X~1AX = Box(X1)®Box(X2)®---(£Box(Xd), (A.l) 

where Box(Xj) is the Jordan box corresponding to Aj. Note that for all 

1 < jr < «3?, if g(J) is the number of Jordan blocks in Box(Xj), we have the 

following identity 

Box(Xj) = Jkjl(Xj) © Jkrl(Aj) © • • • e JkjgU)(A,-) 

= [Xjlkjl + Nkjl] © • • • © [XjhigU) + NkjgU)] 

[XjhJ © • • • © [Xjhj^]] + [Nkil © • • • © Nkjg(j)} 

where Nmj = NkjimNkj2®-•-®NkM.y In particular, Box(Xx) = Ai/m i +Nmi, 
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implying that 

X~XAX = Boc(Ai) © Box(X2) © • • • © Bo.x(Ad) 

{Box{Xx)®0 
n—rni } + [Omi © Bo.x(A2) 

[Ai/mi + iVmi] © Q n,—m\ 

+[Omi © Box(X2) © • • • © Box(Xd) 

\\iimi®on^mi] + [Nm, ©o, ' ? « ! n—mj J 

+[Om i © Boar(A2) © • • • © 5o.x(Ad)] 

Ax[/mi © O 
n—mi ] + [JVmi © Box(\2) © 

Thus, the matrix ,4 can be written as: 

A = A ! X [ J m i © 0 

If we define the matrices P and Q as follows: 

Bo.T(Ad) 

®Box(Xd)}. 

Box(Xd))X-

P := X ^ e O n ^ l X - 1 

Q := X[iVmi ©JBox(A2}© Boa:(Ad)]X - l 

(A.2) 

(A.3) 

then, it is easy to check that the following three statements are true: 

PQ = QP. 

p(Q) = \\i\<\\i\=p(A). 

indexXl (A) = 1 <S> Nm, = O, 'mi mi «• PQ = QP = Q. 

This proves (ii), (Hi) and (iv). To prove that P is the projection onto G\1(A) 

along ®,-_2 G^^A), we pick u e C" and we write v as a lineal- combination 

of the columns of X. In other words, we write v as the linear combination 

v = Y^j=iaj X*j where the <x,'s are scalars. This is possible because X € 

Gl(n, C). It is important here to note that the first mi columns of X form a 
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basis for GAl (A) and the rest of the columns form a basis for the remaining 

generalized eigenspaces. Thus, 

n-rni\€-j Pv = YlaJ P X*i = Yl ^ P Xej = E aj X^mi ® °' 
i=i i=i J'=I 

and it is easy to see that P2 = P, which proves (i). U 

Proof of Lemma 2.1. Let (i k) denote the permutation of the set { 1 , 2 , 3 , . . . , s} 

that exchanges i and k while keeping all other elements of {1, 2 , 3 , . . . , s} fixed. 

We call (i k) a transposition of the set { 1 , 2 , 3 , . . . , s}. Define the permutation 

a of the set {1, 2 , 3 , . . . , s} in terms of transpositions as follows: 

CT==(1 s ) 0 ( 2 s - l ) o ( 3 s - 2 ) o . . . o ( | J J s - | j j + l ) , 

where [|J is the integer part of | . If {el5 e 2 , . . . , es} denotes the standard basis 

of Cs, then we define the matrix Rjs as follows: 

Rjsfk = eCT(i) i = 1, 2, 3 , . . . , s. 

Obviously, Rjs is a permutation matrix because it is a rearrangement of the 

columns of the identity matrix. Also, Rjs is orthogonal, i.e., Rjs = Rjs, 

because the columns of RjS form an orthonormal basis. Moreover, since the 

transpositions that appear in a are disjoint, it follows that a2 is the identity 

permutation of the set { 1 , 2 , 3 , . . . ,s}, which implies that (Rjs)
2 = Is- This 

proves (i). As for (u), it follows immediately by evaluating the matrices on 

both sides of the equality at the vectors of the standard basis {e\, e2, e 3 , . . . , es}. 

D 

Proof of Corollary 2.1. Let g(j) denote the number of Jordan blocks in 

Box(Xj) and let kji denote the size of the iih Jordan block in Box(Xj). Let 

Rj := Rjkjl 0 Rjkj2 © • • • © RjkjgU), where Rjs for s = fcji,..., kjg(j) is the 

matrix defined in Lemma 2.1. Then, Rj is another permutation matrix such 
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that: 
(i) Rj = Rf = Rj, and 

(ii) [Box(\j)]T = Rj Box(Xj) Rj. • 
Proof of Lemma 2.2. First, note that Box(X2) © • • • © Box(Xa) is a Jordan 

matrix of size n — m ^ By Corollary 2.2, there is a permutation matrix R of 

size n — m,\ such that 

(i) R = R~1= RT, and 

(ii) [Box(X2) © • • • © J5o.T(Ad)]
T = R \Box(X2) © • • • © £o.x(Ad)] i? 

Second, note that since index^A) — 1, the Jordan canonical form of A is 

given by J (A) = [X\Imi] © Box(X2) © • • • © Box(Xd), and therefore, 

[•J(^)]T = [[Ai/mi] © £<*r(A2) © • • • © Box{Xd)]
T 

= [Ai/mi] © [i? [£ox(A2) © • • • © Boaj(Ad)J i?] 

= [Imi © i?] [[Ai/mi] © Box(X2) © • • • © £oa;(Ad)] [Jmi © R] 

= [/mi © i?] J(A) [/mi © i?] 

Note also here that [Imi © R] = [7mi © i?]_ 1 = [7mi © i?] r . Moreover, since 

A = X J (A) X-\ it follows that 

AT = [X-'f [J(A)f XT = [X-Y [Imi © R] J(A) [Imi © R] XT. 

If we let S denote the matrix [X^1]7 [Imi © R], then 

AT = S J (A) S-1. 

Thus, S is the similarity matrix giving the Jordan canonical form of AT. Hence, 

the first m,\ columns of S form a basis for G\1 (AT), the generalized eigenspace 

of Ai for AT. But, if we look closely at these columns of S we see that 

Set = [X^f [Imi © R]ei = [AT 1 ] 1^ for i = 1 , . . . , mi 

= [eJX^f for i = l , . . . , mj . D 


