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ABSTRACT

Characterizations of Matrices Enjoying the Perron-Frobenius Property and

Generalizations of M-Matrices Which May Not Have Nonnegative Inverses

Abed Elhashash
DOCTOR OF PHILOSOPHY

Temple University, January, 2008

Professor Daniel B. Szyld, Chair

General matrices with a positive dominant eigenvalue and a correspond-
ing nonnegative eigenvector are studied. Such matrices are said to possess
the Perron-Frobenius property. The latter property is naturally enjoyed by
nonnegative matrices and has a wide variety of applications. In this disserta-
tion, general matrices, which are not necessarily nonnegative, that possess the
Perron-Frobenius property are analyzed. Several characterizations of matrices
having the Perron-Frobenius property are presented: spectral, combinatorial,
and geometric characterizations. In some cases, a full characterization is ob-
tained, while in others only certain aspects are studied. In addition, some
combinatorial, topological and spectral properties of matrices enjoying the
Perron-Frobenius property are presented and the similarity transformations
preserving the Perron-Frobenius property are completely described. Further-
more, generalizations of M-matrices are studied, including the new class of
G M-matrices. Matrices in the latter class are of the form sI — B where B and
its transpose possess the Perron-Frobenius property and the spectral radius
of B is less than s. Results analogous to those known for M-matrices are
demonstarted. Also, various splittings of G M-matrices are studied along with

conditions for their convergence.
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CHAPTER 1

INTRODUCTION

1.1 Background

We say that a real matrix A is nonnegative (positive, nonpositive, negative,
respectively) if it is entry-wise nonnegative (positive, nonpositive, negative,
respectively) and we write A > 0 (A > 0, A <0, A < 0, respectively). This
notation and nomenclature is also used for vectors. In 1907, Perron [33] proved

that a positive matrix has the following properties:
1. Tts spectral radius is a simple positive eigenvalue.

2. The eigenvector corresponding to the spectral radius can be chosen to

be positive (called a Perron vector).
3. No other eigenvalue has a positive eigenvector.
4. The spectral radius is a strictly increasing function of the matrix entries.

Later in 1912, this result was extended by Frobenius [15] to nonnega-
tive irreducible matrices and consequently to nonnegative matrices, using a
perturbation argument. In the latter case, there exists a nonnegative domi-
nant eigenvalue with a corresponding nonnegative eigenvector. These results,
known now as the Perron-Frobenius theory, have been widely applied to prob-

lems with nonnegative matrices, and also with M-matrices and H-matrices;



see, e.g., the monographs [2], [22], [44], [49]. Applications include stochastic
processes [44], Markov chains [47], population models [28], solutions of par-
tial differential equations [1], and asynchronous parallel iterative methods [16],
among others.

A natura] question is: which matrices other than the nonnegative ones
have some of the properties 1-47 It turns out that eventually nonnegative and
eventually positive matrices do satisfy some of the properties 1-4. A matrix A
is said to be eventually nonnegative (positive) if A* > 0 (A* > 0, respectively)
for all £ > kq for some positive integer kg.

Friedland [14] introduced eventually nonnegative matrices and showed that
for such matrices the spectral radius is an eigenvalue. Other authors, [19], [20],
[31], [40], [51], [52], studied some of the properties in the Perron-Frobenius
theory exhibited by eventually positive and eventually nonnegative matrices,
while others studied the combinatorial properties of nonnegative and eventu-
ally nonnegative matrices, [5], [21], [42]. In particular, Carnochan Naqvi and
McDonald [5] studied the combinatorial properties of eventually nonnegative
matrices whose index is 0 or 1 by considering their Frobenius normal forms,
whereas Eschenbach and Johnson [9] gave combinatorial characterization of
matrices that have their spectral radius as an eigenvalue.

In a series of papers, [26], [27], [48], Tarazaga and his co-authors extended
the Perron-Frobenius theory to matrices with some negative entries by study-
ing closed cones of matrices whose central ray is the matrix having all entries
equal to one and by giving the maximal angles in which eigenvalue dominance
and eigenvector positivity are retained. In [27], limitations of extending the
Perron-Frobenius theory outside the cone of positive matrices are discussed.
In [38], theorems of the Perron-Frobenius type are proved for quasi-compact
and quasi-positive operators on cones in Banach spaces, while, in [39], [43],
only cones of positive semidefinite matrices are considered.

We also mention the work of Rump [36], [37], who generalized the concept
of a positive dominant eigenvalue and defined a new quantity for real matrices

known as the sign-real spectral radius for which he derived various properties



similar to those in the Perron-Frobenius theory.

We call a column or a row vector v semipositive if v is nonzero and nonneg-
ative. Likewise, if v is nonzero and nonpositive, then we call v seminegative.
We denote the spectral radius of a matrix A by p(A). Following [31], we say
that a real matrix A possesses the Perron-Frobenius property if A has a pos-
itive dominant eigenvalue with a corresponding nonnegative eigenvector. We
say that A possesses the strong Perron-Frobenius property if A has a simple,
positive, and strictly dominant eigenvalue with a positive eigenvector. If a ma-
trix A satisfies Av = p(A)v for some semipositive vector v, then we say that
A has a Perron-Frobenius Eigenpair (p(A),v). In the latter case, if p(A4) > 0,
we call v a right Perron-Frobenius eigenvector for A. Similarly, if p(A) > 0,
and wTA = p(A)w? for some semipositive vector w, then we call w a left
Perron-Frobenius eigenvector for A.

Following [26], we let PF,, denote the collection of n x n real matrices whose
spectral radius is a simple, positive, and strictly dominant eigenvalue having
positive right and left eigenvectors, or equivalently, the collection of matrices
A for which both A and its transpose possess the strong Perron-Frobenius
property; see, e.g., [26], [31], [52]. Similarly, WPF, denotes the collection
of n x n real matrices whose spectral radius is a positive eigenvalue having
nonnegative left and right eigenvectors. Equivalently, W PF,, is the collection
of matrices A for which both A and its transpose possess the Perron-Frobenius
property

One of the main goals of this dissertation is to characterize as much as
possible the collection of eventually nonnegative matrices, PF,, and W PF,. As
we shall see, in some cases, a full characterization is obtained, while in others
only certain aspects are studied. New characterizations of PF, and WPF,
are given in terms of the spectral projector. Combinatorial characterizations
of eventually nonnegative and eventually positive matrices are given in terms
of walks in the graph and in terms of products and unions of graphs. Also,
convex sets determined by the rows and columns of a matrix arc uscd to

characterize eventually nonnegative and eventually positive matrices. One of



the questions answered in this dissertation is: which similarity transformations
leave invariant the sets W PF,,, PF,, and the collection of matrices with the
Perron-Frobenius property? Another result pertaining to the recent work of
Tarazaga and his coauthors [26], [27], [48], is showing that the set of eventually
positive symmetric matrices extends beyond a known cone centered at the
matrix of all ones. Moreover, topological aspects of W PF;,, theorems that are
counterparts to those known for nonnegative matrices, and some applications
are presented.

Another aspect of this dissertation is the presentation of various generaliza-
tions of the class of M-matrices and the proof of results that are counterparts
to those known for M-matrices. The class of GM-matrices, which generalizes
the class of M-matrices using the Perron-Frobenius property, is introduced.
Also other classes, such as the class of EM- and pseudo-M-matrices, which
generalize the class of M-matrices using eventual nonnegativity and eventual
positivity, respectively, are studied. Complete characterizations of nonsingu-
lar GM- and pseudo-M-matrices are given. As a result, a spectral charac-
terization of inverse G M-matrices is established. The latter partially answers
the question: which nonnegative matrices are inverse M-matrices? Moreover,
a characterization of M-matrices using positive stability on the class of Z-
matrices is presented for G M-matrices using the generalized Z-matrices, the
G Z-matrices. The latter are introduced in this dissertation. Other generaliza-
tions of this type for GM- and pseudo-M-matrices are proved. Furthermore,
some combinatorial properties of £'M-matrices are studied.

New splittings for an arbitrary nonsingular matrix and for a GM-matrix
are introduced in this dissertation. One of them, the splitting having the
Perron singular property, is a splitting for an arbitrary nonsingular matrix.
The other splittings are the G-regular splitting, the GM-splitting, the over-
lapping splitting, and the commuting bounded splitting. The latter splittings
are for a GM-matrix. The G-regular splitting and the GM-splitting general-
ize the known regular splitting and M-splitting, respectively. Conditions for

convergence of all of these new splittings are explored and an example on each



splitting is given.

1.2 Notation and Preliminary Definitions

The spectrum of matrix A is denoted by o(A). We call an eigenvalue of A a
simple eigenvalue if its algebraic multiplicity in the characteristic polynomial
is 1. We call an eigenvalue A € o(A) dominant if |\ = p(A). We call an
eigenvalue A € o(A) strictly dominant if |\| > || for all p € o(A), p # A
The algebraic multiplicity of an eigenvalue A € o(A) is its multiplicity as a
root, of the characteristic polynomial of A and is denoted by multy(A), while
the index of an eigenvalue A € o(A) is its multiplicity as a root of the minimal
polynomial of A and is denoted by index)(A). Sometimes, as a shorthand, we
write index of A for indexy(A).

The ordinary eigenspace of A for the eigenvalue X is denoted by E)(A).
By definition, Ex(A) = N(A — M), the null space of A — AI. The nonzero
vectors in E)(A) are called ordinary eigenvectors of A corresponding to A\. The
generalized eigenspace of A for the eigenvalue A is denoted by G,(A). Note
that Gy(A) = {v | (A — AM)*v = 0 where k = index\(A)} = N(A — AI)*.
The generalized eigenspace Gx(A) is also known as the algebraic eigenspace of
A for the eigenvalue A\. The nonzero vectors of G,(A) are called generalized
eigenvectors for A corresponding to \. We call the projection operator onto
G)\(A) a spectral projector if |A\| = p(A) and the projection is along the direct
sum of the other generalized eigenspaces. For any A € C, J,()) denotes the s x
s Jordan block corresponding to A, i.e., Jo(A) = Al; + N, where I, is the s x
s identity matrix and N; is the matrix whose first superdiagonal consists of
1’s while all other entries are zeroes. Note that N, = 0if s = 1. The s x s
zero matrix is denoted by O;. When the dimension of the zero matrix is clear
we just write O. If A is another real or complex r x r matrix, then A @ A
is the direct sum of A with A. The Jordan canonical form of matrix A is
denoted by J(A). By Boxz()) we denote the Jordan box corresponding to an
eigenvalue A in J(A), i.e., Box()\) is the direct sum of all of the Jordan blocks



corresponding to A in J(A).
We say that A € C**! is reducible if A = [0]. We say that A € C™*" (n > 2)

B O
is reducible if A is permutationally similar to [ - } where B and D are

square matrices. We say that a matrix A € C**" (n > 1) is irreducible if A
is not reducible. We call a matrix A € R™*" normal if A commutes with its

transpose.

1.3 Relations among Sets

We present in this short section the inclusion relations among the different

sets mentioned in the previous two sections. We begin by mentioning that
PF, = {Eventually Positive Matrices}. (1.1)

This equality follows from [26, Theorem 1], [31, Theorem 2.2}, and [52, The-
orem 4.1 and Remark 4.2]. Obviously, every eventually positive matrix is
eventually nonnegative. However, the converse is not true, e.g., one could take
the identity matrix. Moreover, part of the collection of eventually nonnegative
matrices is in WPF,,.

We begin by Lemma 1.1 whose proof can be found in [31}. Here, we have
added the necessary hypothesis of having at least one nonzero eigenvalue or

equivalently being nonnilpotent.

Lemma 1.1 If A € R™" s eventually nonnegative and has at least one
nonzero eigenvalue, then, both matrices A and AT possess the Perron-Frobenius

property, i.e., A€ WPF,.

We illustrate with the following example the need of at least one nonzero

eigenvalue in the hypothesis of Lemma 1.1.

Example 1.1 It is essential for an eventually nonnegative matrix A to have a
1

1
nonzero eigenvalue for A to be in WPF,,. Let A = [ ] , then A2 = 0.



Hence, A is eventually nonnegative. But, 0 is the only eigenvalue of A, the

Jordan canonical form of A is [ }, and all the ordinary eigenvectors of

00
A are of the form [a — a]T for some @ € R, a # 0. Therefore, A does

not possess the strong Perron-Frobenius property nor the Perron-Frobenius
property. To avoid such a situation, we have to stipulate that at least one of

the eigenvalues of A is nonzero or equivalently that A is nonnilpotent.
Corollary 1.1 Not all eventually nonnegative matrices are in W PF,,.

In fact, we can see from Example 1.1, Lemma 1.1, and Corollary 1.1, that
all eventually nonnegative matrices are inside W PF,, with the exception of
nilpotent matrices. Moreover, the set of nonnilpotent eventually nonnegative

matrices is a proper subset of W PF;, as we show in the following proposition.

Proposition 1.1 The collection of eventually nonnegative matrices with at

least one nonzero eigenvalue is properly contained in W PFE,.

Proof. It suffices to find a matrix A in W PF,, which is not eventually
nonnegative. Consider the matrix A = E @ [—1] where E is the matrix of
dimension (n—1) having all its entries equal to 1. Then, A* = [(n—1)*"VE]®
[(=1)*]. Clearly, A is not eventually nonnegative because the (n,n)-entry of
A keeps alternating signs. However, A € W PF,, since p(A) =n — 1 and there
is a semipositive vector v = [1 --- 1 0]7 € R" satisfying vT A = p(A)v” and
Av = p(A). O

Remark 1.1 This case is to be taken in contrast with eventually positive ma-
trices which fill all of PF,.

Thus, Proposition 1.1 tells us that if we exclude nilpotent matrices from
the collection of eventually nonnegative matrices, then still we do not cover

all of W PF,,. Hence, Proposition 1.1 establishes that all the containments are



proper in the following statement:

PF, = {Eventually Positive Matrices}
{Nonnilpotent eventually nonnegative matrices}

C WPEF,.

N

Moreover, it turns out that an irreducible matrix in W PF,, does not have
to be eventually nonnegative as the following example inspired by [5, Exam-

ple 3.1} shows.

4 Example 1.2 Let

11 1 -1 11 0 0 00 1 -1

11 -1 1 11 0 00 -1 1
A= , B= ,and C =

11 -1 -1 11 -1 -1 0

11 -1 -1 T 1 -1 -1 00 0 O

Note that A is an irreducible matrix. Also, note that p(4) = 2 and that if
v=1[2,211]T and w = [1,1,0,0]T then Av = p(A)v and wTA = p(A)wT.
Thus, A is an irreducible matrix in W PF,,. Furthermore, it is easy to see that
A= B+C and that BC = CB = C? = 0. Hence, A’ = B’ for all j > 2. But,

using an induction argument, it is easy to check that
2% 2% 0 0
. 22 % 0
B+l = for all j > 1. Hence, B is not eventu-

2% 9% 9% 9%
2% 2% 2% 2%

ally nonnegative, and thus, A is not eventually nonnegative.



CHAPTER 2

CHARACTERIZATIONS

2.1 Spectral Characterizations

In this section, we give characterizations of all matrices in PF,, and some
matrices in WPF,, in terms of the positivity or nonnegativity of their spectral
projectors. We mention first Theorem 2.1, which is a known result that can
be derived from the usual spectral decomposition that can be found, e.g., in
[6, page 27 or [46, pages 114, 225] and its method of proof is similar to that of
[52, Theorem 3.6]. After that, we prove, using the spectral decomposition, our
main results in this section, Theorems 2.2 and 2.3, which say that if A € R™*"
has the spectral decomposition A = p{A)P + Q, then the following statements

are true:
1. A€ PF,, & P >0, rank P =1, and p(Q) < p(A4).
2. Ae WPF, and p(A) is simple, positive, and strictly dominant
< P >0, rank P =1, and p(Q) < p(A).

We present a number of preliminary results leading to the main results. For
clarity of exposition, we postpone the proofs of the preliminary results (The-

orem 2.1 through Lemma 2.2) until Appendix A.

Theorem 2.1 If A € C**" has d distinct eigenvalues |A\;| > [A2| = -+ > [Ad]
then A has a decomposition: A = A\ P + Q satisfying the following:
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(i) P is the projection matriz onto Gy,(A) along @?22 Gy, (A).
(i) PQ = QP.
(i) p(Q) < p(A).

() If indezy,(A) =1 then PQ = QP =0.

Remark 2.1 Let X be the similarity matriz that gives the Jordan canonical
form of A, J(A) = X 'AX, in which the Jordan blocks corresponding to A1, a
dominant eigenvalue of A, appear first on the diagonal. For m; = multy, (A),
the projection matriz P, which appears in Theorem 2.1, can be expressed in

terms of the columns of X and rows of X 1:

ef X!
P=X[ln ®Op_m] X' =[Xer - Xem,] |

T y-1
Emy X

The following lemma, says that every Jordan block is permutationally sim-

ilar to its transpose via a symmetric involutory permutation matrix.

Lemma 2.1 For any Jordan block J,();), there ezists a permutation matriz
R, such that:
(i) R, =R;} =Rl, and

(@) [T = Rjs Jo(N) Rjs

Corollary 2.1 Boz();) is permutationally similar to-its transpose [Boz(\;)]T.

Corollary 2.2 For any matriz A € C**"*, we have the following:

(i) J(A), the Jordan form of matriz A, is permutationally similar to its
transpose by means of a permutation matriz R satisfying the property:
R=R"1!'=R"

(i) AT is similar to A.
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The existence of the matrix R in Corollary 2.2 was already noted by Nout-
sos [31].

Lemma 2.2 Let A be a matriz in C™" such that indezy, (A) = 1, multy, (A) =
my, and J(A) = X 'AX = Boz(\) ® Boz()2) @ --- & Boz(Ag). Then,
{[e?X‘l]T 1 <iL ml} is a basis for Gy, (A7), i.e., transposing the first

my rows of X~ gives a basis for G, (AT).

Theorem 2.2 The following statements are equivalent:
(i) A€ PF,.
(it) p(A) is an eigenvalue of A and in the spectral decomposition

A = p(A)P + Q we have P > 0, rank P =1 and p(Q) < p(A).

Proof. Suppose that A € PF,. Then, each of A and AT has a positive (or
negative) eigenvector corresponding to a simple, positive, and strictly dom-
inant eigenvalue p = p(A). We use some expressions from the Appendix.
Let J(A) = XAX ™! be the Jordan decomposition of A as in (A.1), in which
the Jordan box corresponding to p = A; appears first on the diagonal of
J(A). Moreover, let v = Xe; and let w = [ef X7!|7. Then, v and w
are respectively right and left eigenvectors (each of which is either positive
or negative) corresponding to p and v"w = 1. Then, by (A.2), we have
P = vw”. Note that P is either positive or negative since each of v and w is

T

either positive or negative. Since wiwv = 1, it follows that the vectors v and

w are either both positive or both negative. Therefore, P = vw? > 0.

T is spanned by v, it follows that

Moreover, since the range of P = vw
rank P = 1. By (A.2) and (A.3), we have p(Q) < p(A) in the spectral
decomposition A = p(A)P + Q. Conversely, suppose that p = p(A) is an
eigenvalue of A and that in the spectral decomposition A = p(A)P + @, we
have P > 0, rank P = 1 and p(Q) < p(A). Since rank P =1, it follows that

the algebraic multiplicity of p is 1. Thus, indez,(A) = 1 and by Theorem 2.1
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we conclude that PQ = QP = O. Therefore,

k k k k
(1A> =<P+1Q) =P’°+(1Q> =P+(1Q) )
p p p p

and consequently, .

1 \* 1 \"*
lim (—A) = P+ lim (—Q) =P >0.

k—»00 P k—oo \ P

Since p > 0 and the matrix %A is real and eventually positive, it follows that
the matrix A is also real and eventually positive. By (1.1), A € PF,. O
The proofs of the following two results are very similar to that of Theo-

rem 4.2, and are therefore omitted.

Theorem 2.3 The following statements are equivalent:
(i) A€ WPF, has a simple, positive, and strictly dominant eigenvalue.
(ii} p(A) is an eigenvalue of A and in the spectral decomposition

A=p(A)P + Q we have P > 0, rank P =1 and p(Q) < p(A).

Theorem 2.4 Let one of the two real matrices A and AT possess the strong
Perron-Frobenius property but not the other. Then, the projection matric P
in the spectral decomposition of A satisfies the relation P = vw? where one of

the vectors v and w 1s positive while the other is neither positive nor negative.

Corollary 2.3 If one of the two real matrices A and AT has a Perron-Frobenius
eigenpair of a strictly dominant simple positive eigenvalue and o nonnegative
eigenvector but the other matriz does not, then the projection matriz P in the

spectral decomposition of A has positive and negative entries, and rank P = 1.

Corollary 2.4 If one of the two real matrices A and AT has the strong Perron-
Frobenius property but not the other, then the projection matriz P in the spec-

tral decomposition of A is neither posilive nor negative, and rank P = 1.
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11 0
Example 2.1 Let A= | 1 2 —1 |, then, the Jordan canonical form of A
01 1
2 0.0 1 —-1 0
isgiven by: X '"AX =J(A)=|0 1 1 | whereX=|1 0 —1 | and,
0 01 ) 1 -1 -1
11 -1
asaresult, X"'= 10 1 —1 [. Thus, p(A) = 2 is a simple, positive, and
1 0 -1

strictly dominant eigenvalue of A with a corresponding eigenvector v = Xe; =
11 l]T. Hence, A has the strong Perron-Frobenius property. The matrix
AT also has p(AT) = p(A) = 2 as a simple, positive, and strictly dominant
cigenvalue but with a corresponding cigenvector w = [eX X7 =11 —1]".
Thus, AT does not have the strong Perron-Frobenius property, i.e., A ¢ PF,.
From Remark 2.1, the spectral projector P is given by P = [Xel)leT X1 =

1 1 -1
vwl = [11 l]T 11 -1 = |1 1 —1 |, which shows that P is neither .
11 -1

positive nor negative, rank P = 1, and P = vw? where v > 0 and w is
neither positive nor negative, and this is consistent with Theorem 2.4 and
Corollary 2.4.

2.2 Combinatorial Characterizations

In this section, we focus on the combinatorial properties of eventually non-
negative matrices. We look at the necessary and sufficient conditions for a
matrix to be eventually nonnegative. In particular, we look at how even-
tual nonnegativity is reflected in the walks of the graph, in the graphs of
the positive and negative parts of a matrix, etc. In subsections 2.2.1, 2.2.2,
and 2.2.3 our main focus will be on the combinatorial properties of eventually

nonnegative matrices, in general, which may include nilpotent matrices. In
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subsection 2.2.4, we shift our focus to the combinatorial properties of W PF,,
which includes the collection of nonnilpotent eventually nonnegative matrices.
We begin first by recalling some basic definitions which can be found, e.g., in
[2], [4].

For an n x n matrix A, we define the (directed) graph G(A) to be the graph
with vertices 1,2,...,n in which there is an edge (7, ) if and only if a;; # 0.
If a;; # 0 then we call a;; the weight of the edge (i,7). A walk from ¢ to j of
length k is a (finite) sequence of vertices vy,..., k41 Where vy = i, Vg1 = J,
and (v;,v41) is an edge in G(A) for 1 = 1,...,k. We define the weight of
a walk in G(A) to be the product of the weights of the edges in this walk.
We say that a walk is positive (negative, respectively) if its weight is positive
(negative, respectively). We define the total weight of a collection of walks
from vertex ¢ to vertex j in G(A) to be the sum of the weights of each of the
walks in this collection. We say vertex ¢ has access to vertex j if ¢ = j or else if
there is a walk from ¢ to j. If 7 has access to j and j has access to ¢ then we say
¢ and j communicate. Equivalence classes under the communication relation
on the set of vertices of G(A) are called the classes of A. By Ala] we denote
the principal submatrix of A € R™*™ indexed by « C {1,2,...,n}. The graph
G(Ala)) is called a strong component of G(A) whenever a is a class of A. We
say that G(A) is strongly connected whenever A has one class, or equivalently,
whenever A is irreducible. We call a class o basic if p(A[a]) = p(A4). We call
a class « instial if no vertex in any other class § has access to any vertex in a.
We call a class « final if no vertex in « has access to any vertex in any other

class 3.

2.2.1 Eventual Nonnegativity and Walks in the Graph

We begin with a theorem that characterizes eventual nonnegativity of a
matrix in terms of walks in the graph of that matrix. We say that a sequence
of real numbers {z }7., eventually majorizes (eventually majorizes and strictly

dominates, respectively) another sequence of real numbers {yx}oo; if zx > vk
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(zx > yk, respectively) for all k > kg for some positive integer kq.

Theorem 2.5 A matriz A = (a;;) in R™™ is eventually nonnegative if and
only if for any fized pair of vertices i and j the total weight of positive walks
from i to j of length k eventually majorizes the absolute value of the total

weight of the negative walks from i to j having the same length in G(A).

Proof. Suppose A € R™™ is eventually nonnegative, i.e., there exists
ko € N such that A* > 0 for all k > ko. Equivalently, for every k > ko and
every i,j € {1,2,...,n}, we have Af; > 0, where Af; denotes the (4, j)-entry

of A¥, which can be written as

n n n
L
Aij = Z E E Qioly Alyly * * * Bly_1ly> (2.1)

lg1=1 lo=111=1

where Iy =i and I, = j. Let us define

{1,2,...,n} x -~ x {1,2,...,n}
Skn = ™ ~ - .
k — 1 times

In other words, the set S, is the Cartesian product of k£ — 1 copies of the set
{1,2,...,n}. And, for every @ = (l1,ls,...,lk-1) € Skn we define A,(4,j) ==
Qloly Ay, ** * A1, Where lp = 4 and [ = j. Note that A,(, ) is the weight of
the walk 4, [;, Iy, ..., lx—1, j going from ¢ to j in G(A).

Thus, with this notation, saying that A is eventually nonnegative is equivalent
to saying that there exists ky € N such that > Ay(i,j) > 0for all k > ky
and all 4,7 € {1,2,...,n}.

Let

aGSk,n

Sia(i,3) = {o € SpalAa(d,§) >0}, SP,.(4,5) == {a € SpalAa(i, j) = 0},
and

Sin(6:7) == {a € SkalAali, §) < 0},
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we can then write

DoAg) = Y A+ Y A+ ) Adid)

a€Sk.n aes,jjn(i,j) a8y (i) a€Sy , (ind)
= ) A+ D AdGd),
aeS (i) aeSy, (i.5)

wherein a sum is equal to zero if it is taken over an empty set. Hence, A is
eventually nonnegative if and only if there is an integer k¢ € N such that for
all k > kg and all 4,5 € {1,2,...,n}

Yo A= - D Adbd) = D 1AK(9)
aeSy (i.5) o€Sy , (6,3) €Sy, (i)

which means that the total weight of positive walks of length &k from 7 to j
in G(A) majorizes the absolute value of the total weight of negative walks of
length & from 7 to j in G(A) for all k > ky. O

Using the same technique in the proof of Theorem 2.5 and in light of

Remark 1.1, we have the following characterization of PF;,.

Theorem 2.6 If A € R™" then the following statements are equivalent:
(i) A € PF,.
(i) A is eventually positive.

(i53) For any fized pair of vertices i and j, the total weight of positive walks
from i to § of length k eventually majorizes and strictly dominates the
absolute value of the total weight of the negative walks from i to j of the
same length in G(A).

2 10
Example 2.2 Let A= | 1 —1 0 |. Then, A* > 0 for all £ > 4. Hence,
0 0 3

A is eventually nonnegative. Theorem 2.5 indicates that for any fixed pair of

vertices 7 and j the total weight of positive walks from ¢ to j in G(A) majorizes
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the absolute value of the total weight of the negative walks from 4 to j of length
k > 4. In particular, the walks of length 4 from vertex 2 to vertex 1 must
satisfy this property. We list, respectively, all positive walks and all negative
walks of length 4 from vertex 2 to vertex 1 in Tables 2.1 and 2.2. In these two
tables, an edge is represented by an arrow and the weight of an edge is placed

over the arrow. Hence, we see from Table 2.1 and Table 2.2 that the total

Table 2.1: Positive walks of length 4 from vertex 2 to vertex 1

Positive Walk Corresponding Weight
251515151 8
2 151525 2
2515251251 2
2 5o o 112 2

Total Weight 14

Table 2.2: Negative walks of length 4 from vertex 2 to vertex 1

Negative Walk Corresponding Weight
2 425151251 —4
2 Lo 515245 -1
21525251 ~1
2 Lo ho o1, -1

Total Weight —7

weight of positive walks of length 4 from vertex 2 to vertex 1 in G(A) majorizes
the total weight of negative walks of length 4 from vertex 2 to vertex 1 because
14>|-1].
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3 2 3
Example 2.3 Let A = 3 6 —1 |. Then, A* > 0 for all kK > 3. Hence,
-1 2 7

A is eventually positive. Theorem 2.6 indicates that for any fixed pair of
vertices 7 and j the total weight of positive walks from 7 to j majorizes and
strictly dominates the absolute value of the total weight of the negative walks
from i to j of length k > 3. In particular, the walks of length 3 from vertex 3
to vertex 1 must satisfy this property. And, just like in Example 2.2, we can
see that the total weight of positive walks from vertex 3 to vertex 1 is 101,
while the total weight of negative walks is -85. And thus, the total weight of
positive walks strictly dominates the corresponding total weight of negative

walks because 101 > | — 85|.

For completeness, we make now a couple of observations that relate G(A¥)

to G(A). They follow using the same tools as in the proof of Theorem 2.5.

Proposition 2.1 For any A € R™™ and any k > 1, the graph G(A*) contains
an edge (i,7) if and only if the total weight of positive walks of length k from
i to j in G(A) is not equal to the absolute value of the total weight of the
negative walks from i to j of length k in G(A).

Corollary 2.5 Let A be an arbitrary matriz in R™" and let Aﬁj denote the
(1,7)-entry of Ak. Then, the following statements are true:

If Aﬁj # 0, then there is a walk of length k from i to j in G(A).
If Ak, =0, then either

— there is no walk of length k from i to j in G(A), or

— there is a collection of walks of length k from i to j in G(A) contain-
ing at least two walks whose total weight of positive walks is equal

to the absolute value of its total weight of negative walks.
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2.2.2 Eventually Nonnegative Product of Two Matrices

We next characterize when a product of two matrices is eventually non-
negative, and in particular, when the product of two eventually nonnegative
(or eventually positive) matrices maintains this property.

We begin by defining an A B-alternating walk for a pair of square matrices
A and B. Let A and B be two matrices in R™™" and let G(A) and G(B) be
their respective graphs. We define the graph G(A) U G(B) to be the graph
on the set of vertices {1,2,...,n} satisfying (¢, j) € G(A) UG(B) if and only
if (4,7) € G(A) or (i,7) € G(B). We call a walk ly, [, ly,. .., of length
2k in G(A) U G(B) an AB-alternating walk if the edges in the odd positions
are in G(A), while the edges in the even positions are in G(B). The following
theorem gives a necessary and sufficient condition for a product of two matrices

to be eventually nonnegative.

Theorem 2.7 Let A, B € R™" then the following are equivalent:
(i) The product AB is eventually nonnegative.

(1) For all 1 <1,j < n, the total weight of positive AB-alternating walks of
length k from i to j in G(A) U G(B) eventually majorizes the absolute
value of total weight of negative AB-alternating walks from i to j of the
same length in G(A) U G(B).

Proof. Let C = AB. Furthermore, let ay;, by, and ¢;;, denote the (4,7)-
entries of A, B, and C, respectively, and let Cf] denote the (4, j)-entry of C*.
Then, AB is eventually nonnegative if and only if there is an integer ky > 1
such that for all 1 <4, § < n and for all k > kg, we have Cf’j > 0, where, as in

(2.1), we write

n n n
ko
Ci;= Z ”'chlollclllz”'Clk—llkv

e 1=1 lo=11=1
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with lp = ¢ and I, = j. Then, writing ¢, = Zzwzl Qs Dby i1

for 0 <w <k — 1, we have:

Cik»j = Z n Z(Z alﬂuﬂbuﬂll) e ( Z alk—l“k—lb'“-k—llk)

lo1=1 l1=1 up=1 Up—1=1
n n n n
= E : T E § T E (alouobuoll T alk-luk«lbuk~1lk)
lg_1=1 l1=1 up=1 up_1=1

Note that all the indices in the above summation are between 1 and n. Hence,
after relabeling the indices and setting ly = 7 and lyy = j, the (i, j)-entry of

C* can be written as:

n n
ko -
Ci,j = E e E :alollblllzal2l3bl3l4 e alzk—~2l2kA1bl2kA1l2k

lok—1=1 li=1

n

= E alollblllzal2l3bl3l4 e al2k—2!2k——lbl2k~ll2k
1<ly, -, logp—151

Note that @i, bi11, 010135130 * - - Gigg_glak 1 Vig115x 15 the weight of the AB-alternating
walk i = ly, Iy, ly, -+ ,lgx = j from 7 to j of length 2k in G(A) UG(B). Having

noted that, consider the following sets

+
T = {(lla lZa e ale—-l) l QAlply bl112alzlablal4 T alzk—zlzk—lblzk—1l2k > O}
0
T = {(ll’ lZ7 T 71216-1) l Aoy blllzalzlabl3l4 T alzk—zlzk—lblzk—llzk = 0}
TT = {(lh 127 T 7le—1) I alallblllzalzl3bl3l4 T al2k-—2l2k—1bl2k—1l2k < O}'

And thus, C{fj > 0 if and only if the following condition holds,
E :a’lOllblll2 e a’le»212k~1b12k-112k 2 - E :alahblllz e al2k_2l2k—1b12k—1lzk
T+ T-
= 1 E :a’lOllblIIZ T a’lzk—2l2k*1bl2k—ll2k|’
T

which is what we wanted to show. 0

A similar proof leads to the following result.

Theorem 2.8 Let A, B € R™"™. Then, the following are equivalent:
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(i) The product AB is eventually positive.

(it) For all 1 < i,j < n, the total weight of positive AB-alternating walks
from i to j in G(A) U G(B) eventually majorizes and strictly dominates
the absolute value of total weight of negative AB-alternating walks from
i to j of the same length in G(A) UG(B).

Remark 2.2 It is easy to see that if A, B € R™*" are eventually nonnegative
(eventually positive, respectively) and AB = BA then AB is also eventually
nonnegative (eventually positive, respectively). However, if AB # BA then
AB does not have to be eventually nonnegative (eventually positive, respec-
tively). Moreover, AB might be eventually nonnegative (eventually positive,

respectively) yet neither A nor B is so.

We illustrate this in the following examples.

2 10 3 2 3
Example 24 Let A= |1 —1 0| and Let B = 3 6 —1|. Then,
0 01 -1 2 7

both A and B are eventually nonnegative. In fact, A* > 0 for all k¥ > 4 and
B* > 0 for all k > 3. However,

9 10 5 8 1 3
0 -4 4| =AB#BA=1]12 -3 -1/,
-1 27 0 -3 7

and neither AB nor BA is eventually nonnegative because, by Lemma, 1.1, they

have nonzero eigenvalues yet neither AB nor BA has the Perron-Frobenius

property.
3 2 3 20 1 1
Example 2.5 Let A = 3 6 —1|andletB=| 1 —-100 1 | (ma
-1 2 7 1 1 -10

trix B is from [26]). Then, A* > 0 for all k > 3 and B* > 0 for all k > 10.
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Hence, both A and B are eventually positive. However,

65 —14 -—25 62 48 66
65 —58 19 | =AB#BA=| —28 56 20 |,
~11 14 —69 16 —-12 —68

and neither AB nor BA is eventually pasitive because neither possesses the

strong Perron-Frobenius property.

Example 2.6 If A = —I and B = —21, where [ is the identity matrix, then
neither A nor B is eventually nonnegative, yet their product AB = 2I is

nonnegative, thus eventually nonnegative. Another nontrivial example is the

-2 -1 0 -5 -1 0
following: let A= | —1 2 0 | and let B = 0 -3 0 |. Then,
0 0 -1 0 0 -1
neither A nor B is eventually nonnegative because the (3,3)-entry in both
10 50
of them keeps on alternating signs yet their product AB = | 5 -5 0
0 01

is eventually nonnegative. In fact, (AB)* > 0 for all ¥ > 4. Theorem 2.7
indicates that for all 1 < 4,5 < n, the total weight of positive AB-alternating
walks from ¢ to j in G(A) U G(B) of length 2k majorizes the absolute value of
total weight of negative AB-alternating walks from ¢ to j of the same length
for all k£ > 4. In particular, for k = 4 there is only one AB-alternating walk of
length 8 from vertex 3 to itself and the weight of such a walk is 1. Hence, it is a
positive walk. On the other hand, there are 74 AB-alternating walks of length
8 from vertex 1 to vertex 2. Among these 74 walks, the total weight of positive
AB-alternating walks of length 8 majorizes the absolute value of the total
weight of the corresponding negative A B-alternating walks, and these positive
walks exceed in weight the absolute value of their corresponding negative walks
by 4375.
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2.2.3 Eventual Nonnegativity in G(A") and G(A™)

We study the eventual nonnegativity of a matrix using the graphs of the
positive part and the negative part of the matrix. We begin with some prelimi-
nary material followed by some lemmas on products and unions of graphs that
will be needed for Theorem 2.9, which is the main theorem of this subsection.
Let A be a matrix in R™*". We define the matrix A*, the positive part of A,
as the matrix obtained from A by replacing the negative entries with zeroes.
Similarly, we define A~, the negative part of A, as the matrix obtained from A
by replacing the positive entries with zeroes. And thus, A = A* + A~, where
At >0 and A~ <0. For every k > 2, we look at the collection of maps from
the set of integers {1,2,. .., k} to the set of symbols {+, —} and we divide this

collection of maps into two sub-collections: a sub-collection of maps that take

an even number of integers to the symbol “~” and a sub-collection of maps
that take an odd number of integers to the symbol “—”. In other words, we
define:

o Eveny = {7 | 7:{1,2,...,k} — {+, -} and the cardinality of 7~'{-}

is even}, and

o Odd, = {7 | 7:{1,2,...,k} = {+, -} and the cardinality of 77'{~} is
odd}.

If A € R™ and 7 is any map from the set {1,2,...,k} to the set {+,—},
then for any ¢ € {1,2,...,k} we define the following:

A7) At (the positive part of A) if 7(i) = +

A~ (the negative part of A) if 7(i) = —

Note that the product (A~)(A~) = (A~)? is nonnegative. Similarly, A* A~ and
A~ A" are nonpositive. In general, if 7 is any map from the set {1,2,...,k} to
the set {+, —}, we have that if 7 € Even,, then A"WA™@ ... A7®) > 0 and
if 7 € Oddy, then ATMAT?@) ... A7(k) < (.
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Let G; and G5 be two graphs on the set of vertices {1,2,...,n}. We say
G, dominates G) in weight (or G, is weight-dominant over G;), denoted by
Gy > Gy, ifforall 1 <i4,5 <mn,

1. whenever an edge (7, j) is in G; then (i, ) is also in Go, and
2. the weight of (¢, ) in G does not exceed the weight of (4, 7) in Gs.

Note that if (4, ) is not an edge in G2 and G2 = G; then (7, 7) is not an edge
in Gy.

If A, B are either nonnegative or nonpositive, then the “product” graph
G(A)G(B) is the graph on the set of vertices {1,2,...,n} defined by
(t,§) € G(A)G(B) if and only if there is an m € {1,2,...,n} such that
(t,m) € G(A) and (m,j) € G(B).

The following three results follow immediately from the definitions.

Lemma 2.3 Let A, B € R™*"™ be nonnegative and let v be a nonzero scalar,
then G(vA) = G(A), and G(A+ B) = G(A) U G(B).

Lemma 2.4 If A}, Ay, A3 € R™" and A; is either nonnegative or nonpositive
for i = 1,2,3, then G(A142) = G(A1)G(A2), and [G(A1)G(A2)|G(A3) =
G(A1)[G(A42)G(43)]-

Corollary 2.6 If {A;, As, ..., Ax} is any collection consisting of k matrices
in R™™ with the property that each A; is either nonpositive or nonnegative for
i=1,2,...,k, then G(A1 Az --- Ay) = G(A)G(A) - - - G(Ay).

Theorem 2.9 A € R™ " is eventually nonnegative if and only if there is a

ko € N such that U, cpyen, e, G(A™®) » Ureoaa, [TE, G(A™®)) for all
k> ko.

Proof. A € R™*" is eventually nonnegative if and only if there is a kg € N
such that for all k£ > ko we have A* = (A+ 4+ A~)* > 0. Note that (A+ + A~)k

equals a sum of products of k¥ matrices each of which is either A* or A~.



25

And thus, (AT + A7)k =3 A™W... A7® where the sum runs over all maps

7:{1,2,...,k} — {+,—}. Such maps have either an even or an odd number
of integers mapping to “—”", i.e., 7 € Eveng or 7 € Oddy,. Thus, for all k > ko,
we have
Ak = Z ATD AT@) g Z AT AT AR >
TEBveny TEOdd),
N Z AT AT@) AR _ Z |ATD AT AT ®)] >
T€Bveny T€0dd),
PIe < Z AT AT | ..AT(k)) e ( Z |ATW 47 ..AT(k)l)
TEEveny T€EO0dd),

« U ﬁG(AT("))>- U [[caa ). 0

T€FRven;, i=1 7€0dd,;, i=1

2 1 21 0 O
Example 2.7 Let A = , then A" = yand A= = .
1 -1 10 0 -1

It is easy to verify that A* > 0 and A% > 0. Thus, by [26, Theorem 1], A is
eventually positive (hence eventually nonnegative) and A* > 0 for all k£ > 4.

From Theorem 2.9, we have
k k
U J[ea® - U [[c1a®) foralk>a4.
TE€Fveng i=1 7€0dd), i=1
In particular, for £ = 4, we have
4 4
U [Ie@a® = UJ [Tcaa ).
T€FRven, i=1 7€0dds i=1

We can see in Figure 2.1 that the graph of {J, ¢ gen, [T, G(A™®) (on the left)
is weight-dominant over the graph of [J, o4, [T, G(|A™@]) (on the right).

2.2.4 The Classes of Matrices in PF,, and WPF,

It was shown in [2, Chapter 2, Section3] that a nonnegative matrix A

has positive left and right eigenvectors corresponding to p(A) if and only if all
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114 2 17 2
14 7
Figure 2.1: The graph on the left dominates in weight the graph on the right.

classes of A are basic and final. Note that the latter statement is not equivalent
to saying that A € PF,, because p(A) may not be a simple eigenvalue of A. In
this subsection, we consider arbitrary real matrices and try to obtain analogous
results for WPF,. We study the necessary and sufficient conditions on the
classes of a matrix so that it is in W PF,. However, we note that we do
not present a full characterization of WPF, in terms of classes. Instead,
we present necessary conditions in Theorem 2.11 and sufficient conditions in
Theorem 2.12. See also the end of Section 3.1 for a special case. We first

review some definitions and well-known results, which can be found, e.g., in

(2], [4].

We call a collection {a;, as,- - ,am} of subsets of {1,2,... ,n} a partition
of {1,2,...,n}if U2 0; = {1,2,...,n} and a;Na; = ¢ whenever i # j. More-
over, we call the m-tuple (@, as, - - - , @m) an ordered partition of {1,2,...,n}.

IfAeRY™ veR" and a,8 C {1,2,...,n}, then Ala, 5] denotes the sub-
matrix of A whose rows are indexed by « and whose columns are indexed by
g. If a = g3, then we write A[a] for the principal submatrix of A whose rows
and columns are indexed by a. Moreover, by v[a] we denote the subvector of
v indexed by a. If A is in R™*” and & = (a;, a2, - ,an) is an ordered parti-

tion of {1,2,...,n}, then A, denotes the block matrix whose (i, ;)™ block is
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Ala;, a;]. In other words, we have a representation of the following form:

(873} Q; Om
A[al] A[al, aj] e A[al, am] aq
A, =
A[ai7 aj] @i
Alom, a1 Alay] | om
Lemma 2.5 For any ordered partition & = (o, a9, ,an) of {1,2,...,n}

and any matric A € R™™™, the matriz A,, is permutationally similar to the

matriz A.

Lemma 2.6 For any matriz A € R™ " there is an ordered partition k =
(a1, a9, yam) 0of {1,2,...,n} such that A, is a block lower triangular matriz
with m diagonal blocks. Moreover, each of the m diagonal blocks is either an
irreductble block or a 1 x 1 zero block. Such a form is known as the (lower

triangular) Frobenius normal form of A.

Theorem 2.10 If A is a mairiz in PF,, then A is irreducible. Hence, A has

one class, which is basic, final, and nitial.

Proof. Let k = (o, a, . . ., ) be an ordered partition of the set of vertices
{1,2,...,n} that gives the Frobenius normal form of A. It is enough to show
that the Frobenius normal form of A has only one class, i.e., m = 1. Assume
with the hope of getting a contradiction that m > 1, then a lower triangular
Frobenius normal form of A is given by the partition « as follows:

Ay 0
A = :
o A

where A; = Aja;]. By (1.1), A is in PF,, if and only if A is cventually positive
if and only if A, is eventually positive. If m > 1 then for all s € {1,2,3,...}
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the matrix (A.)°® will always have a zero in the (1,m)-block. And thus, A,
can not be eventually positive, a contradiction. Hence, A has only one class,

which is basic, final, and initial. O

Theorem 2.11 Let A be a matriz in WPF,,. Then,

(1) If @ is a final class of A and v[a] is nonzero for some right eigenvector

v of A corresponding to p(A), then a is a basic class.

() If a is an initial class of A and w|a] is nonzero for some left eigenvector

w of A corresponding to p(A), then « is a basic class.

Proof. In general, for any class a of A, we have
(4v)[a] = Ala]vla] + ) Ale, Blv]8],
8

where the sum on the right side is taken over all classes @ that have access
from a but are different from o. When « is a final class and v is an eigenvector

of A corresponding to p(A), we have
p(AYla] = (Av)la] = AlJofal]

If, in addition, v[a] is nonzero, we can conclude that « is a basic class.

This proves (i) and the proof of (ii) is analogous. O

Theorem 2.12 If A € R™™" has two classes a and 3, not necessarily distinct,

such that:
(i) « is basic, initial, and Ala] has a right Perron-Frobenius eigenvector
and

(1) B is basic, final, and A[B] has a left Perron-Frobenius eigenvector,

then A € WPE,.
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Proof. There is a semipositive vector v such that A{a]v = p(A)v. Define the
vector § € R™ as follows: for any class v of A, 9[y] = v if y = o, and T[] = 0 if
v # a. It is easily seen that ¥ is semipositive and that A¥ = p(A)¥. Similarly,
using the class 3, there is a semipositive vector @ for which @7 A = p(A)w!.

Hence, A € WPF,. O

2.3 Eventual Nonnegativity and Convexity

In this section, we study eventual nonnegativity in terms of the relations
that exist between certain convex subsets obtained from the rows and columns
of the matrix and we use these relations to characterize eventual nonnegativity
of a matrix. First, let us introduce some notation needed in this section. The
ith row of matrix A is denoted by A;,. The j** column of matrix A is denoted
by A,.;. By Hull(A) we denote the convex hull of the transposed rows of
matrix A, i.e., Hull(A) is the convex hull of the (column) vectors {(4; )T}~ ;.
If y is a vector in R, then H(y) denotes the closed half-space consisting
of vectors that are orthogonal to y or making an acute angle with y, i.e.,
H(y) = {z € R" | 2Ty 2 0}.

Theorem 2.13 Let A be an n X n real matriz and suppose that k is a positive

integer. Then, the following statements are equivalent:
(i) A*1 >0,

() Hull(A*) c (N, H(A.).

(ii1) Hull(A) € (i H((A*).).

Proof. Let AFf' denote (i, 7)-entry of A¥*! and note that A+ = AFA.
Thus, Af? is the ith row of A* multiplied by the j** column of 4, i.e., Aft =
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(A*); A,;. Therefore,

A >0 o Aijlzoforalllﬁi,jﬁn
f=1 (Ak)i*A*j Z 0 fOI' au 1 —<‘ Z’J S "

< ((A%)u)T € H(A,)) forall 1<4,j<n

n

& {9, [ HAY)
j=1
But (Y;_, H(A.;) is a convex set since it is the intersection of convex sets.
Hence, the later statement is equivalent to Hull(A*) c (Y, H(A.;). This
establishes the equivalence of (i) and (#4). The equivalence of (i) and (%) is
shown in a similar manner by noting that A**! = AA* and using the fact that

the (4, j)-entry of A¥*! can be alternatively written as AfT! = A, (A%),;. O

Corollary 2.7 Let A be an n x n real matriz and suppose that k is a positive

integer. Then, the following statements are equivalent:

(i) A1 >0 and A2 > 0.
(i) Hull(A¥) U Hull(A*1).C -, H(A)-
(i) Hull(A) € (Y (HH((AS1).5) 0 H((A42),.)).

Corollary 2.8 Let A be an n x n real matriz. Then, the following statements

are equivalent:

(i) A is eventually nonnegative.

(1) UZy, Hull(A) c Mj_, H(A.;) for some ko > 0.
(i) Hull(A) C 2y, Niey H((AYy;) for some kg > 0.

Similar results hold for eventually positive matrices by replacing the closed

half-spaces with open half spaces.
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CHAPTER 3

SPECTRAL,
COMBINATORIAL, AND
TOPOLOGICAL
PROPERTIES

3.1 The Classes of an Eventually Nonnegative

Matrix and Its Algebraic Eigenspace

Carnochan Naqvi and McDonald [5] showed that the matrices A and A?
share some combinatorial properties for large prime nmumbers g if A is even-
tually nonnegative and indezy(A) € {0,1}. In this section, we give slight
improvements of their result by expanding the set of powers ¢ for which their
result is true and by using this set of powers to prove our main theorem in
this section, Theorem 3.3, which generalizes Rothblum’s Theorem [35] about
the algebraic eigenspace of a nonnegaive matrix and its basic classes. First,
we begin by some definitions.

By R(A) we denote the reduced graph of G(A), i.e., the graph whose

vertices are the strong components of G(A) and there is an edge from vertex
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a to vertex b in R(A) if and only if there is an edge from the component that

a represents to the component that b represents in G(A). By R(A) we denote

the (reflexive) transitive closure of R(A), i.e., the graph whose vertices are the

same as those of R(A) and there is an edge from vertex a to vertex b in R(A)
if and only if vertex a has access to vertex b in R(A).
Following the notation of [5], for any real matrix A, we define a set of

integers D4 (the denominator set of the matrix A) as follows:

Dy = {d|0—a =5, where re?™ re?> ¢ o(A), r >0, c € Z*,

d € Z\{0}, ged(c,d) =1, and |# — o ¢ {0,1,2,...}}.

The set D, captures the denominators of those lowest term rational num-
bers that represent the argument differences (normalized by a factor of 5-) of
two distinet eigenvalues of A lying on the same circle in the complex plane.
In other words, if two distinct eigenvalues of A lie on the same circle in the
complex plane and their argument difference is a rational multiple of 27, then
the denominator of this rational multiple in the lowest terms belongs to Dg.
Note that the set D4 defined above is empty if and only if one of the following

statements is true:

1. A has no distinct eigenvalues lying on the same circle in the complex

plane.

2. The argument differences of the distinct eigenvalues of A that lie on the

same circle in the complex plane are irrational multiples of 2.

Note also that D, is always a finite set and that 1 is never an element of Dy.
Moreover, d € D4 if and only it —d € Dy4.

We define now the following sets of integers:

Py = {kd|k€Z,d>0, and d <€ Da} (Problematic Powers of A)

Ny = {1,2,3,... }\Pa (Nice Powers of A)
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Since Dy, is finite and 1 is never an element of Dy, N4 is always an infinite
set. In particular, N4 contains all the prime numbers that are larger than the

maximum of Dy4.

Lemma 3.1 Let A € C™" and let \, u € o(A), then for all k € Ny, A\F =y
if and only if X = p.

Proof. The necessity is trivial. For the sufficiency, pick any k¥ € N4 and
suppose that \¥ = u* for some A\, u € o(A). If \¥ = y* = 0 then obviously
A = p = 0. Suppose that A\* = p* # 0. Then, in such a case, there is an
r > 0 such that A = re? y = re*™* for some 6, € [0,1). In such a case,
Mo = pb & phelmikl — phelrika o 2mik(0-0) — 1 & k(§ — o) = m for some
m € Z. Assume (with the hope of getting a contradiction) that m # 0. It is
enough to consider the case when m > 0, since the other case is analogous. If
d = gcd(k,m) then we have two cases. Either d = k or d < k. If d = k then
¢ —a =T €Z But, 6§ and « are in [0,1). Henced —a =0 m =0, a
contradiction. Suppose now that ged(k,m) = d < k, , then § — a = %1 €L

and ged(%,2) = 1. Hence, £ € Dy = k € P4 & k ¢ N, a contradiction. 0O

Lemma 3.2 Let A € C*" and let A € o(A), A # 0, then for all k € Ny we
have E)\(A) = Ex.(A*) and the Jordan boz of \* in J(A*) is obtained from the
Jordan box of \ in J(A) by replacing \ with \*.

Proof. Since E)(A) C E\(A¥), it suffices to show that dim E\(A) =
dim Exx(A*). To prove the latter statement and the claim of this lemma,
it is enough to show that there is a one-to-one correspondence between the
collection of Jordan blocks of A in A and the collection of Jordan blocks of A*
in A* that respects the multiplicity and the order of the Jordan block. Suppose
that J,(A) = A, + N, is an s x s Jordan block of A corresponding to A and
suppose that the Jordan canonical form of A is given for some X in Gl(n, C)
by

J(A) = XTTAX = T\ @ --- D ().
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Then,
[JA))F =X AX = [ e e LW (3.1)

If0 € 0(A) and Jy(0) is an s’ x s’ Jordan block corresponding to 0 that appears
in J(A), then whenever J,(0) is raised to the power k then it becomes [J,(0)]*
which is either a block whose k" superdiagonal consists entirely of ones and all
other entries are zeroes (if k < s') or it becomes a block consisting entirely of
zeroes (if & > 5'). In all cases, [Jy(0)]* becomes either zero or permutationally
similar to a direct sum of Jordan blocks corresponding to 0 of smaller order,
i.e., there is a similarity matrix which is also a permutation matrix that gives
the Jordan form of [J(0)}* and it is a direct sum of J,+(0) for some 7/ < .
If the Jordan block Js(A) of a nonzero eigenvalue ) is raised to the power k

then it becomes
ok
TP = B R i
-3 ( )

3

where ( ) denotes k& combinations taken m at a time. Hence,
m
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Since, the first superdiagonal of [J;(\)]* consists of nonzero entries, it follows
that the Jordan canonical form of [J,(\)]* is J,;(A¥). Hence by looking at the
k' power of the Jordan canonical form of A in (3.1), one can see that there
is a matrix S consisting of a direct sum of similarity matrices for each of the

individual blocks [J;(A)]¥, - -, [J,(11)]* that appear in [J(A)]* such that
SIXTARXS = J,(\) @ -+ = J(A¥) = the Jordan canonical form of A*.

Hence, if A € a(A), X # 0, and J,()\) is a Jordan block for A4, then J,(A\*) is also
a Jordan block for A* and it appears in J{A*) at least as many times as J,()\)
appears in J(A). Moreover, suppose (with the hope of getting a contradiction)
that the collection of Jordan blocks corresponding to A* in J(A*) has more
blocks than the collection of Jordan blocks corresponding to A in J(A). Then,
this could only happen if there is a 4 € o(A) such that uF = A\* but u # .
Since k € N, it follows from Lemma 3.1 that 1 = A, a contradiction. Hence,
J(AF) has the same number of of Jordan blocks for A* as J(A) has for X with
the same orders and multiplicities. The only difference is that in J(A*) the
eigenvalue A* appears instead of A. O

The following corollaries follow directly from Lemma 3.2 with the same

proofs as in [5].

Corollary 3.1 Suppose that A € R™", indexg(A) € {0,1}, and A* > 0 for
all s > m. Then, forallg € Nan{m,m+1,m +2,...}, if for some ordered
partition kK = (ay, az) of {1,2,...,n} we have (A9)[ay, as] = 0 and (A9)[as] is

irreducible or a 1 x 1 zero block, then Ala;, as] = 0.

Corollary 3.2 Suppose that A € R™", indery(A) € {0,1}, A° > 0 for all
s > m. Then, for all g € Nan{m,m + L,m+2,...}, if (A%, is in the
Frobenius normal form for some ordered partition k, then A, is also in the

Frobenius normal form.

Corollary 3.3 Suppose that A € R**", indexy(A) € {0,1}, and A* > 0 for
all s > m. Then, for allg € Nan{m,m+1,m~+2,...}, the transitive closures

of the reduced graphs of A and A9 are the same, i.e., R(A) = R(A9).
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Theorem 3.1 Suppose that A € R™", indexy(A) = v, and A° > 0 for all
s>m. Letk = [2] =inf{s € N|vs >m}. Then, for all

g€ NoN{k,k+1,k+2,...},

we have R(A¥9) = R(AY).

Proof. Consider the matrix B = A”. Then B is eventually nonnegative.
In fact, B > 0 for all ¢ > k where k = inf{s € N| vs > m}. It is easy to see
that & is the smallest integer larger than =, denoted by (%1 By Corollary 3.3,
forall g € N5 {k,k+1,k+2,...}, we have R(B9) = R(B). In other words,
forall g e Nan{k k+1,k+2,...}, we have R(A¥9) = R(A¥). O

Corollary 3.4 Suppose that A € R™", indexy(A) = v, and A* > 0 for all
s> m. Letk:f%]. Then, '

if A does not have distinct eigenvalues with the same modulus, or

if the argument differences of the distinct eigenvalues of A having the

same modulus are irrational multiples of 2,

then for all g > k, we have R(A¥9) = R(AY).

Proof. 1f A does not have distinct eigenvalues with the same modulus then
neither does AY. Also, if the argument differences of the distinct eigenvalues
of A having the same modulus are irrational multiples of 2z then so do the
argument differences of the distinct eigenvalues of A” that have the same

modulus. Hence, if either of these conditions is satisfied, then

DAv:DA:(ﬁiPAv :PA:¢:>NAV :NA:{1,2,3,...}.

Thus, by Theorem 3.1, for all g > k, we have R(A¥9) = R(A¥), where k = H’ﬂ
O
Recall that v € C™ is a generalized eigenvector of A € C™™ having order

m > 1 and corresponding to A € C if

(A=AD™ =0 but (A-A)™'v£0.
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In the following lemma, we collect some known properties of generalized eigen-

vectors, and then we prove a result needed for our main theorem.

Lemma 3.3 Let A € C™*",

(1) A vector v € G\(A) is a generalized eigenvector of order m > 2 if and
only if there is a generalized eigenvector w € G\(A) of order m —1 such

that Av = v+ w.

(ii) Let A € CY". If v is a generalized eigenvector in G\(A) of order m,

then Av is also a generalized eigenvector in G\(A) of order m.

(1i1) Let A € C*™". Ifv and w are generalized eigenvectors in G»(A) having
orders m and l, respectively, and 1 <1 < m, then v+w is a generalized

etgenvector that has an order m corresponding to A.

Lemma 3.4 Let A € C™" and let X € o(A), X £ 0, then Gr(A) = G (4F)
for all k € Nj.

Proof. We know from Lemma 3.2 that the Jordan box corresponding to
A¥ in J(A*) is obtained from the Jordan box corresponding to X in J(A) by
replacing A with A*. And thus, dim G,\(A4) = multy(A) = multy(A*) =
dim G+(A*). Hence, to prove that GA(4) = Gk (AF), it is enough to show
that G (A) C Gx(A*). To do that, it is enough to show that v is a generalized
eigenvector of order m in Gy« (A*) whenever v is a generalized eigenvector of
order m in Gx(A) for all m € {1,2,...,indexs(A)}. We prove the latter
statement by induction on m, the order of v. If m = 1, then v € G5(A) is an
ordinary eigenvector of A corresponding to A. Hence, Av = Av which implies
A*y = Xfy. And thus, v € Gy (AF) is a generalized eigenvector of A*F of
order 1. Suppose that for all 1 <] < m whenever v € G,(A) is a generalized
eigenvector of order I, then v € G,x(A*) is a generalized eigenvector of A*
of order I. Let v € GA(A) be a generalized eigenvector of order m. By

Lemma 3.3 (i), there is a generalized eigenvector w € GA(A) of order m — 1
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such that Av = Av +w. And thus,

Av = lw+w,
A2 = Mo+ w+ Aw,
Adv = Xv+ \Nw+ \Aw + A%w,

ARy = Mo+ XN lw + X240 + -+ ANAF 2 + AR lw.

By Lemma 3.3 (ii), the vectors Aw, A%w, - -- , A¥ 1w are all generalized eigen-
vectors in G(A) having order m — 1. Hence, by Lemma 3.3 (iii), the vector
Nl £ A2 Aw +- - -+ AAP 2w + A*tw is a generalized eigenvector in Gy (A)
having order m —1. By the induction hypothesis, the vector A*= 1w+ F—2 Aw +
coo + AA* 2w + ARl is a generalized eigenvector in Gk (AF) of order m — 1.
But, in such a case Lemma 3.3 (i), implies that v is a generalized eigenvector
in G (A*) of order m. O
Rothblum (35, Theorem 3.1] proved the following result:

Theorem 3.2 Let A € R™" be nonnegative and let N(A — p(A)I)¥ with
k = index,4y(A) being the algebraic eigenspace corresponding to p(A). As-
sume that A has m basic classes aq,...,am. Then, k = m and the algebraic
eigenspace N (A — p(A)I)™ contains nonnegative vectors vV, - - o™ such
that Q)](i) > 0 if and only if the index j has access to «; in G(A), the graph of
A. Furthermore, any such collection is a basis of N(A — p(A)I)™.

We now show that the latter theorem holds for eventually nonnegative

matrices A whose indexy(A4) € {0,1}.

Theorem 3.3 Suppose that A € R™" is eventually nonnegative with
indexo(A) € {0,1} and let N(A — p(A)I)* with k = index 4)(A) being the
algebraic eigenspace corresponding to p(A). Assume that A has m basic classes
ai,...,0m. Then k = m and the algebraic eigenspace N(A—p(A))™ contains
nonnegative vectors vV, ... ™ such that vy) > 0 if and only if the index j

has access to o; in G(A), the graph of A. Furthermore, any such collection is

a basis of N(A — p(A))™.
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Proof. Since A is eventually nonnegative, it follows that there is
p € Na such that A° > 0 for all s > p. Let k' = index,4r)(A?) and
let K = (a1, -+, ) be an ordered partition of {1,2,...,n} that gives the
Frobenius normal form of AP. By Theorem 3.2, k' = m/ and the algebraic
cigenspace N (AP — p(AP)I)¥ contains nonnegative vectors v, - - | v™) such
that ’U_g-i) > 0 if and only if the index j has access to ; in G(A?). By Lemma 3.2,
k" = k. Moreover, Corollary 3.2 implies that m’ = m and the ordered partition
Kk also gives the Frobenius normal form of A. Hence, £ = m and the classes
of A are the same as the classes of AP. Moreover, we know from Lemma 3.4
that N (A — p(A)I)F = N(A? — p(AP)T)E. Thus, vD, ... o™ is a basis of
N(A — p(A)I)k. Furthermore, we claim that j has access to oy in G(AP) if
and only if j has access to a; in G(A). To prove the latter claim, let 7 denote
the class to which the index j belongs and consider the reduced graphs of A
and AP. By Corollary 3.3, the transitive closures of the reduced graphs of A
and A? are the same. Hence, the reduced graphs of A and AP have the same
access relations. Thus,  has access to «a; in the reduced graph of A if and
only if # has access to «; in the reduced graph of AP. Since j communicates
with any vertex in g, it follows that j has access to «; in G(A?) if and only if

J has access to ; in G(A), and thus, the claim of this theorem is true. O

Corollary 3.5 Suppose that A € R™™™ is an eventually nonnegative matriz
with indexg(A) € {0,1}. Then, there is a positive eigenvector corresponding

to p(A) if and only if the final classes of A are exactly its basic ones.

Corollary 3.6 Suppose that A € R™" is an eventually nonnegative matriz
with indexy(A) € {0,1}. Then, there are positive right and left eigenvectors
corresponding to p(A) if and only if all the classes of A are basic and final,
i.e., A is permutationally similar to a direct sum of irreducible matrices having

the same spectral radius.
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3.2 Matrices That Are Eventually in WPEF,
and PF,

As we have seen, nonnilpotent eventually nonnegative matrices have the
Perron-Frobenius property. It is natural then to ask, what can we say of
matrices whose powers eventually belong to W PF,, (or PF,,). We show in this
short section that these matrices must belong to WPF, (or PF,).

Theorem 3.4 A € WPF, if and only if for some integer m, A* € WPF,,
for all k > m.

Proof. Suppose that A € WPF,. For any A € 0(A), A#0,and all k£ > 1,
we have E\(A) C Ey«(AF). In particular, this is true for A = p(A) > 0. Using
the fact that p(A*) = (p(A))¥, we see that E,a)(A) C Eya(A*). Thus, if A
has the Perron-Frobenius property, then so does A* for all k¥ > 1. Likewise,
(AT)* has the Perron-Frobenius property for all K > 1. Thus, A* € WPF,
for all k > 1. Conversely, suppose that there is a positive integer m such that
A*¥ € WPF, for k > m. Since the eigenvalues of A are the k** roots of the
eigenvalues of A* for all kK > m, it follows that 0 # p(A) € o(A). Moreover,
by picking k € Nan{m,m+1,m +2,...} (“nice powers” k of A that are
larger than m), we have Ey4)(A) = E 4y (A*) (this follows from Lemma 3.2).
Hence, we can choose a nonnegative eigenvector of A corresponding p(A). So,
A has the Perron-Frobenius property. Similarly, AT has the Perron-Frobenius
property. Thus, A € WPF,. O

Similarly, we obtain the following result.

Theorem 3.5 A € PF, if and only if for some integer m, A* € PF,, for all
k>m.
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3.3 Similarity Matrices Preserving the Perron-
Frobenius Property

If S is a positive diagonal matrix or a permutation matrix then clearly
S~1AS possesses the Perron-Frobenius property whenever A does. This ob-
servation leads to the following question, which we answer in this section:
which similarity matrices S preserve the Perron-Frobenius property, the strong
Perron-Frobenius property, or being in WPEF,,, or in PF,? We first prove a

preliminary lemma that leads to answering the latter question.

Lemma 3.5 Let S be an n X n real matriz which has a positive entry and a
negative entry. If S is of rank one but not expressible as zy” with T being a
nonnegative vector, or S is of rank two or more, then there is a posilive vector

v € R™ such that Sv has a positive entry and a negative entry.

Proof. If S is a rank-one matrix with the given property, then S is ex-
pressible as zy”, where z is a vector which has a positive entry and a negative
entry. Choose any positive vector v such that y*v # 0. Then Sv, being a
nonzero multiple of z, clearly has a positive entry and a negative entry.

Suppose that S is of rank two or more. If S has a column which has
a positive entry and a negative entry, say, the kth column, then take v to
be the positive vector in R™ whose kth entry is 1 and all of whose other
entries equal e. It is readily seen that for ¢ > 0 sufficiently small, Sv has a
positive entry and a negative entry. It remains to consider the case when every
nonzero column of S is either semipositive or seminegative. Because S is of
rank two or more, it is possible to choose two linearly independent columns
of S, with one semipositive and the other seminegative; say the jth column
is semipositive and the kth column is seminegative. If the jth column has a
zero entry such that the corresponding entry for the kth column is negative,
then clearly S(e; + dex) (where e; denotes the ith standard unit vector of R")
has a positive entry and a negative entry for sufficiently small § > 0, hence

so does the vector Sv where v is the positive vector of R™ with 1 at its jth
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entry, § at its kth entry and € at its other entries, where ¢ > 0 is sufficiently
small. Similarly, if the kth column has a zero entry such that the corresponding
entry for the jth column is positive, then by a similar argument we are also
done. So, the jth and the kth columns of S have zeroes at exactly the same
positions. Consider S((1 — M)e; + Aeg). Let Ag be the largest A € [0,1] such
that S((1—\)e;+ Aex) is nonnegative. Because we assume that the jth and the
kth columus of S are linearly independent, it is clear that S((1 — Ag)e; + Aoex)
is in fact semipositive, i.e., a nonzero vector. Choose A; > Ag, sufficiently close
to Ag. Then S((1 — A1)e; + Arex) has a positive entry and a negative entry.
Now let v be the positive vector in R® whose jth entry is 1 — A;, whose kth
entry is A;, and all of whose other entries are €. Then, for ¢ > 0 sufficiently
small Sv has a positive entry and a negative entry. 0O

We call a matrix S monotone if S € GL(n,R) and S~ is nonnegative.

Theorem 3.6 For any S € GL(n,R), the following statements are equivalent:
(1)} Either S or —S is monotone.

(i) STLAS has the strong Perron-Frobenius property for all matrices A hav-

ing the strong Perron-Frobenius property.

Proof. Suppose (i) is true. Assume without loss of generality that S is
monotone. If A is a matrix with the strong Perron-Frobenius property and v
is a right Perron-Frobenius eigenvector of A, then S~!v is an eigenvector of
S~1AS corresponding to p(A). The nonsingularity of S implies that none of
the rows of S~! is 0. Therefore, S~1v is a positive vector. Also, p(A) is a
simple positive and strictly dominant eigenvalue of S~ AS since S~1AS and
A have the same characteristic polynomial. This shows that (i) = (i).
Conversely, suppose (i) is not true, i.e., S and —S are both not monotone.
Then, in such a case, S~! must have a positive entry and a negative entry.
By Lemma 3.5, there is a positive vector v such that S~'v has a positive
entry and a negative entry. For any scalar p > 0, we can construct the ma-

trix A = (p/viv)vvT € PF,, having v as a right Perron-Frobenius eigenvec-
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tor. Moreover, for such a matrix A, we have Ep4)(A) = Span{v}. Since
the eigenvectors in E,4)(S™'AS) are of the form S~'w for some eigenvector
w € Eya)(A), it follows that F,)(S™'AS) does not have a positive vector.
Thus, S~! AS does not have the strong Perron-Frobenius property. Hence, (i7)
is not true, which shows that (i¢) = (¢). 0

The following results follow in the same manner.
Theorem 3.7 For any S € GL(n,R), the following statements are equivalent:

(i) Either S or —S 1is monotone.

(it) S~YAS has the Perron-Frobenius property for all matrices A having the

Perron-Frobenius property.

Corollary 3.7 For any S € GL(n,R), the following statements are equiva-

lent:
(i) S and S~ are either both nonnegative or both nonpositive.
(i) ST1AS € PF, for all A € PF,.

(iii) S~'AS € WPEF, for all A € WPF,.

3.4 The Perron-Frobenius Property and Real
Symmetric Matrices

In this section, S5, denotes the collection of n x n real symmetric matrices
and ¢ € R" denotes the vector that consists entirely of ones. We study the
boundary of the cone in S, of maximal angle centered at E = ee’ (the matrix
of ones) in which the nonnegativity of both the dominant eigenvalue and its
corresponding eigenvector is retained. Farazaga, Raydan, and Hurman studied

this cone for n > 3 [48, Theorem 4.1] and showed that the angle of such a cone

o = arccos (Ll)?_—i—l) . (3.2)

is

n
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The authors of [48] do not claim that PF, or WPF, is a cone. In fact, it
is shown by Johnson and Tarazaga [26] that PF, is not even convex. Thus,
neither PF,, nor W PFE,, is necessarily a cone. We explore this further and show
that there is a curve of matrices with the strong Perron-Frobenius property

extending outside the cone centered at F = ee’ and making an angle o given
in (3.2).

Proposition 3.1 The mazimal subset of S, (n > 3) for which there is a
nonnegalive Perron-Frobenius eigenpair extends oulside the cone centered at

E = eeT whose angle o is given by (3.2).

Proof. Consider a matrix A in S,, (n > 3) of the form:

_:L‘ T T - :L‘-
T

A=A(z) =
rz 1l -+ 1 1
x 1 -0 1 T |

where z is a positive scalar. Obviously, the matrix A is a positive matrix in S,
and thus, it possesses the strong Perron-Frobenius property for every positive
scalar z.

We will show that there exists a § > 0 such that Angle(4,ee”) > a (ie.,
cos(A, eeT) < cos @) whenever 0 < z < 4. First, let us compute the cosine of

the angle between A and ee”. Let a;; denote the (4, j)-entry of A. Then,

i % onz+n2—2
A T — sJ _ nr+n T
cos(4, ec") n Zi,j(aij)2 nV2nz24n2—2on
—1)241
And thus, cos(A, ee”) < cosa if and only if Zngtn’-2n . V¥ (n—1)*+ )

nv2nz?2+n2—-2n n
Define the functions f,(z) (n > 3) by:

Vn—-124+1 Inx +n? — 2n
n nV2nz? +n? —2n

fn(I) -
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Then, we want to see when f,(z) > 0. Note that for all n > 3:

£1(0) = (n—1)2+1; n?—2n _ \/n2—2n+2—,\/n2—2n>0
n nyn? —2n n

By continuity of the function f,(z), there exists &, > 0 such that f.(z) > 0
whenever 0 < z < §,. Hence, when 0 < z < 9§, the matrix A possesses the
strong Perron-Frobenius property yet it lies outside the cone centered at ee”
with angle . Indeed, we can define a curve A, : [0,1) — S, of the matrices
A,(t) = A(1 — t), which lie outside the cone centered at ee’ with angle «,
for 1 — é, < t < 1, while they satisfy the strong Perron-Frobenius property.
Furthermore, since the eigenvalues and the eigenvectors depend continuously
on the matrix entries (see, e.g., [3], [22]), it follows that there is a neighborhood
of the curve A,(t) defined for 1 — 4, < ¢t < 1, in which the strong Perron-
Frobenius property holds as well. The intersection of this neighborhood with
S» further extends the known collection of such matrices lying outside the cone

mentioned above. [

3.5 Topological Properties

In this section, we prove some topological properties of the collections of
matrices with the Perron-Frobenius property and other subcollections.
The following lemma was asserted and used by Johnson and Tarazaga in

the proof of [26, Theorem 2]; its proof can be found in [31].

Lemma 3.6 Let A be a matriz in R™*™ with the Perron-Frobenius property,
and let v be its right Perron-Frobenius eigenvector. If w € R™, w # 0, is such

that vTw > 0 then for all scalars € > 0 the following holds:
(1) The matrizc B = A + evw” has the Perron-Frobenius property.

(i) p(A) < p(B).

(ii) If A has the strong Perron-Frobenius property then so does B.
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Theorem 3.8 The collection of matrices in R™™ with the Perron-Frobenius

property is path-connected.

Proof. Let A € R™™" be any matrix with the Perron-Frobenius property.
Since the collection of positive matrices is convex, it is enough to show that
there is a path connecting matrix A to some positive matrix B. The proof goes
as follows: connect matrix A to a matrix A having a positive right Perron-
Frobenius eigenvector and then connect A to a positive matrix B.

If A has a positive right Perron-Frobenius eigenvector then define A= A,
otherwise, consider J(A), the Jordan canonical form of A. We know that
A=V J(A)V~! where V = [v wy w3 ---wy] and v is a right Perron-Frobenius
eigenvector of A. For every scalar t > 0, we construct the vector v; by replacing
the zero entries of v by ¢, and we construct a new matrix V; = [v; wo w3 - - - wy)].
Since Vp = V € GL(n,C) and since GL(n,C) is an open subset of C**", there
is a positive scalar § such that whenever 0 < t < § we have V; € GL(n,C).
Define A; = V;J(A)V,; ! for 0 <t < §. Then, A, is a path of complex matrices
having a positive dominant eigenvalue p(A) with a corresponding nonnegative
eigenvector v;. We show now that the real part of A; is a path of real matrices
connecting matrix A to our desired matrix A, which will be defined soon.
Note that v; is positive for all 0 < t < § and that A; = C; + iD; where C,
and Dy are paths of real matrices. Since A;v; = Cyvy + 1Dy = p(A)v; € R?
for all 0 < ¢ < ¢4, it follows that Dyv; = 0 and that Civ; = p(A)v, for all
0 <t <94. Moreover, Cy = Ay = A. Hence, C; is a path of real matrices
connecting A to Cj, and each matrix C; has a positive dominant eigenvalue
p(A) with a corresponding nonnegative eigenvector v;, therefore having the
Perron-Frobenius property. Let A = Cj and let v be its corresponding positive
eigenvector.

Let w be any positive vector. For all scalars € > 0, define the path of real
matrices K, = A + evsw?. By Lemma 3.6, K, possesses the Perron-Frobenius

T

property for all ¢ > 0. Since vsw! is a positive matrix, K. is positive for large

values of €. Hence, there is a positive real number M such that K, is positive.
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Let B = Kj;. Hence, K, is a path connecting Ato B.O

Similarly, we have the following result.

Theorem 3.9 The collection of matrices in R™™ with the strong Perron-

Frobenius property is path-connected.
Corollary 3.8 PF, is simply connected.

Proof. Johnson and Tarazaga proved in [26, Theorem 2] that PF,, is path-
connected. Thus, it is enough to show that any loop in PF;, can be shrunk to
a point. Let A, : [0,1] — PF, be a loop of matrices in PF,. Forall0 <t <1,
let v; and w; be respectively the right and the left Perron-Frobenius unit
eigenvectors of A;. Also, for all scalars ¢ > 0, define the loop Bf = A; + ev;w? .
By Lemma 3.6, the loop Bf is in PF, for all scalars ¢ > 0. Note that for
large values of € the loop Bj is a loop of positive matrices. Hence, A; can be

continuously deformed to a loop that can be shrunk to a point. D

Corollary 3.9 The collection of matrices in R™™ with the strong Perron-

Frobenius property is simply connected.

Proposition 3.2 The closure W PF,, = W PF,, U {nilpotent matrices with a

pair of right and left nonnegative eigenvectors}.

Proof. Since the eigenvalues and eigenvector entries are continuous func-
tions of the matrix entries, it follows that for any matrix A in W PF,, we have
p(A) > 0 and A has a pair of left and right nonnegative eigenvectors corre-
sponding to p(A). If p(A) = 0 then A is nilpotent with a pair of right and
left nonnegative eigenvectors, otherwise A is in W PF,,. Conversely, suppose
that A is in WPF, or A is a nilpotent matrix with a pair of right and left
nonnegative eigenvectors. If A is in WPF, then obviously A is in WPE,. If
A is a nilpotent matrix with a pair of right and left nonnegative eigenvectors
v and w, respectively, then A has a Jordan canonical form A = VJ(A)V 1,

where V and V™! are real matrices, all the Jordan blocks in J(A) are of the
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form J,(0) for some s € {1,...,n}, the ith column of V is v, and the 5 row
of V=1 is w” for some 4,5 € {1,...,n}. Let e; denote the ith standard unit
vector of R”. For every positive scalar ¢, let J. = J(A) + ¢(e;e] + eje?), and
A, =V J.V-L Note that Acv = ev and w” A, = ew”. Hence, A. € WPF,, for

all ¢ > 0. Moreover, A, converges to A ase¢ — 0.0

Lemma 3.7 For any semipositive vector v, and for any scalar € > 0, there is

an orthogonal matriz Q@ such that ||Q — I||2 < € and Qu; > 0.

Proof. Assume without loss of generality that v; is a unit vector. If v; is a
positive vector then let (Q = I, otherwise pick any scalar ¢ > 0 and replace the
zero entries of v; by positive entries that are small enough then normalize so
that the obtained vector, say 0, is a positive unit vector and || — v;||2 < ¢/n.
Let S = I —vjv! be the projection matrix onto v;-, the hyperplane orthogonal
to vy, and let vg = 5¢/||S¥||2. Then, vy is a unit vector which is orthogonal
to v1. Moreover, © lies in the 2-dimensional plane determined by v and vs.
Let 0 = Angle(v), ) = arccos(v{ ¥). Extend {v},v;} to an orthonormal basis
{v1,v2, -+ , v} of R™. Define Q to be the Givens rotation (see, e.g, [18]) by the
angle # in the 2-dimensional plane determined by v; and vs. Then, ¥ = Quy,
[|Qua — voll2 = ||Qu1 — n1}]2 < €/n, and Qu; = v; for all ¢ > 3. Therefore,
Qui =9 >0 and {|Q — |}z = supg),=1]|(Q — Dz|]2 < e. O

Proposition 3.3 FEvery normal matriz in W PF,, is the limit of normal ma-

trices in PF,,.

Proof. Let A be a normal matrix in WPF,. Then, A = VSV” where V is
an orthogonal matrix, S = [p(A)] & My--- & My, and each M,

(i=2,...,k)isareal 1 x 1 block or a nonzero real 2 x 2 block of the form

a b
[ b , a,b € R. Moreover, one of the columns of V', say the first column
—b a

which we denote by v, is both a right and a left Perron-Frobenius eigenvector
of A. For any scalar € > 0, consider the matrix B = V{[p(A) +¢|®- - - & Mi|V7

which has a simple positive and strictly dominant eigenvalue p(A) + €. Note
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that B converges to A as ¢ — (. By Lemma 10.7, there is an orthogonal matrix
Q such that Qu > 0 and {|Q — I||z < €. Let C = QBQT. Then, C is a normal
matrix having p(A) + € as simple positive and strictly dominant eigenvalue.
Moreaver, C satisfies the following vector equalities CQu = (p(A) + €)Qv,
and (Qu)TC = (p(A) + ¢)(Qu)T. Therefore, C is a normal matrix in PF,.

Furthermore,

[IC—All < ||C—Bll2+||B— Al
1QBQ" ~ Bllz + ||B — All2

[lQB — BQ|l2 + || B — Al|2

QB — Bll2 + [|1B — BQ||2 + || B — Al|2

< 2Bl lQ —1Ill2 +{|B— Al > 0ase—0. O

I

I

IA

3.6 Singular Values and Singular Vectors

We explore in this section some sign properties of the singluar value de-
composition of matrices in WPF,,. Recall that every rectangular matrix in
A € R™" can be expressed as A = USVT, where U = [y - - - 4y,] is an m x m
orthogonal matrix (u; is the j** column of U), V = [v;---v,] is an n x n
orthogonal matrix (v; is the j%* column V), and ¥ = diag(o1, 09, ...,0,) is an
m X n matrix satisfying oy > g2 > --- > g, > 0 and p = min{m,n}. Such
a decomposition is known as the singular value decomposition of A or simply
as the SVD of A. It is easy to check that Av; = o;u; and ATw; = o;v; for
all i € {1,2,...,p}. The v;’s are known as the right singular vectors of A,
the u;’s are known the left singular vectors of A, and the g;’s are known as
the singular values of A; see, e.g, [18], [22]. In the following three results, the
SVD'’s of matrices that are eventually nonnegative or in general enjoying the
Perron-Frobenius property are analyzed and sufficient conditions for the non-
negativity of the right and left singular vectors corresponding to the maximum

singular value are given.

Theorem 3.10 If A is a normal matriz in PF,,, then the mazimum singular
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value is strictly larger than the other singular values and its right and left

singular vectors are positive.

Proof. Let A = UXVT = [uy uy---u,] diag(oy,09,...,0,) vy va---v)7
be the singular value decomposition of A, where U and V orthogonal, and
o1 = 09 > -+ > o, > 0 are the singular values of A. Note that v; and
uy are, respectively, the right and the left singular vectors corresponding to
oy, ie., Av; = oqu, and ATy, = oyv;. Since A € PF,, then both A and
AT are commuting eventually positive matrices. Hence, AT A is eventually
positive, and thus, it possesses the strong Perron-Frobenius property. But,
ATA =VE2VT = [y vy -+ -] diag(c?,03,...,02) vy va---v,)7 is the Jordan
decomposition of AT A. Therefore, v; must be positive and 2 > ¢; > 0 for all
i € {2,...,n}. Similarly, by noting that AA7 is eventually positive, we show

that u, is positive. O

Proposition 3.4 If A is a nonzero, normal and eventually nonnegative ma-
triz, then its right and left singular vectors corresponding to its mazimum

singular value are nonnegative.

Proof. 1f A is a nonzero, normal and eventually nonnegative matrix, then
both A and AT are commuting eventually nonnegative matrices. Hence, AT A
is eventually nonnegative. Since the maximum eigenvalue of AT A is ||A||2 # 0
(because A # 0), it follows that ATA € WPF,, and thus, it possesses the
Perron-Frobenius property. And thus, the right singular vector corresponding
to its maximum singular value must be nonnegative. Similarly, by noting
that AAT is eventually nonnegative, we show that the left singular vector
corresponding to its maximum singular value is also nonnegative. 00

Note that a matrix A which satisfies the conditions required by Proposi-
tion 3.4 is automatically nonnilpotent since there is no normal nonzero nilpo-

tent matrix. The next result is a more general result that applies to W PF,,.

Theorem 3.11 If A is a normal matriz in WPF,, then its right and left

singular vectors corresponding to its mazimum singular value are nonnegative.
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Proof. 1f A is a normal matrix in W PF,,, then by Proposition 3.3 there is a
sequence of normal matrices { A}, C PF, that converges to A. Foreach k €
{1,2,...}, the matrices A and AL are commuting eventually positive matrices.
And just like in the proof of Proposition 3.10, the matrix AL Ay possesses the
strong Perron-Frobenius property and its (positive) Perron-Frobenius eigen-
vector, say vy, is the right singular vector of the maximum singular value of Ay.
By continuity of eigenvector entries as functions of matrix entries and since
AT Ay — AT A as k — oo, it follows that the positive unit vector v which is
an eigenvector of AT A, converges to some nonnegative unit vector v which is
an eigenvector of AT A, i.e., to the right singular vector of A corresponding to
the maximum singular value. Similarly, we show that there is a sequence of
positive unit vectors converging to the left singular vector of A corresponding

to the maximum singular value. 0

Example 3.1 If a matrix in PF,, or WPF,, is not normal or, equivalently,
not unitarily diagonalizable, then the singular vectors may have positive and

negative entries. For example, consider the matrix

s -9
C ==

|7 2 23

7 30 -5

The matrix C' is a diagonalizable matrix in PFj, but it is not unitarily diago-

nalizable. In fact, the Jordan decomposition of C'is given by C' = X J(C)X !,

where
1 1 -3 8 0 0 . 1 2 1
X=1{1-1 1|, JO=|0 -7 0], X”:Z 0 -2 2
1 1 1 0 0 1 -1 0 1

The singular value decomposition of (' yields that the right singular vector
corresponding to the maximum singular value is [0.2761, —0.9311, 0.2385]T
and the corresponding left singular vector is [—0.7289, 0.0372, — 0.6836]7,

each of which has a negative entry and a positive entry. Similarly, by taking
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direct sums of matrix C with positive matrices, one can find counter-examples
in WPF, in which the right and left singular vectors corresponding to the

maximum singular value have positive and negative entries.
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CHAPTER 4

GENERALIZATIONS OF
M-MATRICES

4.1 Introduction and Preliminaries

Closely related to the subject of nonnegative matrices and their generaliza-
tions is the subject of M-matrices. A matrix A € R®" is called an M-matrix
if it can be expressed as A = sI — B where B is nonnegative and p(B) < s. In
this chapter, we study generalizations of M-matrices of the form A = sf — B
where B € WPF, and p(B) < s. We call such matrices GM-matrices. We also
study other generalizations of this type and present some of their properties
which are counterparts to those of M-matrices. Among the generalizations of
M-matrices we study are matrices of the form A = s/ — B with p(B) < s and
B being an eventually nonnegative or an eventually positive matrix. Johnson
and Tarazaga [26] termed the latter class, pseudo-M-matrices. Le and Mec-
Donald [29] studied the case where B is an irreducible eventually nonnegative
matrix. We mention also other generalizations of M-matrices not considered
in this chapter; namely, where B leaves a cone invariant (see, e.g., [45], [50])
or for rectangular matrices; see, e.g., [34].

It is well-known that the inverse of a nonsingular M-matrix is nonnegative

[2], [49]. This property leads to the natural question: for which nonnegative
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we study analogous questions, such as: for which matrices having the Perron-
Frobenius property is the inverse a GM-matrix?

Another aspect we address in Section 4.3 is the study of splittings
A= M — N of a GM-matrix A with conditions for their convergence.

Recall that a matrix A € R**" is a Z-matrix if A can be expressed in the
form A = sI — B where s is a positive scalar and B is a nonnegative matrix.
Moreover, if A = sI — B is a Z-matrix such that p(B) < s, then we call A an
M-matrix.

If A € R**™ can be expressed as A = s/ — B where B € WPF,,, then we
call A

¢ a GZ-matrix.

o a GM-matrix if 0 < p(B) < s.

e an FM-matrix if 0 < p(B) < s and B is eventually nonnegative.
e a pseudo-M-matrix if 0 < p(B) < s and B € PF, [26].

When the inverse of a matrix C' is a GM-matrix then we call C' an inverse
GM -matriz.

It follows directly from the definitions that every M-matrix is an FM-
matrix, that every FM-matrix is a GM-matrix, and that every pseudo-M-
matrix is an EM-matrix. We show by examples below that the converses do
not hold.

Furthermore, an M-matrix may not be a pseudo-M-matrix. Consider, for
example, a reducible M-matrix. We illustrate the relations among the different

sets of matrices in Figure 4.1.



GM-matsices

EM-matrices

pseudo-
M-matrices
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Figure 4.1: This diagram summarizes the relations between the sets of various
generalizations of M-matrices using the Perron-Frobenius property.

Example 4.1

(22 0 o0

22 0 0

11 1 1
Let A = sI — B where B =

11 1 1

00 1 -1

00 -1 1

NN OO O O

NN O O O O

and s > 4.

Note that matrix B, which is taken from [5, Example 4.8], is a reducible

nonnilpotent eventually nonnegative matrix with p(B) = 4. Hence, A is an

EM-matrix. Since A is reducible, it follows that, for any positive scalar §, we

have §1— A reducible and any power of 6] — A reducible. Hence, for any positive

scalar 9, the matrix §I — A is not eventually positive (i.e. (6] — A) ¢ PFg).

And thus, A is not a pseudo-M-matrix. Moreover, A is not an M-matrix

because A has positive off-diagonal entries.
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Example 4.2
11 0 0
11 0
Let A= 5] — B where B = and s > 2.
00 -1 -1
00 -1 ~-1

Note that p(B) = 2 is an eigenvalue having {1 1 0 0] as a right and a left eigen-
vector. Hence, B € WPF; and A is a GM-matrix. However, B is not eventu-
ally nonnegative because the lower right 2 x 2 block of B keeps on alternating
signs. Moreover, for any positive scalar 4, the lower 2 x 2 block of I — A is the
d-s—-1 -1

-1 0—s5—1
lower 2 x 2 block of (§I — A)* is the matrix C* which is, using an induction ar-
) { (—s—2F4+(5—s)k (5—s—2)Fk—(6—s)

lG=—s—2k—(6=s)F (5—s—2F+(0—s)*
is easy to see that for any choice of a positive scalar § the matrix 61 — A is not

matrix C' = |: ] . Note that for any positive integer k, the

gument, the matrix

eventually nonnegative because the (2,1)-entry of C* will always be negative

for odd powers k.

4.2 Properties of GM-Matrices

In this section, we generalize some results known for M-matrices to GM-
matrices. For example, if A is a nonsingular M-matrix, then A™' is nonneg-
ative; see, e.g., [2], [49]. We show analogous results for GM- and pseudo-
M-matrices. However, we show by an example that no analogous result for
E M-matrices holds.

Theorem 4.1 Let A be a malriz in R™™™ whose eigenvalues with multiplicity
are arranged in the following manner: |A| > |A2} > -+ > |Au]. Then the

following statements are equivalent:

(i) A is a nonsingular GM -matriz.
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(it) A~ € WPE, and 0 < A, < Re(X;) for all \; # \,.

Proof. Suppose first that A = sI — B is a nonsingular GM-matrix
(B € WPF,, and 0 < p(B) < s). Then, there are semipositive vectors v
and w such that Bv = p(B)v and wT B = p(B)wT. This implies that A~1v =
(s—p(B))'v and that wTA™! = (s — p(B))~!wT. Thus, v and w are eigenvec-
tors of A~! and furthermore p(A~!) = |\,|™! = (s — p(B))~! > 0. Therefore,
A~l € WPF,. Moreover, |\,] = A\, ie., Re(\,) > 0 and Im(),) = 0, oth-
erwise, if we have Re(),) < 0, then the eigenvalue (s — \,) € o(B) satisfies
|s = An| > |s = |Mull = p(B), which is a contradiction. Or, if Re(A,) > 0 but
Im()\,) # 0, then again, |s — A,| > |s — |\ = p(B), which is a contradiction.
Therefore, |A,| = Ay > 0. Similarly, one could show that if |A;] = A, for some
i€ {l,...,n— 1} then A\; = A\, > 0. Furthermore, suppose that A, > Re()\;)
for some \; # A, then |A;| > A, (otherwise, A\; = Ay). If Re(X;) = Ay, then
IXi| > Re();), therefore |Im(\;)] > 0. Thus,

ls=il = Vs = Re(X)|? + [Im(X)[? > |s—Re(X;)] 2 Is=Xa| = s=X, = p(B),

which is a contradiction because s — A; is an eigenvalue of B. On the other

hand, if Re(\;) < An, then s — Re();) > s — A, > 0. Thus,
|s — Xil 2 |s — Re(X)[ > |s — An| = s — A = p(B),

which is again a contradiction because s — A; is an eigenvalue of B. Therefore,
An < Re(X;) for all \; # Ay,

Conversely, suppose that A~! € WPEF,, and that 0 < )\, < Re();) for all
Xi # A,. Then, there are semipositive vectors v and w such that A=v =
p(AYw = X1v and wT A7t = p(A~)w” = A\ 'w. Note that for every A; such
that [\] = A, we have A\; = A, (otherwise, 0 < A, < Re(X;) < |Xi| = A,

which is a contradiction). Moreover, the set of complex numbers

{Mea(d) : M # M} =o(A\ (M}

lies completely in the set 2 defined by the intersection of the following two

sets:



58

@

Figure 4.2: The gray region represents the set ), which is the intersection
of the open right half-plane determined by the vertical straight line passing
through A, and the closed annulus centered at 0 with radii A, and |\;].

e The annulus {z : A\, < |z| < |A|}, and

e The (open) half-plane {z : Re(z) > Re(\,)}.

It is easy to see that there is a real number s large enough so that the circle
centered at s of radius s — A, surrounds all the complex numbers \; € o(A),
Ai # A, lying in Q; see Figure 4.2. For such an s, define the matrix B, =
sI — A. Then the eigenvalues of B, are s — A1, 8 — Ag,..., 8 — A,. Moreover,

by our choice of s, we have the following:
ls — X <s—Ap forall X\ #M\,.

Therefore, 0 < p(Bs) = s — A, < 8. Moreover, Bsv = (s — A,)v and that
wl B, = (s — A,)w”. Thus, B, € WPEF,. And therefore, A = sI — B; is a
nonsingular GM-matrix. 0

In {26, Theorem 8|, Johnson and Tarazaga proved that if A is a pseudo-
M-matrix, then A=! € PF,,. We extend this theorem by giving necessary and
sufficient conditions for a matrix A to be a pseudo-M-matrix. The proof is

very similar to that of Theorem 4.1, and thus, it is omitted.
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Theorem 4.2 Let A be a matriz in R™" whose eigenvalues with multiplicity
are arranged in the following manner: |Aj| > |A2| = -+ > |A;]|. Then the

following statements are equivalent:
(i) A is a pseudo-M-matriz.

(ii) A1 ezists, A™' is eventually positive, and 0 < A, < Re(X\;), for i =
1,...,n—1.

Remark 4.1 Since every M-matrix is a GM-matrix, it follows that condi-
tion (ii) in Theorem 4.1 can be used to check if a matrix is not an inverse
M-matrix. In particular, if the real part of any eigenvalue is less than the
minimum of all moduli of all eigenvalues then the given matrix is not an in-

verse M-matrix.

Remark 4.2 The set WPF,, in Theorem 4.1 is not completely analogous to
the set of nonnegative matrices. In other words, if we replace in Theorem 4.1
W PF, by the set of nonnegative matrices and if we replace a GM-matrix by an
M-matrix, then the statement of the theorem would not be correct. Similarly,
in Theorem 4.2, PF, is not completely analogous with the set of positive
matrices. For example, we may find a nonnegative matrix whose inverse is a

G M-matrix but not an M-matrix. An example of the latter is the positive

7 6 5 7 -2 =3
matrix C =3 | 5 12 1 |. Notethat C™'=| -3 4 1|=sI—-B
1 6 11 1 -2 3
3 2 3
where s =10, B = 3 6 —1 | € WPF3, and p(B) = 8. Hence, C™' is a
-1 2 7

nonsingular GM-matrix. However, C~! is not an M-matrix since it has some

positive off-diagonal entries.

Corollary 4.1 A matriz C € R™" is an inverse GM -matriz if and only if
C € WPF, and Re(A™') > p(C)™! for all X € o(C), XA # p(C).
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Corollary 4.2 Every real eigenvalue of o nonsingular GM -matriz is positive.

Example 4.3 In this example, we show a nonsingular £M-matrix whose in-

verse is not eventually nonnegative. This implies that no result analogous to

2 -1 -1 1
. -1 2 1 =1
Theorems 4.1 and 4.2 holds for this case. Let A = =
-1 -1 2 -1
-1 -1 -1 2
11 1 -1
11 -1 .
37 — = 3I — B. Then, p(B) = 2 and, using an in-
11 1 1
11 1 1
2k-1 k-l 0 0
2k—1 2k—1
duction argument, B* = > 0 for all integers

k2k—1 k2k—1 2k—1 2k——1
k2k—1 k2k—1 2k—1 2k—1
k > 2. Hence, A is an EM-matrix. But, A™! = 37%2(E + F) where

6 3 00 00 1 -1
3600 00 -1 1
E= and F' = . Note that EF = FE = 3F
996 3 00 0 0
9936 00 0 0

and F? = 0. Therefore, using an induction argument, it is easy to check that
(A~1)* = 3-2*F* 1 k3-¥-1F. Hence, A~! is not eventually nonnegative because

the (1,4) and (2,3) entries are always negative.

It is well-known that a Z-matrix A € R®*" is a nonsingular M-matrix
if and only if A is positive stable, i.e., the real part of any eigenvalue of A
is positive; see, e.g., [2, p.137]. In the following proposition, we prove an

analogous result with G Z-matrices and G M-matrices.

Proposition 4.1 A GZ-matriz A € R™™" is a nonsingular GM -malriz if and
only if A is positive stable.
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Proof. Let A be a GZ-matrix in R™™" with eigenvalues [A;] > || >
-+ > |Ap|. If A is a nonsingular GM-matrix, then Theorem 4.1 implies that
0 < Ay < Re(X;) for all \; # A, Thus, Re();) > 0 for i =1,2,...,n. Hence,
A is positive stable. Conversely, suppose that A is positive stable, then it
follows that 0 is not an eigenvalue of A, which implies that A is nonsingular.
Moreover, since A is a GZ-matrix we can decompose A in the following manner
A = sI — B where B € WPF, and s > 0. If s < p(B) then (s — p(B)) is
a nonpositive eigenvalue of A, which contradicts the positive stability of A.
Hence, s > p(B), which shows that A is a nonsingular GM-matrix. O

Another useful result is the following; see, e.g., [2, p.136].

Theorem 4.3 A Z-matriz A € R™*" is a nonsingular M-matriz if and only

if there is a positive vector © such that Ax is positive.

In Theorem 4.4 below, we prove an analogous result for pseudo- M-matrices.

The results in the following lemma are proved in [31, Theorem 2.6].

Lemma 4.1 If B € R™" has a left Perron-Frobenius eigenvector and
T =1, -+ x,)7 is any positive vector then either Limbu% p(B) for all

Ty
. . 21 big % 2= bigz;
i € {1,2,...,n} or min}_; === < p(B) < maz}, =5

Theorem 4.4 If A= sl — B where B € PF,, then the following are equiva-

lent:
(i) A is a pseudo-M-matriz.
(i) There is a positive vector = such that Az is positive.

Proof. Suppose A = sI — B is a pseudo-M-matrix and let z be a right
Perron-Frobenius eigenvector of B. Then, Az = (sI — B)z = (s — p(B))z is

a positive vector. Conversely, suppose there is a positive vector x such that
. s - ® 1 bijz;
Az = (sI — B)z = st — Bz is positive. Then, maz?zlz% < s, and by

i

Lemma 4.1, p(B) < max?zlzﬂ':;bﬂ. Hence, p(B) < s which proves that A is

a pseudo-M-matrix. O
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We next give a characterization of nonsingular G M-matrices which has the

flavor of Theorem 4.3.

Theorem 4.5 If A= sI—B is a GZ-matriz (B € WPF,), then the following

are equivalent:
(1) A is a nonsingular GM -matriz.

(ii) There is an orthogonal matriz Q such that Qx and QAx are positive

where x is a right Perron-Frobenius eigenvector of B.

(iii) There is an orthogonal matriz Q such that Qy and QATy are positive

where y is a left Perron-Frobenius eigenvector of B.

Proof. We prove the equivalence of (¢) and (i7) and we omit the proof of
the equivalence of (i) and (4i) since it is analogous. Suppose A = sI — B is
a nonsingular GM-matrix and let z be a right Perron-Frobenius eigenvector
of B. Then, by Lemma 3.7, there is an orthogonal matrix ¢ such that Qx is

positive. Moreover,
QAz = Q(sI — B)z = (s — p(B))Qz

is positive since A is nonsingular having p(B) < s. Hence, (i) = (ii). Con-

versely, suppose (iz) is true. Then,

QAz = Q(sI — B)z = (s — p(B))Qz

is positive, and thus, p(B) < s. 0

We end this section with a result on the classes of an EM-matrix.

Proposition 4.2 Let A = sI—B be an EM-matriz (B eventually nonnegative
and 0 < p(B) < s). If A is singular, then for every class « of B the following
holds:

1. Alqa] is a singular irreducible EM -matriz if o is basic.
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2. Ala] is a nonsingular irreducible EM -matriz if « is not basic.

Proof. If A is a singular EM-matrix and « is a class of B, then Ala] =
sI — Bla], where [ is the identity matrix having the appropriate dimension.
If @ is a basic class of B, then Bla] is an irreducible submatrix of B and
p(Bla]) = p(B) > 0. Since the eigenvalues of A are of the form s — u where
p € o(B) and since A is singular, it follows that p(B) = s. Hence, p(B[a]) = s
and Ala] = sI — BJa] must be singular, as well. Moreover, since Bla] is ir-
reducible, it follows that the graph G(B[a]) is strongly connected. Note that
the graph G(Ala]) = G(sI — Bla]) may differ from the graph G(Bla]) only
in having or missing some loops on some vertices. This means that the graph
G(Alq]) is also strongly connected because adding or removing loops from ver-
tices of a strongly connected graph does not affect strong connectivity. Hence,
Ala] is irreducible. Moreover, if £ = (ay,...,0y,) is an ordered partition of
{1,2,...,n} that gives the Frobenius normal form of B (see, e.g., [4]), then B
is block triangular and it is permutationally similar to B. Thus, B, is even-
tually nonnegative and so is each of its diagonal blocks. In particular, there
is a diagonal block in B, which is permutationally similar to Bla]| (because o
is a class of B). Hence, B[a] is eventually nonnegative, which proves part 1.

Similarly, if « is not a basic class of B, then part 2 holds. 0

4.3 Splittings and GM-Matrices

Recall that a splitting of a matrix A = (a;;) is an expression of the form
A = M — N where M is a nonsingular matrix. The matrix M !N is called
the iteration matriz of the splitting A = M — N. If M = diag(ayy,...,0n),
then we call such a splitting a Jacobi splitting. If the (i, j)-entry of M is a;;
whenever 7 > j and 0 otherwise, then we call such a splitting a Gauss-Seidel
splitting. If p(M~!N) < 1 then we say that the splitting A = M — N is
convergent; see, e.g., [2], [18], [49]. In this section, we define various splittings

of a GM-matrix, give sufficient conditions for convergence, and we illustrate
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this with examples. We begin by listing some preliminary definitions.

Definition 4.1 Let A = M — N be a splitting. Then, such a splitting is called

e weak (or nonnegative) if M—N > 0.

weak-reqular if M™*N >0 and M~ >0 [32)].

reqular if M= >0 and N >0 [49].

M -splitting if M is an M-matriz and N >0 [41].

Perron-Frobenius splitting if M N possesses the Perron-Frobenius prop-
erty [31].

We list now the new splittings introduced in this section. We begin first by
defining the splitting having the Perron singular property, which is a splitting
for an arbitrary nonsingular matrix. Then we proceed to define the splittings

specific to nonsingular G M-matrices.

Definition 4.2 Let A be nonsingular. We say that the splitting A= M — N
has the Perron singular property if yM + (1 —~)N is singular for some v € R,
v# 0 and M~'N has the Perron-Frobenius property.

Note that a splitting with the Perron singular property is, in particular, a

Perron-Frobenius splitting.

Definition 4.3 Let A = M — N be a splitting of a nonsingular GM -matriz
A =sl—B (BeWPF, and p(B) < s). Then, such a splitting is called

e a G-reqular splitting if M~ and N are in W PF,,.
o a GM-splitting if M is a GM -matrix and N € WPE,,.

e an overlapping splitting if for a dominant eigenvalue A of M~'N the
vector space Ex(M~'N) N Eyp)(B) contains a right Perron-Frobenius

eigenvector of B.
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e a commuting bounded splitting if M and N commute and p(M) < s.

Remark 4.3 A GM-splitting is a G-regular splitting but not conversely. For
example, consider the GM-matrix A = diag(1,4,4) = sI — B where s = 5 and
B = diag(4,1,1). An example of a G-regular splitting of A is the splitting
A =M — N where M = diag(2,32,—4) and N = diag(1,28,—8). Note that
M~!is in WPF, yet, by Theorem 4.1, M is not a GM-matrix. Hence, this
G-regular splitting is not a GM-splitting.

Lemma 4.2 Let A= M — N be a splitting of a nonsingular matriz A. Then,

the following are equivalent:

(i) The splitting is convergent.

(ii) min {Re(\) | X € o(NA™)} > —1.
(iii) min {Re(\) | A € 6(ATIN)} > —1.

Proof. We prove first the equivalence of () and (i7). Let P= M'NA™'M.
Thus, P and NA™! are similar matrices, and therefore, they have the same
eigenvalues with the same multiplicities. Moreover, the following relation be-
tween P and M !N holds:

P=MNA"M =M NM - N)"'M = M~IN(I - M~IN)~.

Hence, the eigenvalues of NA™! and M~!N are related as follows:

p € o(M~IN) if and only if there is a unique A € o(NA™') such that

§o= 11%\ The splitting is convergent, i.e., p(M~*N) < 1 if and only if for

all 4 € o(M~'N), we have |u| < 1. That is, if for all A\ € o(NA™!), we have

(Re(M)2+(Im(N))?
14+ Re(X))2+(Im(X))?

2Re(A\) +1 > 0, or whenever (i¢) is true. As for the equivalence of (i) and

‘1%\' < 1, or equivalently, 0 < 1, which holds only whenever
(411), it follows similarly by noting the following relation between A™'N and
M-IN:

A"\N = (M —N)"'N=(I - M'N)"'M~'N. @
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Corollary 4.3 Let A = M — N be a splitting of a nonsingular matriz A.

If A=IN or NA™! is an inverse GM -matriz, then the splitting is convergent.

Proof. Let P denote A™*N or NA~!. If P is an inverse GM-matrix then,
by Corollary 4.1, Re(A™!) > (p(P))™! > 0 for all A € o(P), A # p(P).
This implies that Re(A) = |[A|?Re(A™) > —3 for all A € o(P), A # p(P).
Thus, Re(\) > —1 for all A € o(P), which is equivalent to condition (i) of
Lemma 4.2 if P = NA™!) or equivalent to condition (i) of Lemma 4.2 if
P = A"!N. Hence, the given splitting is convergent. 0

The following lemma is part of Theorem 3.1 of [31].

Lemma 4.3 Let A= M — N be a Perron-Frobenius splitting of a nonsingular

matriz A € R™". Then, the following are equivalent:
(i) The splitting A= M — N is convergent.
(1) A™'N possesses the Perron-Frobenius property.

(iii) p(M~IN) = (ZA N

1+p(A-1IN)"

Corollary 4.4 Let A= M — N be a splitting of a nonsingular matriz A such
that N is nonsingular and N~'M is a nonsingular GM-matriz. Then, the

following are equivalent:
(i) The splitting A= M — N 1is convergent.
(1) A~1N possesses the Perron-Frobenius property.

_ -1
(iii) p(MTIN) = 22500

Proof. Since N7'M is a nonsingular GM-matrix, it follows that
(N7'M)™' = M~'N € WPF,.. Hence, M~!N satisfies the Perron-Frobenius
property, which implies that the splitting A = M — N is a Perron-Frobenius
splitting and the equivalence of the statements in the corollary follows from
Lemma 4.3. 0
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Theorem 4.6 If A = M —N is a splitting having the Perron singular property,

then any of the following conditions is sufficient for convergence:

(A1)

(A2)

(B1)

(B2)

(C1)

(C2)

(C3)

(C4)

Sign Conditions

AN is eventually positive.

A7IN is eventually nonnegative.
Spectral Conditions

A-'N ¢ WPF,.

A7IN has a simple positive and strictly dominant eigenvalue with a pos-

itive spectral projector of rank 1.

Combinatorial Conditions

For all 1 < i,j < n, the total weight of positive A1 N-alternating walks
from i to j in G(A™") U G(N) eventually majorizes the absolute value
of the total weight of negative A~'N -alternating walks from i to j of the
same length in G(A™') UG(N).

For all 1 < 4,7 <, the total weight of positive A~* N -alternating walks
fromi to 7 in G(A"')UG(N) eventually majorizes and strictly dominates
the absolute value of the total weight of negative A~' N -alternating walks
from i to j of the same length in G(A™) UG(N).

For oll 1 < 4,5 < n, the total weight of positive walks from i to j in
G(A™'N) eventually majorizes the absolute value of the total weight of
negative walks from i to j of the same length in G(A™IN).

For all 1 < 4,7 < n, the total weight of positive walks from i to j in
G(A™'N) eventually magjorizes and strictly dominates the absolute value

of the total weight of negative walks from i to j of the same length in
G(AIN).
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(C5) UTGEvenk Hf=1 G((A7IN)™®) > Ureoda Hf:1 G(|(A~*N)™®))
for all k > kg for some kg > 1.

(C6) A™'N has a basic and an initial class o such that (A=*N)[a] has a right

Perron-Frobenius eigenvector.
Geometric Conditions
(D1) UZ,, Hull((A™'NY) € (Vi H((AT'N).;) for some ko > 0.

(D2) Hull((A™'N)) C (2%, Mies H(((A7YN)Y.;) for some ko > 0.

Proof. We prove first (A2) = (B1) = convergence of the given splitting.
Suppose that A™*N is eventually nonnegative. Since A = M — N is a spliting
having the Perron singular property, it follows that there is a nonzero complex
scalar v such that yM + (1 — )N is singular. Hence, vA + N is singular
< det(yA+ N) = 0 & det(yI + A7IN) = 0 & det(—yI — A'N) = 0.
In other words, —v is a nonzero eigenvalue of A7!N. By Lemma 1.1, A™!N
and its transpose possess the Perron-Frobenius property, i.e., A"1N € W PF,.
And thus, the given splitting converges by Lemma 4.3. As for the rest of the

sufficient conditions, we outline the proof using the following diagram:

(Al) = (A2) = (Bl) = convergence

0 0 f
(B2) (C1) (C6)
0 )
(C2) (C3)
0 )
(C4) (C5)
0
(D1)
¢

(D2)
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The equivalencies and implications in the above diagram follow from the
spectral, combinatorial, and geometric characterizations of eventually posi-
tive matrices, eventually nonnegative matrices, and matrices in W PF,, proved

in Chapter 2. 0O

Remark 4.4 Recall that a regular splitting A = M — N of a monotone matrix
(i.e., when A~! > 0) is convergent [49]. Thus, Theorem 4.6 is a genaralization
of this situation since we do not require that A~! nor N, nor their product

AN to be nonnegative.

7 -2 -3
Example 4.4 Let A = | —3 4 1 | and consider the splitting A =
1 -2 3
29 —6 -11 1 21
M — N, where M = ;| —11 18 5 ad N = 4|12 1. For
5 —6 13 1 21
-13 6 7
v = —3 the matrix yM + (1 —v)N = § 7 —6 —1 | is singular. More-
-1 6 -5
1 21
over, M~'N = % 1 2 1 | is a positive matrix and thus it possesses the
1 21
Perron-Frobenius property. Hence, this splitting is a splitting with the Per-
1 21
ron singular property. Since A7!N = % 1 2 1 | is a positive matrix (and
1 21

hence eventually positive), it follows from Theorem 4.6 that this splitting is

convergent. In fact, p(M~'N) =3 < 1.

Proposition 4.3 If A = sI — B is a GM-matriz and the splitting
A = M — N is an overlapping splitting (fdr which Ex(M™'N) N E,g)(B)
contains a right Perron-Frobenius eigenvector of B and || = p(M~'N)), then
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such a splitting is convergent if and only if there is n = s_—lg:(_)l‘_:)'_) € o(M) such
that Re(n) > “’_’;ﬂ;

Proof. Note first that if A = sI — B = M — N is an overlapping splitting
then we can pick v € E,g)(B)NE)(M~'N) where v is a right Perron-Frobenius

eigenvector of B. And for this vector, we have:

(s ~Byw =Av=(M—-Njv=M"I-M" Ny
& (s~p(B)Mv=(I—-M'Nyv=(1-Av

_ -y
e M= m)
-y
= HnEU(M)Bn————————(S_p(B))
& HnEU(M)B)‘:ﬂ—_—(S—;——p—@.

Hence, if A = M — N is an overlapping splitting then there is an eigenvalue
n € o(M) such that A = @. Therefore, an overlapping splitting is
convergent, i.e., p(MIN) = |\ < 1, when |n — (s — p(B))| < |n| for some
n € o(M), or equivalently whenever 7 lies in the right-half plane determined
by the perpendicular bisector of the segment on the real axis whose endpoints
are 0 and (s — p(B)), i.e., whenever Re(n) > tfzﬁél. ]

Corollary 4.5 Let A = M — N be an overlapping splitting of a nonsingular
GM-matriz A and suppose that M—*N € WPEFE,. If % € o(M) then

p(M™IN) < 1, i.e. the splitting is convergent.

Example 4.5 Let A be as in Example 4.4. Then, A is a nonsingular GM-

3 2 3
matrix. In fact, A = sI — B, where s = 10, B = 3 6 -1 | € WPF;,
12 7
and p(B) = 8. An overlapping splitting of the matrix A is A = M — N
55 —18 —-25 -1 -2 -1

where M = % 925 30 7 | and N = % -1 —92 _—_1 |. Note that
7 —18 23 -1 -2 -1
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-1 -2 -1
M-IN = % -1 —2 —11{ and that for A = —% € o(M~IN) we have
-1 =2 -1

Al = 3 = p(M~!N) and Ex(M~'N) = E,5)(B) = Span{[1 1 1]T}. Hence,

this overlapping splitting is convergent. Proposition 4.3 predicts the exis-

—p(B) __ 10-8 _ 3
25 = -(=1/3 — 2 and

Re(n) = % > #l = 1. If we look at the spectrum of M we see that
Sco(M)= {g, 6} just as predicted by Proposition 4.3. On the other hand, if

tence of an eigenvalue n of M such that n =

27 —-10 -13 -1 -2 -1
A=M—-Nwhere M=3| -13 14 3 |andN=3| -1 -2 -1
3 —-10 11 -1 -2 -1
-1 -2 -1
then M'N=N=2| -1 -2 —1 | andfor A =—1€ o(M~'N) we have
-1 -2 -1

[A| = 1 = p(M~'N) and Ey(M~'N) = E 5 (B) = Span{[1 1 1]7}. Hence,
the latter splitting is an overlapping splitting but it does not converge. Propo-

sition 4.3 predicts that for all n € (M) either n # ﬁf(f) = 11_0(:%) =1lor

Re(n) < 3—‘—’—;@2 = 1, which is true about the spectrum of M since
o(M)={1,6}.

Theorem 4.7 A GM-matriz A = sI — B having a commuting bounded split-
ting A = M — N induces a splitting of B of the form B = M’ — N’ where
M' =1(sI - M), w eR and w # 0. Moreover, if |w| < min {

then the commuting bounded splitting is convergent.

3 1
PO 2p(M')}’

Proof. Suppose that the GM-matrix A == sI— B has a commuting bounded
splitting A = M — N and let M’ = 2(sI — M) and N' = A —sI + M
for some w € R, w # 0. Then, M’ is nonsingular because p(M) < s and
M = sI —wM'. Moreover, we can write A = (sI —wM') - (1 —w)M' — N').
Note that the iteration matrix of the commuting bounded splitting of A is
M™IN = (sI —wM’)™((1 — w)M’ — N’). Since M and N commute, so do

M’ and N’. Furthermore, there is a single unitary matrix U that produces



72

the Schur decomposition (see, e.g., [22, p.81]) of both M’ and N'. Hence, an
eigenvalue of M~'N would have the form (s — wA)™*((1 — w)A — pu) where
A € (M) and p € o(N’). But, since M’ and N’ are simultaneously Schur
decomposable, it follows that the same unitary matrix that produces the Schur
decomposition of M’ and N’ also produces the Schur decomposition of B and
A. Therefore, A — p is an eigenvalue of B which does not exceed s in modulus

(since A is a GM-matrix). Thus,

" A=l +JllA] _ s+ wlo(M)
(s =) (=X = )| < o= < =m0

Moreover, if we choose |w| < ﬁ, then s — |w|p(M’) > 0. Hence,

p

s+ lolp(M') _ 5+ [wlp(M)
ls —wAl 7 s = |wlp(M)

(s~ wX) (1 —w)A - )] <

Therefore, if

s + [wlp(M')

o) <! (4'”

then the splitting A = M — N is convergent. But (4.1) is equivalent to

1 }, then the splitting

lw| < Hence, if |w| < min {m,m

1
2p(M')"
A =M — N is convergent. [I

31 2
Example 4.6 Let A = 4—10 1 5 0 |. Then, A = sI — B is a GM-matrix,
11 4 ]
37 -1 -2 ]
wheres =1, B=%| -1 35 0| € WPF;, and p(B) = 0.95. A com-
—1 -1 36
73 2 1
muting bounded splitting of Ais A = M — N, where M = % 1 7 1
1 2 73

67 0 -3
and N = L | -1 64 1 |. Note that p(M) = 095 < 1 = s and that
-1 0 65
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1222 32 38

MN = NM = 1—61@ -2 1184 34 |. Furthermore, let w = 5 and
—2 32 1186
7T -2 -1
let M' = 2(sI = M) = 5| =1 6 —1 |. Then, p(M') = 0.02 making
-1 -2 7

— : s 1 _ : 1 —
[w| = 5 < min {M’W} = man {W’TOL(E} = 12.5. Hence,
by Theorem 4.7, the splitting A = M — N is convergent. In fact,

p(M~IN) =~ 0.9444 < 1.

Theorem 4.8 [f A =M — N is a splitting of a GM -matriz A, then any Type
I condition (listed below) implies that such a splitting is a G-regular splitting.
Moreover, if the splitting A = M — N 1is a G-regular splitting that satisfies one
of Type II conditions (listed below), then any one of Type III conditions (listed

below) is sufficient for convergence.
Type I Conditions

(D1) M~ and N are eventually positive.
(D2) M™! and N are eventually nonnegative with N being nonnilpotent.

(D3) Each of M~' and N has a simple positive and strictly dominant eigen-

value with a positive spectral projector having a rank equal to 1.

(D4) For all 1 < 4,5 < n, the total weight of positive walks from i to j in
G(M™) and G(N) eventually majorizes the absolute value of the total
weight of the negative walks from i to j of the same length and N is

nonnilpotent.

(D5) For all 1 < 4,j < n, the total weight of positive walks from i to j in
G(M™') and G(N) eventually majorizes and strictly dominates the ab-
solute value of the total weight of the negative walks from i to j of the

same length.
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(D6) N is nonnilpotent and the following statement is true for X = M~ and
for X = N: there is kg € N such that for all k > kg,

UTEEvenk H?:l G(XT(Z)) - UTEOddk Hf:l G(!XT(Z)I) )

e following statement is true for X = M~ and for X = N:
D7) The followi ] X=M"and X=N

X has two classes o and 3, not necessarily distinct, such that:

(i) a is basic, initial, and X|a] has a right Perron-Frobenius eigenvec-

tor.

() B ts basic, final, and X[F] has a left Perron-Frobenius eigenvector.

(D8) N is nonnilpotent and the following statement is true for X = M~! and
for X =N:

UZs, Hull(X*') C -, H(X.;) for some ko > 0.

(D9) N is nonnilpotent and the following statement is true for X = M~! and
for X =N:

Hull(X) C N2k, M=y H((XY).;) for some ko > 0.
Type I Conditions
(E1) M~N is eventually positive.
(E2) M~1N is nonnilpotent eventually nonnegative.
(E8) M~'N € WPF,.

(E4) M™IN has a simple positive and strictly dominant eigenvalue with a

positive spectral projector of rank 1.

(E5) For all 1 < 4,5 < n, total weight of positive M~ N-alternating walks
from i to j in G(M™") UG(N) eventually majorizes the absolute value
of the total weight of the negative M~ N -alternating walks from i to j
of the same length, and M 1N 1is nonnilpotent.
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(E6) For all 1 < i,7 < n, total weight of positive M1 N -alternating walks
from i to j in G(IM™) U G(N) eventually majorizes and strictly dom-
inates the absolute value of the total weight of the negative M~'N-
alternating walks from i to § of the same length.

(E7) For all 1 < 1,5 < n, the total weight of positive walks from i to j in
G(M~'N) eventually majorizes the absolute value of the total weight of
negative walks from i to j of the same length in G(IM™'N), and M~'N

is nonnilpotent.

(E8) For all 1 < i,j < m, the total weight of positive walks from i to j in
G(M™'N) eventually majorizes and strictly dominates the absolute value

of the total weight of negative walks from ¢ to j of the same length in
G(M™IN).

(Eg) UTGEuenk H?:l G((M—IN)T(Z)) = LJTGOdd;c H:,’czl G('(M—IN)T“)D
for all k > kg for some kg > 1, and M~ N is nonnilpotent.

(F10) M7'N has a basic and an initial class o such that (M~N)|a] has a

right Perron-Frobenius eigenvector.

(E11) Ufiko Hull(M™'N)) Cc (;_; H((A™'N),;) for some ko 2 0, and M'N

s nonnilpotent.

(E12) Hull((M™'N)) C N2k Miey H((AT'NY),,) for some ko > 0, and
M~!N 1s nonnilpotent.

Type HI Conditions
(F1) A™'N is eventually positive.
(F2) A™'N is nonmilpotent eventually nonnegative.

(F8) A"\N € WPF,.
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(F4) A7IN has a simple positive and strictly dominant eigenvalue with a pos-

itive spectral projector of rank 1.

(F5) For all1 <1i,j < n, total weight of positive A~ N -alternating walks from
i to j in G(A™') UG(N) eventually magjorizes the absolute value of the
total weight of the negative A~'N-alternating walks from i to j of the

same length, and A~ N is nonnilpotent.

(F6) For all1 < 14,5 < n, total weight of positive A~' N -alternating walks from
i to j in G(A™Y)UG(N) eventually majorizes and strictly dominates the
absolute value of the total weight of the negative A=' N-alternating walks
from i to j of the same length.

(F7) For all 1 < i,j < n, the total weight of positive walks from i to j in
G(A™'N) eventually majorizes the absolute value of the total weight of
negative walks from i to j of the same length in G(A™IN), and A™'N 1is

nonnilpotent.

(F8) For all 1 < 4,5 < n, the total weight of positive walks from ¢ to j in
G(A~'N) eventually majorizes and strictly dominates the absolute value

of the total weight of negative walks from i to j of the same length in
G(A™'N).

(F9) Ureguen, TTicy GUATNYD) = U, coq, Tz, GUATNYO)
Jor all k > ko for some ky > 1, and A™'N is nonnilpotent.

(F10) A™'N has a basic and an initial class a such that (A~'N)[a| has a right

Perron-Frobenius eigenvector.

(F11) UZ,, Hull((A7'N)Y) ¢ N;_, H((A7'N).;) for some ko 2 0, and A™'N

15 nonnilpotent.

(F12) Hull((A7'N)) € N2k, Miey H((ATIN)),;) for some kg > 0, and A™'N

j=1
18 nonnilpotent.
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Proof. We prove the theorem for the following Type I, Type II, and Type
I1IT conditions, respectively: (D1), (E1), and (F1), and then we outline the rest
of the proof. Suppose that the splitting A = M — N satisfies condition (D1).
Then, (D1) is true if and only if M~! and N are in PF,, C WPF,. Hence,
the splitting A = M — N is a G-regular splitting. Moreover, suppose that
A = M — N is a G-regular splitting and that (E1) is true. Then, M~!N €
PF,, and thus M !N has the Perron-Frobenius property. In particular, the
given G-tegular splitting becomes a Perron-Frobenius splitting. If (F1) is true
then A7'N € PF, and thus A"!N possesses the Perron-Frobenius property.
Hence, by Lemma 4.3, the G-regular splitting converges. With regards to
the remaining of the conditions, we use the following diagrams to outline the

proofs:

(D) = (D2) = M !,NeWPF, & A=M — N is a G-regular

1 3 f | splitting
(D3) (D4) (D7)
T i
(D5) (D6)
¥
(D8)

i
(D9)
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(E10)
(3
(E1) = (E2) = (E3) = M 'N has the Perron-Frobenius property
3 ¢ I}
(E4) (E5) A = M — N is a Perron-Frobenius
| $ splitting as well as a G-regular splitting
(E6) (E7)
) i}
(E8) (E9)
T
(E11)
i}
(E12)
(F10)
(3
(F1) = (F2) = (F3) = A“'N has the Perron-Frobenius
| ) property
(F4) (F'5) [}
$ T The splitting converges
(F'6) (F'7) by Lemma 4.3
3 3
(F'8) (F'9)
)
(F 1 1)
T
(F12)

All the above implications and equivalencies follow from the combinatorial,
spectral, and geometric characterizations of eventually nonnegative matrices,

eventually positive matrices, and matrices in W PF,, proved in Chapter 2. U
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8 -3 —4 03 4
Example 4.7 Let A= | -4 4 0| =8-B=8I-1440
0 -3 3 0 3 5
Then, A is a nonsingular GM-matrix and p(B) = 1(7 + v/73) ~ 7.7720 < 8.
7 -2 -3
Consider the splitting A = M — N where M = | —3 4 1 | (a nonsingu-
1 -2 3
111
lar G M-matrix from the previous examples) and N = 10 1] €WPF.
110
Thus, this splitting of A is a GM-splitting, and hence, a G-regular splitting.
' 4 12 13
Note that M~!N = & | 8 6 17 | is an eventually positive matrix, a
16 12 7
25 28 33
Type II condition in Theorem 4.8. Moreover, AN = = | 28 28 36 | is
32 32 36

an eventually positive matrix, a Type III condition in Theorem 4.8. Hence,
Theorem 4.8 predicts the convergence of this G-regular splitting. In fact,
p(M~IN) = 0.8859 < 1.

We end this section with few results on the relation between the Jacobi and
Gauss-Seidel splittings on one hand and the GM- and G-regular splittings on
the other hand.

Lemma 4.4 If D = diag(d,,...,d,) € R**" then the following are equivalent:
(i) D is a positive diagonal matriz.
(ii) D is a nonsingular GM -matriz.

Proof. If D is a positive diagonal matrix then so is D—1 = diag(dl_l, coody).
Hence, D™! € WPF,. Moreover, min?  d; < d; = Re(d;) whenever
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d; # min];d;. Thus, the minimum modulus eigenvalue of D is strictly less
than the real part of any other eigenvalue of D. Theorem 4.1 implies that D
is a nonsingular GM-matrix. Conversely, if D = (d;,...,d,) is a nonsingular
G M-matrix then, by Theorem 4.1, D™* € WPF, and minl,|d;| = p(D™!) <
Re(d;) = d; whenever d; # p(D™'). But, p(D™!) > 0 because D! € WPF,,.

Therefore, D is a positive diagonal matrix. 0

Corollary 4.6 A GM-spliting A = M — N of a GM-matriz A = (a;;) s o
Jacobi splitting if and only if M = diag(ay,...,an,) s a positive diagonal
matriz and M — A € WPF,,.

Remark 4.5 If A= M — N is a Gauss-Seidel splitting then such a splitting
can not be a G-regular splitting. If A = M — N is a Gauss-Seidel splitting
then N is a strictly upper triangular matrix. Hence, N is nilpotent, and thus,
N ¢ W PEF,,. Therefore, the Gauss-Seidel splitting A = M — N can neither be
a GM-splitting nor a G-regular splitting.
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CHAPTER 5

CONCLUSION

We summarize below some of the main results of this dissertation.

1. We gave a complete characterization of the collection of eventually pos-

itive matrices, PF,,, in terms of the spectral projector.

2. We gave a characterization of the sub-collection of W PF,, for which the
maximum modulus eigenvalue is simple, positive and strictly dominant

in terms of the spectral projector.

3. We gave combinatorial characterizations of the collections of eventually
nonnegative and eventually positive matrices in terms of walks in the
graph and in terms of products and unions of the graphs of the positive

and negative parts of a matrix.

4. We gave characterizations of the collections of eventually nonnegative
and eventually positive matrices in terms of the hull of a matrix and the

half-spaces determined by their columns.

5. We established that all the containments in the following statement are



10.

11.

12.

13.

14.
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proper:

PF, = {Eventually Positive Matrices}
C {Nonnilpotent Eventually Nonnegative Matrices}
C WPE,
We showed that Rothblum’s result [35] on the algebraic eigenspace for the
spectral radius of a nonnegative matrix carries to eventually nonnegative

matrices whose index is 0 or 1.

. We showed that a matrix is eventually in W PF,, (PF,) if and only if

that matrix is in W PF,, (PF,, respectively).

. We characterized all similarity transformations that preserve W PF,,

PF,, matrices with the Perron-Frobenius property, and matrices with

the strong Perron-Frobenius property.

We gave an example that illustrates the fact that the collection of sym-

metric matrices with a Perron-Frobenius eigenpair is not a cone.

We proved that the collection of matrices with the Perron-Frobenius
property and the collection of matrices with the strong Perron-Frobenius

property are path-connected.

We proved that the ecollection of matrices with the strong Perron-Frobenius
property and PF;, are simply connected.

We established that the closure WPF,, = W PF,, U {nilpotent matrices

with a pair of right and left nonnegative eigenvectors}.

We established that every normal matrix in W PF, is the limit of normal

matrices in PF,,.

We gave sufficient conditions for the nonnegativity of the right and left

singular vectors corresponding to maximum singular value of a normal

matrix in W PF,.
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16.

17.

18.

19.

20.

21.

22.

23.
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We introduced the class of GM-matrices, which is a class of matrices that

generalizes the class of M-matrices using the Perron-Frobenius property.

We showed how the collections of GM-, EM-, pseudo-M-, and M-

matrices are related to one another.

We gave a spectral characterization of nonsingular G M-matrices (pseudo-
M-matrices) and as a result we determined a condition on the spectrum
that must be satisfied by a matrix in WPF,, (PF,) to be an inverse

GM-matrix (the inverse of a pseudo-M-matrix, respectively).

We showed by a counter-example that the inverse of a nonsingular EM-
matrix does not have to be eventually nonnegative and thus a spectral
characterization analogous to that of nonsingular GM- or pseudo-M-

matrices does not hold for nonsingular EM-matrices.

We proved that the positive stable GZ-matrices are precisely the nons-

ingluar G M-matrices.

We proved that the GZ-matrices of the form A = sI — B where B € PF,
that map at least one positive vector to a positive vector are precisely

the pseudo-M-matrices.

We proved that the G Z-matrices A = s[ — B where B € WPF, for
which the right (left) Perron-Frobenius eigenvector of B and its image
under A (under A7, respectively) can be rotated to become positive are

precisely the nonsingular GM-maitrices.

We determined those classes of an eventually nonnegative matrix B in
an EM-matrix A = sI — B, that result in singular (nonsingular, respec-

tively) irreducible principal submatrices of A.

We introduced the following splittings with sufficient conditions for con-

vergence and we illustrated this by examples: the splitting having the
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Perron singular property for an arbitrary nonsingular matrix, the G-
regular splitting of a GM-matrix, the GM-splitting of a GM-matrix,
the overlapping splitting of a GM-matrix, and the commuting bounded
splitting of a GM-matrix.
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CHAPTER 6

FUTURE WORK

We list below other problems which are related to the work discussed in

this dissertation and which are to be considered as projects for future work:

e Characterizing the matrix functions or linear transformations that pre-

serve PF,.

e Characterizing the matrix functions or linear transformations that pre-

serve W PF,.

e Characterizing the matrix functions or linear transformations that pre-

serve nonnilpotent eventually nonnegative matrices.

e Characterizing the matrix functions or linear transformations that pre-

serve (G M-matrices.

e Proving comparison theorems for the splittings defined in Chapter 4 for
G M-matrices.

e Generalizing the characterizations proved for G M-matrices to the ana-
logues of M -matrices defined using cones in Banach spaces, in particular,
the cone of positive semidefinite matrices in the space of Hermitian ma-

trices.
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APPENDIX A

PROOFS OF
PRELIMINARIES

We present here the postponed proofs of some of the results in sections 2.1.
Proof of Theorem 2.1. Let A be any n X n complex matrix with d distinct
eigenvalues |[\;| > [Ag] > -+ > |Ag]- Then, there exists a matrix X € Gl(n,C)

such that the Jordan canonical form of A is given by

J(A) = X 'AX = Boz(\) @ Bor()\;) ©---® Bozx(N\g), (A1)

where Boz(};) is the Jordan box corresponding to A;. Note that for all
1 < j < d, if ¢g(j) is the number of Jordan blocks in Boz(J;), we have the
following identity

Bow(’\j) - kal (’\J) D ka'z (/\7) Q- D Jk:g(j) (’\7)

7

+ N,

= [/\jijl + Nkjl] DD "\JIk Jg(j)]

i9(d)
- [[/\jj’“ﬂ] S---D [’\J'ijgm]] + [Ny, @00 @ N’“jg(n]
= Ajlm; + Nma‘

where ij = Nigjy O Nigj @+ - Ny, In particular, Boz(A1) = Ay, +Nm1,

J9(i)”
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implying that

X'AX = Bozx(\) @ Bor(\) ®--- @ Bor(\)
= [Box(\) ® Onm,] + [Om, & Box(A2) & - -+ @ Box(\g)]
- [[Allml + Ny, ] @ On_ml]
+[Om, @ Boz(A2) @ - - - @ Box()\y))
= Ml @ Onomy] + [Niny @ Oy
+[Om; @ Box(A2) @ - - - ® Box(Ag)]
= M[Imy ® On_my] + [Ny, @ Boz(\g) & - @ Boz(\a).

Thus, the matrix A can be written as:
A = MX[In, ®O0n m)) X+ XNy, @ Box(Ay) @ --- @ Box(\)] X L.

If we define the matrices P and @) as follows:

P = X[, &Op_pm )X (A.2)
Q = X[Nn, ® Box(\) @ -- @ Bor(\g)] X (A.3)

then, it is easy to check that the following three statements are true:
PQ =QP.

p(Q) = 2| < M| = p(A).

inder,(A) =1 < N, =0, & PQ=QP=0.
This proves (i¢), (#i) aud (2v). To prove that P is the projection onto Gy, (A)
along @?22 G),;(A), we pick v € C" and we write v as a linear combination
of the columns of X. In other words, we write v as the linear combination
v o= Z?:1 a; X,; where the ;s are scalars. This is possible because X €

Gl(n,C). Tt is important here to note that the first m, columns of X form a
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basis for G,,(A4) and the rest of the columns form a basis for the remaining

generalized eigenspaces. Thus,
n T T
Pv = E a; P X, = E a; P Xe; = E aj X[Im; ® On_mile;
j=1 j=1 j=1

my my
- ZOCJ X@j = Z(){j X*j € G)\I(A),
7=1 7=1

and it is easy to see that P> = P, which proves (i). O

Proof of Lemma 2.1. Let (i k) denote the permutation of the set {1,2,3,..., s}
that exchanges 7 and k while keeping all other elements of {1,2,3, ..., s} fixed.
We call (i k) a transposition of the set {1,2,3,...,s}. Define the permutation

o of the set {1,2,3,..., s} in terms of transpositions as follows:

c=(1 §)o(2 s—1)c(3 S—2)o---o([§—J S—LSJ%—U,

where [g J is the integer part of 5. If {€;, €5, ..., e,} denotes the standard basis

of C*, then we define the matrix R;, as follows:
stei = €a(3) 1= 1,2,3,...,8.

Obviously, R;s is a permutation matrix because it is a rearrangement of the
columns of the identity matrix. Also, Rj, is orthogonal, i.e., R;Fs = Rj“sl,
because the columns of R;, form an orthonormal basis. Moreover, since the
transpositions that appear in ¢ are disjoint, it follows that o2 is the identity
permutation of the set {1,2,3,..., s}, which implies that (R;s)> = I,. This
proves (i). As for (it), it follows immediately by evaluating the matrices on
both sides of the equality at the vectors of the standard basis {e;, €5, €3, . .., 5}.
d

Proof of Corollary 2.1. Let g(j) denote the number of Jordan blocks in
Box(A;) and let kj; denote the size of the ith Jordan block in Boz();). Let
R; = Ry, @ Ry, @ -+ @ Ry, ), where Ry, for s = kji,... Kjg( Is the

matrix defined in Lemma 2.1. Then, R; is another permutation matrix such
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that;:
(i) R; = Rj_l = R?, and
(i) [Box(\;)]T = R; Box()\;) R;. 0
Proof of Lemma 2.2. First, note that Box(Ay) @ - - @ Boz()\y) is a Jordan
matrix of size n — m,. By Corollary 2.2, there is a permutation matrix R of

size n. — mq such that
(i) R=R*'=RT, and

(1)  [Box(Ag) @ -+ @ Box(A\g)]T = R [Box(\2)®---@® Box(\g)] R
Second, note that since indexy,(A) = 1, the Jordan canonical form of A is

given by J(A) = [AIm,] ® Box(A2) @ - - - @ Box(\g), and therefore,

A" = [Mlm,] @ Boz(Xe) ® - - ® Boz(Aa)]"

AiLn,] @ [R [Box(X2) @ - - - @ Box(\g)] R

Uy @ B] [MIm,] ® Box(A2) @ -+ @ Box(Ag)] [In, ® R]
I

m @ R] J(A) [Inm, ® ]

Note also here that (I,, @ R] = [[,,, & R]™ = [[,,, ® R]*. Moreover, since
A=X J(A) X1, it follows that

AT = [ X [JA) XT = XxY7 [I,, ® R] J(A) [I,, ® R] XT.
If we let S denote the matrix [X 1|7 [, ® R], then
AT =S J(A) S

Thus, S is the similarity matrix giving the Jordan canonical form of A”. Hence,
the first n; columns of S form a basis for G, (A7), the generalized eigenspace

of Ay for AT, But, if we look closely at these columns of S we see that

Se; = [X N I, ®Rle; =X e, for i=1,...,m

= lef X1 for i=1,...,m,. a

k)




