
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of th is reproduction is dependent upon the quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6’ x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Temple University
Doctoral Dissertation

Submitted to the Graduate Board

Title o f Dissertation: Extensions And A ppl ica t ions o f the Goulden-Jackson Method
(Pieaset>pe) To Se l f -A vo id ing Walks, Square and Cube Free Words,

P r o b a b i l i t y , Entropy, C yc l ic Words And Related Sequences

Author:
(Please type)

Ms. Anne E. Ed!in

Date o f Defense:
(Please type)

Monday, July 17, 2000

Dissertation Examining Committee:(pieasetypc)

Professor Doron Zei lberqer
Dissertation Attvisory Com mittee Chairperson

Professor Shiferaw Berhanu

Professor Boris Datskovsky

Professor Dominique Foata

Read and Approved By: (Siputura)

S .'. fv

 t j k k r

Professor Doron Zei lberger
Examining Committee Chairperson If Member o f the D im rstition F ram inina Committee

Date Submitted to Graduate Board: S ' ^ ' Q o

Accepted by the Graduate Board of Temple University in partial fulfillment o f the requirements for the
degree o f Doctpr of Philosophy.

Date
(m u of tjof the Gradual hool)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E X T E N S IO N S A N D A P P L IC A T IO N S OF T H E G O U L D E N -JA C K S O N
M E T H O D TO SE L F -A V O ID IN G W A L K S, S Q U A R E A N D C U B E

F R E E W O R D S , P R O B A B IL IT Y , E N T R O P Y , C Y C L IC W O R D S A N D
R E L A T E D S E Q U E N C E S

A Dissertation
Subm itted to

the Temple University G raduate Board

in Partial Fulfillment
of the Requirements for the Degree of

D O CTO R OF PHILOSOPHY

by
Anne E. Edlin
August. 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number 9990312

Copyright 2001 by
Edlin, Anne Elizabeth

All rights reserved.

UMI*
UMI Microform9990312

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B S T R A C T

EXTENSION'S AND APPLICATIONS OF TH E GOULDEN-JACKSON M ETHOD

TO SELF-AVOIDING WALKS, SQUARE AND CUBE FREE W ORDS,

PROBABILITY. ENTROPY, CYCLIC W ORDS AND RELATED SEQUENCES

Anne E. Edlin

D O C TO R OF PHILOSOPHY

Temple University, August, 2000

Dr. Doron Zeilberger, Chair

This dissertation will explore the combinatorial and statistical properties of various

classes of words. The words studied will include both English words and more abstract

m athem atical objects including square-free words, cube-free words and self-avoiding

walks. In addition to these linear words, we will also explore cyclic words. The study

of words has applications to genetic theory and Crystallography.

The linear words will be analyzed from the perspectives of lim iting behavior,

entropy and generating functions. Noonan and Zeilberger’s im plem entations of the

Goulden-Jackson M ethod will be expanded to analyze both the enum eration of linear

words, and the probability of their occurrence. The limiting behavior of these objects

is of great interest at this tim e. As recently as August 1998 Ekhad and Zeilberger

improved Brinkhuis and Brandenburg’s lower bounds for the ‘connective constan t’ for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ternary square-free words. This dissertation will adapt their work to the situation of

binary cube-free words.

Self-avoiding walks will be explored on the rectangular and honeycomb lattice.

The inter relation between these walks and other avoidance patterns will be explored

and bounds will be obtained for these cases.

In the case of cyclic words we will adap t the Goulden-Jackson m ethod to this

situation and expand on the results of Burstein and W ilf regarding cyclic words that

avoid long constant blocks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C K N O W L E D G E M E N T S

I would like to thank my supervisor Dr. Doron Zeilberger who inspired the interest

to s ta rt this research and who gave me all the m otivation and nudging I needed to

finish it.

I would like to thank Robert Hallowell for his support.

Thanks too to Drs. Alu Srinivasan, Jack Schiller, Bashar Hanna, Eric Grin-

berg, Boris Datskovsky and Shiferaw Berhanu for their support and encouragement

throughout my time a t Temple.

Finally I would like to thank Dominique Foata for his help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Sister Cecelia,

FC J Convent, Jersey,

her belief in a ten-year-old girl helped to give me the strength to

survive the bruises my confidence got in later years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

TABLE OF CONTENTS

A B S T R A C T iii

A C K N O W L E D G E M E N T S v

D E D IC A T IO N vi

LIST O F F IG U R E S ix

LIST OF T A B L E S x

1 S E Q U E N C E S O F W O R D S 1
1.1 W o r d s .. 1
1.2 Avoiding the B a d ... 3
1.3 Subadditive S e q u e n c e s ... 4
1.4 The Xaive A p p r o a c h .. 5
1.5 The Goulden-Jackson M e th o d ... 7

2 B IN A R Y C U B E -F R E E W O R D S 12
2.1 In tro d u c tio n ... 12

2.1.1 The Sequence of Binary Cube-Free Words of leng th up to 47 . 13
2.1.2 The ‘Connective Constant1 .. 13

2.2 Lower-Bounds and the Brinkhuis M e th o d .. 14
2.2.1 Lower Bounds for Square-free Ternary Words 14
2.2.2 Lower Bounds for Cube-Free Binary W ords................................... 16

3 P A T T E R N F R E E W O R D S 19

4 D IM E N S IO N T W O A N D B E Y O N D 22
4.1 Linear B u rs te in -W ilf ... 22
4.2 Linear a d ... 23
4.3 Linear a _ u) .. 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Linear a m3 n ... 25
4.5 Square-Free W o r d s ... 27
4.6 Cube-Free W o r d s .. 30

5 S E L F -A V O ID IN G W A L K S T H A T A VO ID O T H E R F A C T O R S O N
T H E 2-D C U B IC L A T T IC E 31
5.1 Self-Avoiding Walks on the 2-d Cubic Lattice ... 31
5.2 Self-Avoiding Walks th a t Avoid Double S teps... 32
5.3 Square-Free Self-Avoiding W alk s ... 35
5.4 Cube-Free Self-Avoiding Walks ... 37
5.5 Rate of G r o w th .. 38

6 S E L F -A V O ID IN G W A L K S IN k D IM E N S IO N S 39

7 S E L F -A V O ID IN G W A L K T Y P E P R O B L E M S 43

8 S U P E R k SE L F -A V O ID IN G W A LK S 45

9 S E L F -A V O ID IN G W A L K S O N A H O N E Y C O M B L A T T IC E 47

10 E N T R O P Y OF A L A N G U A G E 49
10.1 Entropy of Square-Free Ternary W o r d s ... 50
10.2 Entropy of Cube-Free Binary W ords.. 52

11 A P P L Y IN G T H E G O U L D E N -JA C K S O N M E T H O D T O A P R O B ­
A B IL IST IC S IT U A T IO N 54
11.1 The F orm ula ... 54
11.2 Vowels and C o n so n an ts .. 57

12 C Y C L IC W O R D S 60
12.1 The Xaive A p p r o a c h .. 60
12.2 The Edlin Zeilberger E x te n s io n ... 61
12.3 Cyclic B u rs te in -W ilf .. 64
12.4 Cyclic a m3 n ... 64

13 T H E LA ST W O R D 66

R E F E R E N C E S 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IX

LIST OF FIGURES

•5.1 A self-avoiding walk... 32
5.2 Fourth step equals second step.. 34
5.3 Fourth step is minus second step.. 35
5.4 A seven step square free self-avoiding w a l k .. 37

9.1 Self-avoiding walk on a honeycomb lattice .. 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

LIST OF TABLES

3.1 Enum eration of p a tte rn free words.. 20

8.1 Super k self-avoiding walks.. 46

10.1 Entropy of square-free ternary words with base 3 * 50
10.2 Entropy of square-free with base the number of valid k length words. 51
10.3 Entropy of cube-free binary words w ith base 2k 52
10.4 Entropy of cube-free with base the number of valid words of length k 53

11.1 Probability of avoiding vowel and consonant p a tte rn s 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CH APTER 1

SEQUENCES OF W ORDS

1.1 W ords

Words surround us, not ju s t in the literal sense of the words on billboards, road

signs, cereal packets, in books and magazines, but also in a more abstract sense.

Our DNA is defined by a word over the language of nucleotides. The bar codes on

our groceries are words in the computer language of zeroes and ones. Further, in

m athem atics there are words tha t avoid certain patterns, such as repeating blocks,

and some tha t have applications in such areas as the s tudy of linear polymer molecules

in chemical physics.

In order to explore the behavior of such a wide range of words, we must first

introduce a format by which words are defined and some basic terminology th a t will

be used throughout this work. My choice of notation is based on my frequent reliance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

on Maple to perform calculations.

N o ta tio n 1.1 Let V be the alphabet over which our language is defined.

E.g. in English V = {a ,b ,c ,d ,e , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u , v , w , x , y , z } . In

computing V — {0,1}.

D efin ition 1.1 A w ord, w, over the alphabet V is an ordered sequence of letters

from V , w = [u/i, U/'2 , •••, ^n] where Wi € V fo r 1 < i < n.

E.g. the English word “alphabet” becomes [a ,l ,p ,h ,a ,b ,e , t] .

N o ta tio n 1.2 V* is the set o f all possible words over the alphabet V.

D efin ition 1.2 A factor of w is any of the (" j 1) possible sub-sequences

[u;,, Wi+i,. . . . Wj\ where 1 < i < j < n.

Thus [a, I, p], [/i, a] and [6, e, t] are all factors of [a, Z, p, h, a, b, e, t].

N o ta tio n 1 .3 The em p ty w ord is considered to be a factor o f all words and belongs

to V'“ for every V . I t will be denoted [].

D efin ition 1.3 The len gth of a word l{w) is the number o f letters in the word,

counting multiplicity.

E.g. l([a. I, p, h , a, b, e, Z]) = 8. Note /([]) = 0.

N o ta tio n 1 .4 wu represents the juxtaposition o f the two words w and u.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N o ta t io n 1.5 I f W and U are sets o f words and u a word then W u = {wu : w £ W }

and W U = {wu : w £ W.u £ U}.

One of the main areas of research into words is their lim iting behavior. T ha t is if an

is the number of words in our language of length n we want to find n := lim ^oc anx/n.

if it exists.

Clearly if no constraint is put upon our choice of words and if k is the number of

letters in our alphabet V then an = k n and hence /z = k. This leads us to believe our

quest for lim its will not prove fruitless.

Often it is useful to use the model a,, = n6n n. Zinn’s m ethod can be used to

obtain good approximations of this type.

1.2 A void ing th e B ad

Most of the sequences {an } considered in this text are ones whose words avoid

specific factors. We consider the factors we wish to avoid as the bad words (or

mistakes), and the set of all such words will be denoted B. The set of all bad words

up to length m will be denoted B m. W hen the set of bad words is infinite we often

consider the m e m o ry m case by using B m as our set of mistakes.

As an example consider the case of binary square-free words, th a t is words over

a two letter alphabet th a t avoid any non-trivial factor being repeated directly after

itself. In this case B A = {[0,0], [1,1], [0 ,1 ,0 ,1], [1,0,1,0]}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

It should be noted th a t B and B m are always minimal in the sense tha t no member

of B (or B m) is a factor of any other member of B {or B m). In the above example

note [1,1,1,1] is om itted from B4 because it contains [1,1] as a factor.

In fact in th is case B = B4 and an = [1, 2 ,2 ,2 ,0 ,0 ,0 , . . .] , which is not a very in­

teresting sequence. The more interesting case of ternary square-free words is discussed

by Noonan and Zeilberger [NZ99].

1.3 Subadditive Sequences

Many of the sequences we will be discussing are sub-m ultiplicative. T h a t is th a t

Qn+m < a„am. In sequences where an ^ 0 we have th a t log(an+m) < log(on) + log(am)

which shows th a t the sequence {7o<7(a„)} is subadditive (Cn+m < +C™). This fact

can be used to show th a t the g exists and is in fact the inf aJ^n

L e m m a 1.1 Let {c„} be a subadditive sequence o f real numbers. Then the lim ^ o o ^L

exists and equals inf„>!

P r o o f o f Lem m a: Let Ck = m axi<r<kCr- Then for any given n we can find j such

tha t n = j k + r w ith 1 < r < k.

Using the subadditiv ity of {c„} we obtain

n
C n < j C k + C r < T Ck + C k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then we divide bo th sides by n and take the lim s u p , , .^ to obtain

lim sup — < l im s u p (^ + —) < ^
n—+ 00 n n—»oc k n k

Finally we take the liminfjt-»oc and obtain th a t the lim sup < lim inf thus proving the

lim it exists.

As the limit exists it equals the lim sup and so as this is less than ^ for ail k we

obtain

.. c O71lim — = inf —n—>oc n n> 1 n

□

T h eorem 1.1 I f {an} is a sequence of positive terms fo r which an+m < then

H = limn^oo an " exists. Further p. < an * .

P roof: As discussed above < OnOm implies tha t the sequence {logo,,} is

subadditive. This means log /1 = lim ,!-^ lo&-n = lim,^,*, log a£ exists and further

log = inf„>i = inf„>i loga„ n ^ log an n for all n. This gives the required

results.

□

1.4 T he N aive A pproach

A t this point we are only considering linear sequences. Later we will investigate

the case of cyclic sequences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

For any given word we define its m —weight a t follows:

Wm(w) = sn x[v\,
v £ V

where v extends over all the factors of w for which l(v) < m.

For example the 3-weight of the word apple would be

s5x{a]x\pfx[l\x[e\x[a, p]x[p, p\x\p, l\x[L e]x[a, p, p]x\p, p, l]x\p, I, e]

Then if x[v\ — 1 the coefficient of sn will give us the number of words of length

n and if x[w] = Probability(u) then we obtain the probability of finding a word of

length n. The first case is considered in most of the following chapters. The second

case is discussed in C hapter 11.

This means are goal becomes to find the generating function th a t has all words of

length n (or often ju st the number of them) that meet our criteria as the coefficient

of sn. When we consider probability we will be using the 2-weight of the words, but

in general we will only consider the num ber of words of length n and not how they

are made up.

One m ethod for doing th is is to use a m atrix, A, to analyze the interaction between

all possible blocks of length m then by taking (1 — A)-1 and adding all the result­

ing entries we obtain a generating function for all words over the chosen alphabet.

We then set any blocks th a t are disallowed equal to zero and obtain the generating

function for the desired set of words.

We call this method the Naive Approach because it produces all possible words

without taking into account the bad words until the very end. For example if we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were to take the English alphabet and look for all words th a t did not contain any

bad “4-letter” words we would need a m atrix th a t was 264 by 264. and worse yet need

to find the inverse of such a matrix, a very slow task, even for a com puter. Thus this

approach is only useful in very small cases and as a check for our clever techniques,

like the Goulden-Jackson Method.

1.5 T he G oulden-Jackson M eth od

One m ethod used throughout this dissertation is the Goulden-Jackson Cluster

M ethod [GJ79]. This m ethod can be used to find the generating function f (s) =

ans " for words th a t avoid certain mistakes. In many cases we can not find f (s)

explicitly as we are looking at infinite sets of mistakes, but we can obtain f m{s) (the

memory m scenario) which gives correct values for an when n < m and good over

estim ates for n > m, as it only considers mistakes up to length m.

We will discuss briefly this method, for a more in depth explanation and some

applications see [GJ79].

If L (B) represents the set of words th a t avoid any of B as factors, Bad(w) denotes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

the set of factors o f w that belong to B and N (w) = \Bad{w)\ then

f (s) — 53 weight(w)
weL(B)

= 5 weight{w)0A(u,)
w e v -

= 5 3 weight(w)(1 -+- (—
loev

w e v - t=o ̂ ‘
Xf(w)

= 3̂ weight(w) 3̂ (number of subsets of Bad(w) of size i) (—1)‘
w e v - t=o

= 5 ^ weight(w) 5 3 (—1)^
weV- SCBad(w)

= 53 s ‘(w) E (-1)151’ (L1)
weV- SCBad(w)

where 0° = 1 and we are only considering the num ber of words, not their m-weight.

We now m ark the words by the overlapping mistakes in them and call the set of

all marked words M = E «,ev EscsaiKwjC^i ^) .

For example if B = {[a,p], [p,p, Z], [p, Z, e]} and we take the word [a, p, p, Z, e] we obtain

the following m arked words: ([a, p, p, Z, e];), ([a, p, p, Z, e]; [1,2]),

([a,p, p, Z, e]; [2,4]), ([a ,p ,p , Z, e]: [3, 5]), ([a ,p ,p , Z, e]; [1,2], [2,4]),

([a,p, p, Z, e]; [2,4], [3,5]), ([a ,p ,p , Z, e]; [1, 2], [2,4], [3, 5]). Where the indices refer to the

position of the m istakes and are ordered so th a t the end of each marked block exceeds

the end of the previous block. T he m inim ality of the set of bad words assures us th a t

the s ta rt of each block also exceeds the s ta rt of the previous block. These are called

c lu s te rs .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here is one of the clusters:
a p p l e
a p

P P 1
p 1 e

Then equation 1.1 becomes

/w = Y s““,,(-i)|S|
(ui,s)eM

We now note th a t every marked word is either the em pty word, ends in a cluster

or ends in a le tter th a t is not part of a cluster so letting C represent the clusters, and

recalling M are our marked words and V our alphabet of size k we have

M = {empty word} U M V U M C.

Taking weights in this equation we obtain

f (s) = l + f (s) k s + f (s) w eight (Clusters)

W hich yields

^ ̂ 1 — ks — w eight(C lusters) (l-^)

So now we need only find the weight of the clusters.

F irstly note th a t we can divide up the clusters by the last m istake in them so th a t

if we let W(C[v]) represent the weight of the clusters ending in v then

weight (Clusters) = ^ W(C[v\)
v € B

Now when two mistakes overlap the additional contribution to the cluster is

(u : v) = n u m b e r of new letters in v not in u) For examp le in the cluster above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

([a.p] : [p.p, /]) = s2 and ([p.p./] : [p,/,e]) = s. We must in fact consider every

possible overlap i.e. ([1,1,1] : [1.1.1]) = s2 + s, and if two words do not overlap

(u : v) = 0. Then we have

W(C[v\) = —weight(v) — : u)W (C[u]) (1-3)
ueB

T h e o re m 1.2 (The Goulden Jackson Method) Given a set o f bad words B the num ­

ber of words o f length n that avoid these words as factors is given by the coefficient

of s n in

f (s) = ------------------ -------------------
1 — ks — weight {Clusters)

where

weight (Clusters) = ^ W(C[v\)
ueB

and

W(C[v}) = —weight(v) — u : u)W (C[u])
ueB

A n E xam p le o f A pplying th e G oulden-Jackson M eth o d

Let our alphabet be {a, 6} and our bad words be {[a, a], [b, 6]}.

Then

W(C[a, a]) = —s2 - sW (C[a, a])

W(C[b,b\) = - s2 - sW (C[6,6]),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and solving we obtain

So th a t

as would be expected.

11

W (C[a, a]) = - f -
1 + s

W-(C[6,6]) = -ZfL
1 + s

m =

1 — s

1 + 2s + 2s2 + 2s3 +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

C H A PTER 2

BINARY CUBE-FREE W ORDS

2.1 Introduction

Let us now look closely at a specific non-trivial example.

D efin itio n 2 .1 A word zs cu b e-free i f it contains no factors o f the fo r m x x x , where

x is any non-em pty word.

E.g. The cube-free words of length 3 over the alphabet {a, 6} are

{[a, a, 6], [a, b, a], [a, b, 6], [6, a, a], [6, a, 6], [6, b, a]}

My Maple package Cubefree (available from

h ttp : //w w w .m a th .te m p le .e d u /~ a n n e /c u b e fr e e .h tm l) can be used to derive

cube-free words over any given a lphabet up to the required length. The number

of binary cube-free words of length a t most n for 0 < n < 47 are given below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.math.temple.edu/~anne/cubefree.html

13

These results were obtained by applying the Goulden-Jackson M ethod with all

cubes of length at most 45 as the input mistakes.

2.1.1 T he Sequence o f B in ary C ube-Free W ords o f length up

to 47

1. 2. 4. 6. 10, 16, 24, 36, 56, 80, 118, 174, 254, 378, 554, 802, 1168. 1716. 2502,

3650. 5324. 7754, 11320, 16502, 24054, 35058, 51144, 74540, 108664, 158372, 230800.

3364S0. 490458, 714856, 1041910, 1518840, 2213868, 3226896, 4703372. 6855388,

9992596. 14565048, 21229606, 30943516, 45102942, 65741224, 95822908. 139669094.

2.1.2 T he ‘C on n ective C o n sta n t’

Let a n be the number of cube-free words of length n. Brandenburg [BRA83]

proved th a t for n > 18

2 x 1.080n < 2 x 2? < a n < 2 x 1 2 5 1 ^ < 1.315 x 1.522n

Thus 1.0S0 < ii < 1.522

L e m m a 2.1 {an} is sub-multiplicative.

P ro o f: Given a cube-free word of length n + m if we split it into the first n letters

and the last m letters both of these words must be cube-free or the original word was

not. Hence cin+m < aTlam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

It is also worth noting th a t when we adjoin two cube-free words we do not neces­

sarily obtain a cube-free word so this is not a multiplicative sequence.

By Theorem 1.1 we know that p = limn_).0 0 a i/n exists and p = lim in f^ -^ an.

□

Using the ‘memory-45’ analog (i.e. the corresponding sequence tha t enumer­

ates words th a t avoid cubes x3, w ith length(x) < 15), th a t was generated us­

ing the Maple package, up to word-length 300, we find the rigorous upper bound

(j. < 1.457579200596766, which improves on Brandenburg’s result.

Using Zeilberger’s implementation of Zinn’s m ethod obtained from his Maple

package GJsqfree (available from h ttp ://w w w .m ath .tem ple .edu /~ zeilberg /), we also

found tha t, assuming that an ~ nefin, then n « 1.457, and 6 % 0. Hence it is

reasonable to conjecture th a t ~ /j,n, where fj. := lim„_fooa y n « 1.457.

2.2 Low er-Bounds and th e Brinkhuis M eth od

2.2.1 Lower B ou n d s for Square-free T ernary W ords

Jan Brinkhuis [BRI83] obtained a lower bound for the num ber of square-free

ternary words in the following way. He found a pair of words, 6*0, U0, on {0,1,2}

and from these formed 6 1 , U1 and U 2 ,V 2 all with the following property. If W is a

square-free word over {0,1,2}, and 5(IU) is obtained by replacing all the 0’s in W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.math.temple.edu/~zeilberg/

15

with UO or VO, the l ’s w ith U 1 or V'l and the 2’s w ith U2 or V2 then S(W) is also

square-free.

L e m m a 2 .2 (Brinkhuis) I f we can find. UO, V'O, U 1, V I , U2, V2 that satisfy the above

condition and are of length k then [i > 2 *=*.

P ro o f: As we have two choices of what to substitu te for each of the letters of W

O-kn > 2nOn

Thus

> 2Hah*

and taking the limit with respect to n we obtain

H > 2

which simplifies to

t* > 2 ^

□

Brinkhuis chose words th a t were palindromes and obtained U 1 from UO by adding

1 mod 3 to each letter of UO, U2 is obtained from UO by adding 2 m od 3 to each

letter of UO, likewise for V'l and V2. He found (by hand) such a Brinkhuis pair (UO

and VT)) of length 24. Giving lower bound of /z > 2 ^ = 1.030595545

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Zeilberger and Ekhad [ZE98] removed the palindromic requirement and com put­

erized the search for good pairs. They thus found a Brinkhuis pair of length 18, and

so improved the lower bound to /x > 2iV = 1.04162.

In their paper Zeilberger and Ekhad note th a t the relationship between C/0, C/1

and C/2 and VO, V I and V2 is not necessary, and it is with this comment in mind

th a t we begin our adaptation of the Brinkhuis m ethod to cube-free words.

2.2 .2 Lower B ounds for C ube-Free B inary W ords

T h e o re m 2.1 The number of n-letter binary cube-free words is greater than 2"/8.

This result can be obtained as a corollary of Brandenburg’s result, but as our

m ethod is different from his we will give the full details.

The goal is to find binary words UO, C/1, V'O, VT of minimal length such that if we

take a cube-free word W over the alphabet {0,1} and substitute UO or VO for the

zeros and U 1 or VT for the ones the resulting word *S(1V) will also be cube-free.

L e m m a 2.3 //C/0, V'O, C/1, and V'l satisfy the following conditions and i f W is cube-

free then S(1V) is cube-free.

1) All legitimate triples o f UO, VO, C/1, V I are cube-free

2) None ofUO, VO, C/1, V I are non-trivial factors o f all the possible pairs ofUO, VO, C/1, VI

P ro o f:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Clearly as C/0, VO, C/1 , and V'l meet condition 1 then if W is cube-free and of

length at most 3 then S(VV) is cube-free.

So if S(VV) contains a cube it has length greater than 3. For such a word to contain

a cube the pa tte rn of a t least one of C/0, VO, C/1, and V I must be repeated elsewhere in

S(H '). If every time such a repetition occurs it is as C/0, VO, C/1, and VI respectively

then the original word W cannot have been cube-free (contrary to assumptions). So,

the only way the repeat can occur is as a factor of a pair of concatenated words, but

condition 2 eliminates this possibility. Therefore S(W) is cube-free whenever W is.

□

L e m m a 2 .4 I f we can find UO, V'O, C/1, VI that satisfy the above condition and are

of length k then n = l im ^ ,^ a l/n > 2 * ^ , where an is the number of cube-free words

of length n.

P ro o f: As for the lemma 2.2 in the square-free case.

P r o o f o f T h e o re m : It is easily verified (by hand , or more quickly by com puter) th a t

UO = [0 ,1 ,1 ,0 ,0 ,1 ,1 ,0 , 1], VO = [0 ,1 ,1 ,0 ,1 ,0 ,0 ,1 ,0], C/1 = [1 ,0 ,0 ,1 , 1 ,0 ,0 ,1 ,0] , and

VT = [1 ,0 ,0 ,1 ,0 ,1 ,1 ,0 , 1] satisfy the conditions of the lemma. Hence a(n)

1.09.

□

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

It should be noted th a t our words are not palindromes, but C/1 and V'l can be

obtained by switching l ’s and 0’s and vice-versa in UO and V'O. Removing this

condition does not produce any shorter choices for C/0, VO, C/1 and V'l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

CH APTER 3

PATTERN FREE W ORDS

In this chapter we will look a t several specific cases of words avoiding certain

patterns. The cube-free words in the previous chapter are an exam ple of th is type.

The sequences were obtained using our Maple package patfr. In the table below we

summarize the results when various patterns are avoided over various alphabet sizes.

Each sequence is given a num ber so that it can be referenced in the discussion that

follows. It should also be noted th a t all symmetries of the representative p a tte rn are

avoided and th a t k is the size of the alphabet. Note in these examples, A = B is

allowed.

Pattern 1 represents square-free ternary words, which as we have m entioned were

studied by Noonan and Zeilberger in [NZ99], and pattern 8 represents cube-free binary

words, which were discussed in the previous chapter. T he next case in this sequence

occurs when we avoid blocks of the form x x x x , and is p a tte rn 1 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Table 3.1: Enum eration of pattern free words.

No. J Pattern k n = l 2 3 4 5 6 7 8 9 1 0

1 1 A A 3 3 6 1 2 18 30 42 60 78 108 144
2 | A B 2 2 0 0 0 0 0 0 0 0 0

3 A B k k 0 0 0 0 0 0 0 0 0

4 A B A 2 2 4 4 2 0 0 0 0 0 0

5 A B A 3 3 9 18 24 18 6 0 0 0 0

G A A B 2 2 4 4 4 0 0 0 0 0 0

i A B B 2 2 4 4 4 0 0 0 0 0 0

8 A A A 2 2 4 6 1 0 16 24 36 56 80 118
9 A B C 2 2 4 0 0 0 0 0 0 0 0

10 | A A A A 2 2 4 8 14 26 48 8 8 160 292 532
11 j A A A B 2 2 4 8 1 2 2 0 32 48 72
1 2 A A B A 2 2 4 8 1 2 16 18 16 1 0 4 0

13 | A B A B 2 2 4 8 1 2 2 0 26 38 42 52 56
11 ! A B A B 3 3 9 27 72 198
15 A B B A 2 2 4 8 1 2 18 18 14 8 6 2

1 0 i A B B A 3 3 9 27 72 192
17 | A A B B 2 2 4 8 1 2 18 2 2 28 28 2 2 18
IS | A B A C 2 2 4 8 8 4 0 0 0 0 0

19 A B C A 2 2 4 8 8 4 2 0 0 0 0

2 0 | A A B C 2 2 4 8 8 8 0 0 0 0 0

2 1 I A B B C 2 2 4 8 8 8 0 0 0 0 0

22 | A B C A B 2 2 4 8 16 24
23 ; A B A B A 2 2 4 8 16 28 52 90
24 A B A B A, A A A 2 2 4 6 1 0 14 2 0 24 30 36 44

Further examples like the generalization of pattern 2 to the case of general dimen­

sion size in pattern 3 will be discussed in the next chapter.

Patterns 13 and 14 are examples of square-free words where we require the length

of each block x in the square x x to be of length a t least 2. Unlike the regular square-

free situation, here we do make it past n = 4.

Overlap-free words [FI99] are represented by pattern 24. The o ther patterns shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

have not been studied in any detail. Some sequences quickly converge to zero, but

others do show signs of continued growth. The number of terms given for each

sequence depends on the am ount of memory required to calculate each case, and can

usually be improved on by w riting sequences specific programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4

DIM ENSION TWO A N D

BEYOND

In this chap ter we explore the use of the Goulden-Jackson m ethod in the situa­

tion when the alphabet size is unknown, or it can be thought of as symbolic. We

first explore several examples, then look into how we can im plem ent the process on

computer.

4.1 Linear B u rstein -W ilf

In a later chapter we will look a t the result of Burstein and W ilf [BW97] for cyclic

words. Here we are looking a t the linear analog. On an alphabet of size k , how

many words are there of length n th a t avoid any long constan t blocks of length m or

greater?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

For example in a two le tter alphabet if we avoid all blocks of length 2 or more

then the only possible words of length 5 are [1, 2 .1 ,2 ,1] and [2 ,1 ,2 ,1 , 2].

In the general situation, it is fairly easy to apply the Goulden-Jackson Method.

Referring to the notation of Chapter 1 and letting o m represent a block of length m

made up of some letter a we have:

m — 1

VF(C[am]) = - s m - £ V W (C [a m])
t=i

Thus for each a £ L we have

W (C [am}) = 7 sm (s ~ V
J' — 1 + sm

Assuming the alphabet is of size k there are k such clusters so the to tal cluster weight

is A;-times this and the resulting generating function is:

f (s) = -------- - 1 + Sm--------
— 1 + sm + ks — k sm

4.2 Linear a/3

In this example we consider words over a A;-letter a lphabet that avoid any blocks

of the form [a, /?] where a ^ /3.

For example over a three letter alphabet we avoid all blocks in the set

{[1,2], [1,3], [2,1], [2,3], [3,1], [3, 2]}.

So let us go right ahead and apply the Goulden-Jackson Method.

W(C[q, g\) = -s2 - £ sW(C\fi, 7])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Thus, summing over all a , fi 6 L we have

" ' - E E W{[C[ol,0\) = - E E s 2 - E E E sW(C\pn])
0 Q L a * 0 0 € L a * 0 0 € L a * 0 7 */?

B € L 7 * 0

Noting that the double sum on the far right is equivalent to th a t on the left hand

side of the equation and th a t this is our desired cluster weight we obtain.

w = ~ fc(fc~ 1)s2
1 + (k — l)s

And hence

f (s) = * ~l~- — — = 1 + ks + k s2 + ksz + k sA 4- ...
1 — s

In fact this exam ple is fairly easy to deduce without the Goulden-Jackson Method,

as the only words allowed are those containing only one letter repeated.

Let us now look a t a more general example of this type.

4.3 Linear a _ uj

This is the general analog of the above example. Here we wish to avoid words of

the form [alt « 2 , c*3 , • - • , <*P] with a , ^ ctj for i ^ j . As before we simply apply the

Goulden-Jackson Method.

p - i

W (C[qi, a 2> a 3: ■ ■ ■ , a p]) = - s p - ^ 2 ^ ^ (C [a l+1, a t+2, a t+3, - . . , a t+p])
£=1 t + l < i j < t + p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

By summing over the a . ’s we obtain:

w = k[sP - V" k̂ ~ P + t '̂stW
(k - p) l y (k - p) \

where the factorials are due to the number of letters we have choice over. We can

now solve for W and find our generating function.

f (s) = ___________ H pt = o (k - p + ty.s*________

k\sp + (1 — ks) 5Zt=o_1(^ ~ P + ^)'s£

which agrees w ith our previous result for p = 2 .

4.4 Linear a mf3n

Here we look a t the linear case of words over some alphabet L with k letters th a t

avoid any blocks of the form [am5n] where a # 0. In a la ter chapter we will look a t

the cyclic version of this case.

T h eorem 4.1 The number o f words of length r over a k letter alphabet that avoid

[amBn] where a ^ /3 is the coefficient of s r in the generating function

 _______________ s - l + (k - - gmax(m'n))_______________
(s - l + (k - l) (s m+ri - s max(m’")))(l - ks) + k (k - l) s m+"(s - 1)

Proof: As in the above examples the proof is by the Goulden-Jackson M ethod.

Firstly we find the weight of a general cluster.

m in(m ,n)

W (C [am5 n]) = - sm+n - ^ W(C[/3m7n]) sm+" - £.
7*/S t=i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Now we sum over a and 3 to obtain the to ta l weight of the clusters

w = I E
a & L ,a ^ 0 0 € L

min (m,n)

= I E E E E » ' (c ^ m7"i) £ sm+" - ‘
a € L ,a ^ & &Q.L a £ L ,a ^ 0 0 € L 7€£-,7#£ t= l

m tn(m ,n)

= -* :(* - - (* - i)(JE I E H' W ^ i)) (iE sm+" ' ') -
0€L i € L , y ^ 0 £=l

By evaluating the geometric sum on the far right and noting th a t the double sum

in the first line and th a t in the last are equivalent we can solve for them to obtain:

w = I E 2Ew -(C [a"'/3"])
a e L ,c t ^ 0 0 £L

- k (k - l) s m+n(s - 1)
s - 1 + (k - 1)(sm+n - smax(m’n))

And we obtain our required result by substitu ting this into

1
f(s) = I - k s - W

□

To enable calculation of more generating functions of this type with k, the alpha­

bet size, symbolic the Goulden-Jackson M ethod was extended to produce generating

functions for an arb itrary size alphabet. The package developed, called G Jdim , uses

the fact th a t the number of ways one pattern can overlap w ith the sym m etries of

another is related to the num ber of letters th a t we are free to choose after the letters

to match the overlap have been defined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

We shall use the memory m situation to apply G Jdim to square-free and cube-free

words. T ha t is th a t we shall obtain formulas for the generating function for all words

th a t avoid squares (or cubes) up to length m.

4.5 Square-Free W ords

M em ory 2

Here the fundam ental mistake is [1,1], to find our generating function we note

W([1 , 1]) = - s 2 - slV([1 ,1]).

Solving for W ([l, 1]) and noting that there are k m istakes of this type we obtain

 Ir
W (clusters) = -------

1 + s

and hence

1 4- s
/2(S) = — 1 — s + ks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

M em ory 4

Here the fundam ental mistakes are {[1,1], [1, 2 ,1 ,2]} and we obtain (by hand or

using our Maple package GJdim)

1 + 2 s ■+■ 2 s 2 + k s3
4 — 1 — 2 s — 2 s 2 + ks + k s2

M em ory 6

Now the mistakes are {[1.1], [1, 2,1,2], [1, 2 ,3 ,1 ,2 ,3]} , and it is still fairly easy to

do the calculation by hand, but much quicker by com puter. The generating function

is

t (\ _ ^ s 2 + 1 + 2 s 3 + 2 s — k s 5 + ks3 + ksA + s5k 2
6 ks3 — 2s3 — 1 — 3s 2 — 2s + k s + k s2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M em ory 8

In th is case we have a much larger set of m istakes, and doing the calculation

by hand becomes much harder. The mistakes are {[1,1], [1. 2. 1 , 2], [1 ,2 ,3 ,1 , 2,3],

[1, 2 ,3 . 4 ,1 ,2 ,3 ,4] , [1. 2 ,1 ,3 ,1 ,2 ,1 ,3], [1, 2,3, 2 ,1 ,2 ,3 , 2]} and our generating function

is

/ 8 (s) = - (- 1 - 4s - 10s2 - 32s6 4 s 14k 4 - ks3 - 18s3 - 26s4 - 30s5 4 2s l2k 2

+ s l7k 4 4 14sls/t2 - 3s 6k 2 + 6 s l l k 2 - 4k s 17 - 8 k s 13 - 2s 7k 2

- 4 ks6 - 3k s 7 - 2k s 16 - 9k s 15 4 4A;s10 4 k s 14 4 3k s 12

+2k s 11 4 4k s 9 - 4s 13k 3 4 9 s 1 3 fc4 4 s l6k 4 - 2s l4k 3

—3k s 4 4 5s16fc2 — 5 sI7 A:3 4 8 s 1 7 k 2 — 4 s 1 6 / : 3 — 33s 11 — 27s12

- 3 7 s 9 - 38s10 - 12s13 - 6 s 14 - 2 su k3 - s 7k 3 - 9s l5k 3 - 2s*k3

- k 2s 5 + 2 s 1 5 A:4 - 3s9 A:3 - oks5 - 33s 8 - 32s7 + 3s9 A:2 - 3 s 1 0 A: 3

+ 6 s 1 0 A: 2) / (1 - 3ks2 + 4s + 10s2 + 32s6 - ks - 6 k s3 + 18s3

+ 26s4 + 30s5 + 4 s 1 2 A: 2 + 5 s l lA:2 - 10A:s13 + s 7k 2 - 12ks6

- l o k s 7 +- '2ssk2 - 28ks10 - o ks14 - 2 l k s 12 - 26A:su - 18A:s8

—2bks9 + 2s l3k2 + s u k 2 — 9ks 4 + 33s 11 + 27s12 + 37s9 4 - 38s10

4 1 2 s13 + 6 s 14 - llA;s5 + 33s8 4 32s7 4 4s9 A:2 4 5 s 1 0 A:2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

The generating functions get fairly complex quite quickly and we are limited by

the mem ory of the com puter and the complexity of the system of equations th a t must

be solved.

4.6 C ube-Free W ords

M em o ry 3

In th is case our fundam ental mistake is [1,1,1] and it is fairly easy to apply the

G oulden-Jackson m ethod by hand to obtain

_ 1 -I- s 4- s2
— 1 — s — s3 4- ks 4- ks2

M em o ry 6

Now our mistakes are {[1,1,1], [1 ,2 ,1 ,2 ,1 ,2]} and the generating function ob­

tained using G Jdim is

_ 1 -t- 2s -I- 3s2 4- 3s3 -I- 3s4 4- ks° 4 s5 4- ks6
—s5 — 3s4 — 3s2 — 2s 4- ks 4- ks5 -I- 2ks4 4- 2ks3 -I- 2ks2 — 3s3 — 1

Again we are lim ited by com puter capacity and currently can go no further.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

C H APTER 5

SELF-AVOIDING WALKS THAT

AVOID OTHER FACTORS ON

THE 2-D CUBIC LATTICE

5.1 Self-A voiding W alks on th e 2-d C ubic L attice

Anyone who likes a little variety will try to take self-avoiding walks. For now we

consider walks much like those through a city whose streets form a grid. A walk is

self-avoiding if we never visit the same intersection twice. This is modeled by a walk

on the integer lattice in 2 -dimensions, where we never return to a lattice point after

we have left it.

D e f in itio n 5.1 A se lf-av o id in g w a lk is a path on any lattice that does not visit the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Figure 5.1: A self-avoiding walk.

sume site twice [MS96J.

In 2-diinensions we can use the alphabet { 1 ,-1 ,2 , —2} as our set of possible steps.

Here 1 represents a step to the right, —l a step to the left, 2 a step up and —2 a step

down.

Using our notation this is equivalent to a word is self-avoiding if it contains no

fac tors for which the number of Is and —Is are equal and the num ber of 2 s and —2 s

are equal. The Maple package walk (available from

h t t p : / / \v \v w .m a th .te m p le .e d u /~ a n n e /sq fr w a lk .h tm l) can be used to derive or

count the num ber of self-avoiding walks on a cubic lattice th a t avoid an input set of

mistakes in any given dimension.

We will investigate walks th a t are not only self-avoiding, but also avoid a pre­

scribed set of additional mistakes.

5.2 Self-A voiding W alks th a t A void D ou b le Steps.

These are walks for people who get bored of the view ahead of them and so at

every cross roads tu rn right or left, never going straight on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http:///v/vw.math.temple.edu/~anne/sqfrwalk.html

33

D efin itio n 5 .2 A word avoids d ou b le s te p s i f it contains no factors o f the form

ww, where w is any single step.

In our notation this means it excludes

{[1 , 1], [2 , 2], [- 1 , - 1], [- 2 , - 2]} as factors.

T h eo rem 5.1 The number of self-avoiding walks that avoid double steps fo r n from

0 to 20 are:

[1, 4, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1128. 1808, 2896, 4640, 7368,

11744, 18752, 29920, 47376].

Or equivalently:

a(0) = 1

a(n) = 2n + 1 i f 1 < n < 3

a(n) = a(n — 1) + a(n — 2) i f A < n < 1 1

a(n) < a(n — 1) 4- a(n — 2) i f n > 12

P roof: Firstly we note th a t all double steps have been elim inated and the walk

m ust contain no immediate reversals if it is to be self-avoiding. Thus every 1 or — 1

m ust be followed by a 2 or —2 and vice versa. This means th a t the only o ther way a

walk of length less than 1 2 can fail to be self-avoiding is if it contains a unit square.

This is due to the fact the next self-avoiding polygon th a t avoids double steps is of

length 1 2 (it looks like a plus sign).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

The case n = 0 is a convention. There is precisely one empty word.

For 1 < n < 3 we note th a t there are 4 initial steps and we have 2 choices for our

second step and again for our third step as explained above.

Finally we consider the interesting case n > 4. As explained above our only danger

for 4 < n < 11 are unit squares, and for n > 12 we will only consider this danger.

This means it suffices to only look at the three previous steps to decide w hat our next

step may be. W ithout loss of generality we may assume the first two steps of this

block of three steps are 1 and 2. Then regardless of w hether the th ird step is 1 or —1

we may chose 2 for our fourth step. See Figure 5.2. This generates a(n — 1) walks.

 J or L_ _ _

Figure 5.2: Fourth step equals second step.

Now we investigate when we may allow —2 to be our fourth step. We may only

do this if step one and three are the same, else we will form a square. See Figure 5.3.

Thus for every step one and two there is only one way we can have step four as minus

step two. This generates a(n — 2) walks.

Thus for 4 < n < 11 we have a(n) = a(n — 1) -+- a(n — 2), our Fibonacci style

sequence, and when n > 1 2 we have th a t a{n) < a(n — 1) + a{n — 2), in fact this

inequality is stric t as we are now avoiding plus sign style shapes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

or

Figure 5.3: Fourth step is minus second step.

□

5.3 Square-Free Self-A voiding W alks

Now we consider a much stricter case. Here our walks are not only self-avoiding,

but at no time do we repeat the same sequence of steps twice in a row. For example

we cannot go left, straight, right, left, straight, right.

T h e o re m 5.2 The number o f square-free self-avoiding walks o f length n is given by

the sequence 1, 4, 8,16,16, 16 ,16 ,16 ,0 ,0 ,0 , 0, 0, 0,0, 0 for 0 < n < 15.

Proof:

By making our walks self-avoiding we know we must elim inate all immediate back

steps and all polygons, at the very least. This means th a t none of the following set

of words may appear as a factor of any of our words:

{ [1, - 1], [2 , - 2], [- 1, 1]. [- 2 , 2], [1, 2 , - 1, - 2], [2 , - 1, - 2. 1], [- 1. - 2, 1, 2],

[- 2 , 1, 2 , - 1], [- 1, 2, 1, - 2], [- 2, - 1, 2 , 1], [1, - 2 , - 1, 2], [2 , 1, - 2, - 1] }.

The fact the w^alks are also square free elim inates double steps and double ‘corners’,

th a t is paths like (right, up, right, up). So we must also elim inate all of the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

as factors:

{ [1, 1], [- 1, - 1], [2 . 2], [- 2, - 2], [2, 1, 2, 1], [- 2, 1, - 2, 1], [2, - 1, 2, - 1],

[- 2, - 1, - 2, - 1], [1, 2 , 1, 2], [- 1, 2, - 1. 2], [1, - 2, 1. - 2], [- 1, - 2 . —1, - 2] }.

So let us now try to form a square-free self-avoiding walk. By sym m etry it does

not m atter in which direction we start, so let our first step be a 1 .

Now our second step m ay not be —1 as the walk is self-avoiding, and it can not

be 1 , because our walk is square-free. So, our next step m ust be 2 or —2. Again by

symmetry it does not m atte r which we chose, so we will pick 2 .

Our walk so far is [1,2]. Now as before, we may not pick —2 or 2, because our

previous step was 2, so we m ust pick 1 or —1. Both cases are very sim ilar so we will

only look a t the case th a t the next step is 1. The case when the next step is —1 is

left to the reader.

We now have [1,2,1]. For our next step we may not pick — 1 or 1 , because the

last step was a 1 , and we may not pick 2 , because [1 , 2 , 1 , 2] is a square (of [1 , 2]), this

means we are forced to pick a —2 .

Now we have [1 ,2 ,1 , —2]. From here we may not pick —2 or 2 as usual, and we

may not pick —1 , or the last four steps will form a polygon [2 , 1 , —2 , —1], and so our

walk will not be self-avoiding. Thus we are forced to pick 1 .

We are forced into our next step up until the eighth step. Here is the position

after 7 steps:

[1 ,2 ,1 , —2 , 1 , 2 , 1]. See Figure 5.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Figure 5.4: A seven step square free self-avoiding walk

Now based on the previous analysis we must chose —2 as our next step, but if we

do th is we will have the [1,2,1, —2] twice in succession. So as we w ant our walk to be

square-free we are stuck, and can take no further steps. Thus for n > 8 the number

of square-free self-avoiding walks is zero.

□

5 .4 C ube-Free Self-A voiding W alks

In this section we consider walks th a t are both self-avoiding and cube-free as in

the sense in Chapter 2 .

T h e o re m 5 .3 The number of cube-free self-avoiding walks fo r 0 < n < 10 is

1, 4, 12, 32,80, 200, 472, 1136, 2656,6256,14584.

P ro o f : O btained by using the cubes of length < 9 and the m istakes for self-avoiding

walks up to length 10 in a Maple application of the Goulden-Jackson method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

5.5 R ate o f G row th

The idea behind investigating Self-Avoiding Walks th a t also avoid other steps is

that we will be able to produce sequences th a t grow slowly enough to be analysable

(unlike Self-A voiding Walks), but quickly enough to give us information about Self-

Avoiding Walks in general. The three examples given above are all of interest in their

own right, but do not help us to learn more about Self-Avoiding Walks. Clearly the

second exam ple’s sequence becomes zero too quickly to be of use and the first and

third examples are a little bette r but provide no new information. There are many

other examples th a t can be explored and there is still hope tha t this approach will

help us learn more about Self-Avoiding Walks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

CHAPTER 6

SELF-AVOIDING WALKS IN k

DIMENSIONS

So far we have only looked a t Self-Avoiding Walks in two dimensions, bu t the

idea is not dimension dependent. In fact we shall see la ter it is not even lattice

dependent. As in Chapter 5 where we looked at words th a t avoided certain patterns

in undefined dimensions, here we look at self-avoiding walks in k dimensions. As this

is an example where there are infinitely many mistakes we can not obtain an exact

generating function using the Goulden-Jackson M ethod, but we can use the finite

memory approach to see the general pattern. Using a M aple package we developed

called SPG Jdim , which takes into account the symm etry of the mistakes both with

regard to the symmetric group and sign changes, we obtained the following generating

functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

M em ory 2

Here we use the fundam ental mistake [1 ,-1] and the package SPG Jdim to obtain

r (\ + 5
— — 1 — s + 2ks

M em ory 4

The mistakes are now of the form {[1, —1], [1, 2, —1 . —2]} and the generating func­

tion is

1 + 2 s + 2 s2 — s 3 + 2 s 3k
Ms) =

- 1 - 2 s - 2 s 2 + s3 + 2 ks + 2 k s 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M em ory 6

Now we have {[1, —1]. [1, 2. - 1 , -2] , [1,1,2, - 1 , - 1 , -2] , [1, 2, 2. - 1 , - 2 , -2]} as our

set of fundam ental mistakes and our generating function becomes

f 6(s) = —(1 — 24 k s 6 + 7 s7 — 9s8 -F 4s — 4s5 A: — 4A:s19 + 9 s2 + 18/rs4

+ 16k3s 17 - 8k3s 16 - 48k2s 17 + 8 s18A:3 - 16s18 A:2 + 24s16A:2

+ 10s18A; - 26s16A: - 32A:3s 15 - 24A:3s 14 + 92A:2s 15 + 48s14A:2

- 2 s 14A: - 9s4 + 10s3 + 16s5A:2 - 19s5 - 14s13 + 32A;3s9 + 34s17A;

—64s15A: - 8s13A:3 + 17s12 + 8su A:3 - 12s11̂ 2 - 36sl lA: + s 17

+ 10s16 - 3 s15 - 28s14 - 60A:s7 + 36A:2s7 - s 18 - 26s6 + 16s10A:3

+ 14sl0A: - 44A;2s l° + 16s10 + 4s3A: + 102s9A: - 108A:2s9 - 22s9

+28A:2s6 + 60s8 A: — 64s8 A:2 + 24A:3s 8 — 8A:2s 12 + 20s13A:

+4A:2s 13 + 48s11 + 4A:2s 19) / (- l - 32ks6 - 7s 7 + 9s8 - 4s

- 1 8 s 5A: + 6A:s2 - 9s2 - 6A:s4 + 2sk + 6 s l6A: + 4A:2s 15 + 8 s14A:2

—32s14 A: + 9s4 + 4A:2s4 — 10s3 + 8s5 A:2 + 19s5 + 14s13 + 2 s17A:

— 10s15A: - 17s12 - 20s11 A:2 + 64su A: - s 17 - 10s16 + 3 s15 + 28s14

— 12A:s7 + 8k2s~ + s 18 + 26s6 + 22s10A; - 8A:2s 10 - 16s10 + 8s3A:

- 2 2 s 9k + 4k2s9 + 22s9 + 12A:2s6 - 24s8A: + 8s8k 2 - 12A:2s 12

- I 0 s l3k + 3 2 s 12k - 48s11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

As is clearly seen by the case memory' 6 the generating function gets very com­

plicated very quickly, and in fact the current package cannot handle the memory 8

case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

CH APTER 7

SELF-AVOIDING WALK TYPE

PROBLEMS

So far we have looked a t walks tha t are based on unit steps in the available

directions. In th is section we consider the case of a less traditional walker. Specifically

we will look a t the Self-Avoiding Knight. In this example we are allowing steps of the

form {[1,2], [2,1]} and all their symmetries on a two dimensional rectangular lattice.

You will probably recognize these as the legitim ate moves for a knight in chess. W ith

the aid of M aple it is fairly easy to count the num ber of different walks of n knight

steps long th a t never visit the same lattice point twice. In fact you can simply th ink of

this as counting the number of walks of n moves th a t a knight can make on a infinite

chess board w ithout ever visiting the same square twice. We obtain the following

sequence:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

[1,8,56,392,2696,18584]

We are unable to go further due to com puter memory, but what is interesting is

for 1 < n < 5 this exactly agrees with the num ber of regular Self-Avoiding Walks on

a 4-d cubic lattice.

W ith improved memory, it would be possible to see w hether an isomorphism

between the two situations is likely to exist or if this is purely a coincidence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

CHAPTER 8

SUPER k SELF-AVOIDING

WALKS

Super k Self-Avoiding Walks are like self-avoiding walks only more so. In addition

to never visiting the same sight twice, they also never get within j steps of a previously

visited sight once they have gone j steps away from it for 1 < j < k.

The conditions we need for this to be true for a given walk in two dimensions are

l# (l) _ # (-1)1 + l# (2) — # (—2)| > k

and

l# (l) - # (-1)1 + l#(2) - # (- 2) | > j , 0 < j < k — 1 for previous j + 1 steps

For example on the 2-d cubic lattice w ith k = 2 the allowable 3 step walks are

represented by {[1,2,2], [1, 2,1], [1,1,2], [1,1,1], [1,1, -2]} .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

The normal Self-Avoiding Walk can be considered the case k = 0. th a t is to say

that we can get as close as we want to any previously visited sight as long as we do

not visit it. The following table summarizes the number of Super k Self-Avoiding

Walks for 0 < k < 10 and 0 < n < 10, and the corresponding values of //.obtained by

Ziun's m ethod.

Table 8.1: Super k self-avoiding walks.

k 0 1 2 3 4 5 6 7 8 9
n = 0 1 1 1 1 1 1 1 1 1 1
1 4 4 4 4 4 4 4 4 4 4
2 12 12 12 12 12 12 12 12 12 12
3 | 36 28 28 28 28 28 28 28 28 28
4 100 68 60 60 60 60 60 60 60 60
5 2S4 164 132 124 124 124 124 124 124 124
6 7S0 396 292 260 252 252 252 252 252 252
7 2172 940 644 548 516 508 508 508 508 508
S 5916 2244 1420 1156 1060 1028 1020 1020 1020 1020
9 16268 5324 3132 2436 2180 2084 2052 2044 2044 2044
10 44100 12668 6884 5132 4484 4228 4132 4100 4092 4092
1' 2.738 2.378 2.208 2.106 2.027 2.032 2.018 2.006 1.997 1.997

It is d e a r from the table tha t as k increases the number of possible walks decrease

and the rate of this decrease also decreases, th a t is that the effect of increasing k by

1 is more noticeable when k is small than when k is large. It should also be noted

that the effect of k does not appear until the k + 2nd step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

C H APTER 9

SELF-AVOIDING WALKS ON A

HONEYCOM B LATTICE

Previously we have been considering only the trad itional rectangular lattice. In

this chapter we consider the case of a Seif-Avoiding W alk on a Honeycomb L attice as

in Figure 9.1 below.

Figure 9.1: Self-avoiding walk on a honeycomb lattice.

In order to make use of the com puter in exploring the growth of this type of walk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

we must find a notation for describing it. We let the basic steps be {a, b, c, —a, —b, —c}

with the added conditions th a t a. b and c may only be followed by —a, —b or —c, and

that —a. —b and —c may only be followed by a, b or c. Under this notation the example

in Figure 9.1 would be [—c, a, —b, c, —a. c, —a, b, —c, b]

We will let N (t) = th e number of tim es t appears in the sequence for

t € {a. b, c , —a, —b, —c}. Then as in the previous examples of self-avoiding walks it is

easy to see th a t a walk on the honeycomb lattice is self-avoiding if for no sub-sequences

N (a) = iV(—a), N(b) = N (-b) and N(c) = N (- c) . (9.1)

By producing sequences for which 9.1 is true we can apply the Goulden-Jackson

Method using these for our mistakes. Due to memory lim itations we are only able

to obtain the first 13 term s of the sequence a(n). Then applying Zinn’s m ethod we

obtain the estim ate n = 1.899963712 for the connective constant. This does not

improve on the current best upper bound which was obtained by Aim [ALM93] as

H < 1.87603.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

CHAPTER 10

ENTROPY OF A LANGUAGE

In probability entropy is a measure of the randomness of a random variable. For

a distribution with N outcomes the entropy will be greatest when the probability of

each outcome is Thus, the greater our entropy the more evenly distributed our

events are.

D e fin itio n 10.1 The entropy of a discrete random variable X whose ith outcome

has probability pl; is given by

Ar
H (X) = - 5 Z Pi l°SmPi (10-1)

t = 0

where the choice of the base o f the logarithm is one o f convenience.

When considering the entropy of a language we divide the words into blocks of

length k. For example if k = 3 then the word [a, b, c, d, e, / , g, h, i, j , k, /] would be

broken down to [a, 6, c], [d, e, /J, [g,h,i], and [j, k. /]. We will only consider words

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

whose length is a multiple of k. We then count the frequency with which these

blocks occur and thus find their probability. We will look a t two examples in depth

square-free ternary words and then cube-free binary words.

10.1 E ntropy o f Square-Free Ternary W ords

Recall that square-free words avoid any factors of the form x x where x is any non­

empty word. In our choice of base for the logarithm we first considered all possible

ternary words of length k giving us a base of 3*. see Table 10.1.

Table 10.1: Entropy of square-free ternary words w ith base 3fc

! k i 2 3 4 5 6 7 8 9 10
n i

2 | .8155
O \ O | .7540
4 ; ; .8155 .6577
5 I .6192
G | .8155 .7508 .5670
" ! ! .5324
8 j ! .8155 .6564 .4957
9 i ; .7487 .4735
10 i I .8155 .6092 .4524
i l l :

12 j J .8155 .7476 .6567 .5658
13 i
1-1 | i .8155 .5183
15 | ! .7455 .6083
1G .8155 .6571 .4939
17 j j
IS j j .8155 .7450 .5644 .4721
19 1 |

20 | j .8155 .6575 .6064 .4507

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Then as each of ourblocks must autom atically be square-free we used a base of

the number o f square-free ternary words of length k see Table 10.2.

Table 10.2: Entropy of square-free with base the num ber of valid k length words.

k 2 3 4 5 6 7 8 9 10
n
2 1.000
3 1.000
4 1.000 1.000
5 1.000
6 1.000 .9959 1.000
7 1.000
8 1.000 .9980 1.000
9 .9931 1.000
10 1.000 .9838 1.000
11
12 1.000 .9915 .9984 .9979
13
14 1.000 .9734
15 .9888 .9824
16 1.000 .9991 .9964
17
18 1.000 .9882 .9954 .9970
19
20 1.000 .9996 .9794 .9962

Com paring these two tables we can see th a t once we allow for the fact th a t only

certain blocks of length k can possibly occur the entropy of square-free te rnary words

is close to 1. This shows th a t the square-free blocks of length k are fairly evenly

distributed throughout the words.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2 E ntropy o f C ube-Free B inary W ords

A cube-free word avoids any factors of the form x x x where x is any non-empty

word. In our choice of base for the logarithm we first considered all possible binary

words of length k giving us a base of 2*. see Table 10.3, then as each of our blocks

must automatically be cube-free we used a base of the num ber of cube-free binary

words of length k, see Table 10.4. The results are summarized in the following tables,

as usual n represents the length of the words.

Table 10.3: Entropy of cube-free binary words with base 2k

| A- 2 3 4 5 6 7 8 9 10
n
2 j i 1.000
3 i : .8617
4 i .9855 .8305
5 ; .8000
c ; ; .9820 .8617 .7642
/ i i .7386
S ! .9772 .8275 .7259
9 ; ! .8617 .7024
10 i i .9738 .7932 .6883
l i i i
12 ! ! .9712 .8617 ..8233 .7594
i d ; i

11 ! .9696 .7346
15 j 8617 .7886
10 ; .9686 .8207 .7156
17 '
IS 1 .9679 .8617 .7563 .6993
19 ; i
20 : i .9672 .8192 .7858 .6852

Comparing the two tables for cube-free words we again can see that once we allow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Table 10.4: Entropy of cube-free with base the number of valid words of length k

k 2 3 4 5 6 7 8 9 10
n
2 1.000
3 1.0000000000
4 .9855 1.000
5 1.000
6 .9820 1.0000000000 1.000
i 1.000
8 .9772 .9964 1.000
9 1.0000000000 1.000
10 .9738 .9916 1.000
11
12 .9712 .9999978390 .9913 .9938
13
14 .9696 .9955
15 .9999965264 .9857
16 .9686 .9882 .9857
17
18 .9679 .9999967883 .9897 .9956
19
20 .9672 .9865 .9823 .9955

for the fact th a t only certain blocks of length k can possibly occur the entropy of

cube-free binary words is close to 1. This show’s th a t the cube-free blocks of length k

are fairly evenly distributed throughout the words.

In contrast to the square-free case, where for block length 2 the entropy was 1 for

all n (see Table 10.2), implying th a t the square-free blocks

[0,1], [0. 2], [1, 0], [1, 2], [2,0], [2,1] all occur with equal frequency in the cube-free case

with block length 3 we see a slight deviation from 1 (see Table 10.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11

APPLYING THE

GOULDEN-JACKSON M ETHOD

TO A PROBABILISTIC

SITUATION

11.1 T he Formula

The work of Noonan and Zeilberger to apply the Goulden-Jackson M ethod to

various situations can be extended to a probabilistic situation in the following way.

In Chapter 1 the generating function for words th a t avoid a certain set of bad

words was found to be:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ (s) 1 - ks - w eight(C) (1L1)

where k is the num ber of letters in the alphabet used and w eight{C) the weight

of the clusters formed by bad words.

We extend this equation to include the following information:

1. The probability for each letter being in the first position. y[a\.

2. The conditional probability for each pair of letters, t[a,b}.

And the new' equation for the generating function is:

T h e o re m 11.1

r, \ r i x[a] + w eight'(C a)f (s) = 1 + X > a ----- = - - - L J ------ * , . , (n , 11-2
1 - llb e v x l6J “ llb e v w eight'(C b)

P ro o f: Clearly if we let L(B) be the set of words that avoid all bad wrords then

f (s) = weight{\\) + E E w eight{w)
agV w£L(B),w=au

= 1 + ^ weight(w)
a£V' w^La(B)

where L a(B) represents the set of good w'ords th a t begin with the letter a.

Now the goal is to find / Q(s), th a t is the generating function for all good words

that s ta rt with the le tter a for each a € V. As all words in f a s ta r t with a their

weight includes the factor y[a] so we define weight’(w) = u,eî (— . We now have

/(«) = l + ^ y [a] / ' (5) (11.3)
aev

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

/ '(s) is the generating function for the members of L a(B) using w eight1.

Now we use the ideas described in C hapter 1 to find f'a(s).

Let M a be the set of marked words th a t start with the letter a, M the set of

marked words. Ca the set of clusters beginning with a, and g(s) = weight'(w).

Also note th a t / ' = weight!{w).

Now if w € M a then one of the following is true

• w = a

• w s ta rts with an a th a t is not part of a cluster

• w is a cluster starting with a

• w s ta rts with a cluster beginning w ith a

This results in the following:

\ I a = a U a M U Ca U C aM , and

M = UagV'A/« = V U V M Ua6V- Ca Ua6V- CaM

Hence.

/ ' = x[a\ + x[a]G + weight'(Ca)G + w eight'(C a)

g = ^ x[b\ + x[b\G + weight' (Cb)G + weight' (Cb)
bev bev bev bev

By solving the second expression and substituting it into the first we obtain

i [a] + weight! {Ca)
H b e v x [b] ~ IZb&vwei9ht'{Cb)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and finally we obtain f (s) by substitu ting this into equation 11.3.

□

We will now look a t an applications of this m ethod th a t analyzes the relationship

between vowels and consonants in a sample of English.

11.2 Vowels and C onsonants

To obtain d a ta we took the list of English words from Unix and converted them

to Maple format. VVe substitu ted .4 for every vowel and B for every' consonant. This

gives us a large d a ta set th a t is easily handled. From this d a ta we were able to find

the generating function produced when certain patterns are avoided. The coefficient

of s n in this generating function is the probability th a t a word of length n avoids the

mistakes pattern as a factor.

Clearly if we do not define any bad patterns then our generating function is — tty

and if we avoid both [̂ 4] and [B] then f (s) = 1, as we cannot find any words containing

no vowels and no consonants. Interestingly if we avoid ju st vowels, /U (s), or just

consonants / s (s) , we do get non-trivial generating functions, and for each length we

find the likelihood of finding a word with no vowels higher than for finding one with

no consonants. This makes sense because there are more possible consonant pairs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

than vowel pairs and statistically they are more likely.

1 160824891s + 383780432
/ a (s) =

f B{s) =

5017 30077s - 76496
1 13756751s + 257020910

5017 6877s - 51230

We see a similar situation when we look a t words avoiding [.4, .4] { / a a { s)) and

those avoiding [B , B\ (/ b b (s)) . Again the probability of finding a word w ith no vowel

pairs is higher than the probability of finding one w ith no consonant pairs. Just

looking a t the previous sentence we can find very few words with vowel pairs, and

alm ost all the words contain consonant pairs.

1 1105992775407s2 + 11930653621290s + 19661071531360
5017 2058851907s2 + 1540844710s - 3918890080

1 413761799827s2 + 17021813500496s + 19661071531360
5017 2058821907s2 + 526062992s - 3918890080

The same scenario occurs when we avoid blocks of three vowels or three conso­

nants. In fact the probability of finding a word of length n tha t avoids three vowels

in a row is close to 1 for all n. This makes sense as it takes most people a couple of

moments to th ink of a word with 3 vowels in a row (conscious is an example), but 3

consonants is not a problem (there are 3 examples in th is sentence).

The results are summarized in the following table for 0 < n < 8.

f . A A (s) =

I b b (s) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Table 11.1: Probability of avoiding vowel and consonant patterns.

0 1 2 3 4 5 6 7
none 1 1 1 1 1 1 1 1
A 1 .812 .319 .126 .0494 .0194 .00763 .00300
B 1 .188 .0252 .00338 .000454 .0000610 .818 * 10~5 .110* 10"5
A A 1 1 .975 .909 .869 .819 .779 .737
B B 1 1 .681 .617 .440 .383 .283 .239
A A A 1 1 1 .997 .988 .982 .975 .969
B B B 1 1 1 .874 .849 .780 .732 .683

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

CHAPTER 12

CYCLIC WORDS

Previously we have only been looking a t linear words. Those are words for which

there is no interaction between the end of the word and the beginning. For cyclic

words on the other hand there is such an interaction. They are like necklaces.

In order to explore such words we will write them as a linear word (like an un­

clasped necklace), bu t we will have to analyze the interaction between the s ta rt and

the end of the word.

12.1 T he N aive A pproach

In the linear case the Naive Approach required tagging words by their endings

(see [NZ99]). For the cyclic words we will tag words by both their beginning terms

and their end terms.

For example if we are looking at sub-blocks of length 2 we would say [a, n, n, e] €

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

{words th a t begin with[a, n]and end with[n, e]}.

We let W[[-u/i,. . . . Wk], [t-'i.. . . . u*]] represent the linear weight of all words that

begin with [wi , . . . , u;*] and end with [i/i,. . . , u*]. Then it is easy to see th a t

U ' f f W i , . . . ,U7fc], .U/fc]] = W [[w 2 , . . . , U7 * , Q] . [P , V i , . . . , U * _ i]]
a € V ,0 e V
k

* IT x [W l- • • • ’ • - • t?fc] initial term s.
1 = 1

Where the initial terms are: x[w\ , . . . Wk) if [w i,. . . Wk] = [uj., - - • w*], and x [w \, . . . Wk, u*]

if [w2, . . . w k] = K , •. .t/fc-i]

We then solve this system of equations and obtain the generating function in the

following way.

9f := £ W [u.’. u] * overlap(w, v) + (term s of length < k)
w , v £ V ‘ : l (w)=l (v)=k

Here the overlap(w , v) refers to the weight caused by doing up the necklace.

overlap(w. v) = n f = 2 x ivi ■ ■ ■ • > wi-> • • • > ^ - i]

As in the linear case we are not taking advantage of the fact tha t we avoid the

bad blocks until the end.

12.2 T h e Edlin Zeilberger E xten sion

Here we take advantage of the Goulden-Cluster M ethod to do most of the work

for us. W hen looking a t cyclic words which contain bad clusters there are three

possibilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

C ase 1: The cluster does not cross the “invisible” clasp of the necklace. T h a t is

th a t the cluster does not contain a mistake tha t contains both the first and last letter

of the word. This is equivalent to a linear cluster as discussed in Chapter 1, as if we

undid the clasp it would no t affect the cluster. This gives us the generating function

(1 2 - l)

where L = w eight (C lu sters).

C ase 2: Here the cluster may cross the clasp, but it does not make it all the

way around, so th a t we can break the necklace a t some point w ithout breaking the

cluster. This is then a translation of the first case and it can easily be seen th a t in

this case the generating function is given by

C ase 3: This is the case th a t truly extends beyond the Goulden-Jackson M ethod.

We now look a t clusters th a t wrap all the way around the necklace. It is impossible

to break the necklace anywhere without breaking the cluster. To count these cluster

we set up a m atrix .4 th a t shows the interaction between each of the bad words. T hat

is .4[z,_7']=the sum of the weights of all possible overlaps from mistake i to mistake j .

Now in order to make sure th a t no cluster is counted twice we must find a way to

identify the “first” m istake in the cluster. We do this by labeling the first le tter of

the imbedded word and it can only be one of the letters tha t stick out from the last

mistake. For example if the end of the cluster was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

ci n n 0 , . then any of the last four letters could be the initiale d 1 1 n J

letter of the word. In general this will result in m possible starting points if the word

provides additional weight of sm to the cluster, or more simply s ̂ (w e ig h t).

From this we obtain a new m atrix B in the following way:

B = £ - v | . 4 (12.3)
r = l

A - s ^ -A (12.4)
I — A ds

The last step is to remove those words th a t are too short. For example if one of

the mistakes is [1,1,1] then we will get [1,1] as a bad word, because at this point

the procedure is unable to realize th a t it has counted the same 1 twice. To deed with

this we simply remove the lower terms of the power series of all the diagonal terms

(these are the ones that s ta r t and finish a t the same mistake, and so the ones we are

interested in). Let us define a function Chopr tha t does this. If our mistake i has

length li then

00 OO

Chopr(m istakei) = ChopT(^~ ' ats*) = £ ats l (12.5)
£=0 £=/,

This results in the generating function for case 3 of

n

Y C h o p ^ i (12.6)
£=i

T h e o re m 12.1 The generating function fo r cyclic words whose first letter is marked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

over a k letter alphabet and which avoid a set o f n mistakes as factors is given by:

+ ' £ c h °p ‘-u « - (i 2 j)
i = l

P ro o f: Combine Equations 12.1, 12.2 and 12.6.

□

12.3 C yclic B u rste in -W ilf

The m otivation for finding general formulas for cyclic words with labeled first

letter comes from Burstein and W ilf’s wonderful discovery of a general formula for

words avoiding blocks of the form a “,+1 [BYV97]. Their form ula is:

,k , . 1 — sw , w + 1 — w ks w + 1
f w ~~ 1 - s (+ (”)S(1 - ks + (k - l j s ^ 1 “ 1 - s'"-*"1 ̂ *

You will recall in C hapter 5 we looked a t the linear analog of this. The package CGJ

which implements the above method can verify Equation 12.8 for any specific k. By

performing the work by hand it also possible to verify for general k using the above

method for Case 1 and 2 and some thought for case 3.

12.4 C yclic a m(3n

Recall from C hapter 5 th a t we are trying to avoid blocks of m a 's followed by n

3's in this example. The linear case was discussed in th a t chapter, here we look at

the cyclic case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

The Maple Package CG J was used to obtain formulas fo r all triples of 2 < m , n, k <

5. First formulas for fixed k were deduced and then from these a formula for general

k was conjectured as

min(n,m) —1

f m , n (s) = - (((k(k - l f t (m + Tl)
t = 1

- c | (* - 1 f k t + i (* - 12)(* + 2))()s2r71+2n-(-1}
min(m.n) —2

+(^ (((A: — l)2k t — k(k — 1)) m ax(n , m)
t = i

+ (| (* - 1)2k t - i(/b - 1)2(A: + 2))t + k — 1)sm+n+t)

4-k(k — l)(m + n — l) s m+"

- (k - l)(m ax(n , m) - 1) + (k - l) 2)s2rnax(n'm)
min (m ,n)

~ (k ~ 2)(s"1* ""4) - 1
«=i

min(m.n) — I

+ (^ 2 s2max(n’m)+*(((fc _ \)2kt — fc(k — 1)) max(m, n)
t = i

+ (* - 1) (i* (* - 1)(2 - (i* (* + 1) - l) t + 1)))
mi n (m ,n)—2

— (■sm+n‘,"<(((A: — l) 2A:f — k(k — 1)) max(m, n)
t=i

+ (* - 1) (i* (* - l) t2 - (i*) * + 1) - l) t + 1))))
min(m,n)

/ (((s”,+”- ‘) - l)
£=1

m in (m ,n)—1

((A: — 1)2(^ s™+"-‘) _ (f c - - 1 + A:s))
£=1

The situation for Case 1 and 2 is fairly easy to prove, in fac t most of the work for it

is done in the linear case. Case 3 is more difficult and curren tly is purely conjecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

CHAPTER 13

THE LAST WORD

In this dissertation we have looked a t several classes of words from both a combi­

natorial perspective and a statistical viewpoint. As there is no general way to count

words that avoid infinite sets of mistakes the knowledge of the sequences discussed is

lim ited by com puter memory and the efficiency of the algorithm used. This means

th a t there is still much to learn about these topics.

Self-avoiding walks are studied by both m athem aticians and physicist and the

exact value of // is regularly being refined. In the case of cyclic sequences the work

has only ju st begun, and there is much more exploration to be done using GJcyc as

a starting point. It is hoped tha t more general equations of the Burstein-W ilf type

will be produced by further study.

In this dissertation we have only discussed one application to a normal language

(Probability of vowel and consonant runs in English), bu t there is much more to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

studied, and the relations between m athem atics and the field of statistical linguistics

have not been made. There is also the relationship between formal languages [RE83]

and the m athem atical objects to be explored.

So many objects can be considered as words from our DNA to the structure of

crystals th a t their study can help us learn much about the world around us, and

though some patterns have yet to find real world applications in these days when

more words are transferred by zeroes and ones than by letters it is only a m atter of

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

[ALM93]

[BRA83]

[BRI83]

[BVV97]

[FI99]

[GJ79]

[MS96]

[XZ99]

[RE83]

[ZE98]

REFERENCES

Aim, S.E. 1993. Upper Bounds fo r the Connective Constant o f Self-
Avoiding Walks. Combinatorics, P robability and Com puting 2, 115-136.

Brandenburg, F .J. 1983. Uniformly Growing k-th Power-Free Homomor-
phisms. Theoretical Com puter Science 23, 69-82.

Brinkhuis, J. 1983. Non-Repetitive Sequences on Three Symbols. Quart.
J. M ath. Oxford 2, no. 34: 145-149.

Burstein, A., and Wilf, H.S. 1997. On Cyclic Strings W ithout Long Con­
stant Blocks. Fibonacci Q uart. 35, no. 3: 240-247.

Finch, S. 1999. Pattern-Free Word Constants.
h ttp ://w w w .m athsoft.com /asolve/constant/w ords.w ords.h tm l

Goulden, I.P., and Jackson, D.M. 1979. A n Inversion Theorem fo r Cluster
Decompositions o f sequences with D istinguished Subsequences. J. London
M ath. Soc. 2, no. 20: 567-576.

Madras, N., and Slade, G. 1996. The Self-Avoiding Walk. Birkhauser,
Boston.

Noonan, J., and Zeilberger, D. 1999. The Goulden-Jackson Cluster
Method: Extensions, Applications and Im plem entations. J . Difference Eq.
Appl. 5 : 355-377.

Revesz,G. E. 1983. Introduction to Formal Languages. Dover, New York.

Zeilberger, D., Ekhad, S.B. 1998. There are more than 2nU7 n-letter
Ternary Square-Free Words. Journal of Integer Sequences. 1 : Article
98.1.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mathsoft.com/asolve/constant/words.words.html

