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A B S T R A C T

EXTENSION'S AND APPLICATIONS OF TH E GOULDEN-JACKSON M ETHOD 

TO  SELF-AVOIDING WALKS, SQUARE AND CUBE FREE W ORDS, 

PROBABILITY. ENTROPY, CYCLIC W ORDS AND RELATED SEQUENCES

Anne E. Edlin 

D O C TO R OF PHILOSOPHY

Temple University, August, 2000 

Dr. Doron Zeilberger, Chair

This dissertation will explore the combinatorial and statistical properties of various 

classes of words. The words studied will include both English words and more abstract 

m athem atical objects including square-free words, cube-free words and self-avoiding 

walks. In addition to these linear words, we will also explore cyclic words. The study 

of words has applications to genetic theory and Crystallography.

The linear words will be analyzed from the perspectives of lim iting behavior, 

entropy and generating functions. Noonan and Zeilberger’s im plem entations of the 

Goulden-Jackson M ethod will be expanded to analyze both the  enum eration of linear 

words, and the probability of their occurrence. The limiting behavior of these objects 

is of great interest at this tim e. As recently as August 1998 Ekhad and Zeilberger 

improved Brinkhuis and Brandenburg’s lower bounds for the ‘connective constan t’ for
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ternary square-free words. This dissertation will adapt their work to  the  situation of 

binary cube-free words.

Self-avoiding walks will be explored on the rectangular and honeycomb lattice. 

The inter relation between these walks and other avoidance patterns will be explored 

and bounds will be obtained for these cases.

In the case of cyclic words we will adap t the Goulden-Jackson m ethod to this 

situation and expand on the results of Burstein and W ilf regarding cyclic words that 

avoid long constant blocks.
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1

CH APTER 1 

SEQUENCES OF W ORDS

1.1 W ords

Words surround us, not ju s t in the literal sense of the words on billboards, road 

signs, cereal packets, in books and magazines, but also in a more abstract sense. 

Our DNA is defined by a word over the language of nucleotides. The bar codes on 

our groceries are words in the computer language of zeroes and ones. Further, in 

m athem atics there are words tha t avoid certain patterns, such as repeating blocks, 

and some tha t have applications in such areas as the s tudy  of linear polymer molecules 

in chemical physics.

In order to explore the behavior of such a wide range of words, we must first 

introduce a format by which words are defined and some basic terminology th a t will 

be used throughout this work. My choice of notation is based on my frequent reliance
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2

on Maple to perform  calculations.

N o ta tio n  1.1 Let V  be the alphabet over which our language is defined.

E.g. in English V  = {a ,b ,c ,d ,e , f , g , h , i , j , k , l , m , n , o , p , q , r , s , t , u , v , w , x , y , z } .  In 

computing V  — {0,1}.

D efin ition  1.1 A  w ord, w, over the alphabet V  is an ordered sequence of letters

from V , w =  [u/i, U/'2 , •••, ^n] where Wi € V  fo r  1 <  i < n.

E.g. the English word “alphabet” becomes [a ,l ,p ,h ,a ,b ,e , t] .

N o ta tio n  1.2 V* is the set o f all possible words over the alphabet V.

D efin ition  1.2 A  factor of w is any of the ( " j 1) possible sub-sequences 

[u;,, Wi+i,. . . .  Wj\ where 1 < i < j  < n.

Thus [a, I, p], [/i, a] and [6, e, t] are all factors of [a, Z, p, h, a, b, e, t].

N o ta tio n  1 .3  The em p ty  w ord is considered to be a factor o f  all words and belongs

to V'“ for every V . I t  will be denoted [ ].

D efin ition  1.3 The len gth  of a word l{w) is the number o f  letters in the word, 

counting multiplicity.

E.g. l([a. I, p, h , a, b, e, Z]) =  8. Note /([ ]) =  0.

N o ta tio n  1 .4  wu represents the juxtaposition o f  the two words w and u.
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N o ta t io n  1.5 I f W  and U are sets o f  words and u a word then W u  =  {wu  : w £ W }

and W U  =  {wu  : w £ W.u £ U}.

One of the main areas of research into words is their lim iting behavior. T ha t is if an 

is the number of words in our language of length n we want to find n  :=  lim ^oc anx/n. 

if it exists.

Clearly if no constraint is put upon our choice of words and if k  is the number of 

letters in our alphabet V  then an =  k n and hence /z =  k. This leads us to believe our 

quest for lim its will not prove fruitless.

Often it is useful to use the model a,, =  n6n n. Zinn’s m ethod can be used to 

obtain good approximations of this type.

1.2 A void ing th e  B ad

Most of the sequences {an } considered in this text are ones whose words avoid 

specific factors. We consider the factors we wish to avoid as the bad words (or 

mistakes), and the set of all such words will be denoted B. The set of all bad words 

up to length m  will be denoted B m. W hen the set of bad words is infinite we often 

consider the m e m o ry  m  case by using B m as our set of mistakes.

As an example consider the case of binary square-free words, th a t is words over 

a two letter alphabet th a t avoid any non-trivial factor being repeated directly after 

itself. In this case B A =  {[0,0], [1,1], [0 ,1 ,0 ,1], [1,0,1,0]}.
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It should be noted th a t B  and B m are always minimal in the sense tha t no member 

of B  (or B m) is a  factor of any other member of B {or B m). In the above example 

note [1,1,1,1] is om itted  from B4 because it contains [1,1] as a  factor.

In fact in th is  case B  =  B4 and an = [1, 2 ,2 ,2 ,0 ,0 ,0 , . . . ] ,  which is not a  very in­

teresting sequence. The more interesting case of ternary  square-free words is discussed 

by Noonan and Zeilberger [NZ99].

1.3 Subadditive Sequences

Many of the sequences we will be discussing are sub-m ultiplicative. T h a t is th a t 

Qn+m <  a„am. In sequences where an ^  0 we have th a t log(an+m) <  log(on) + log(am) 

which shows th a t the sequence {7o<7(a„)} is subadditive (Cn+m <  +C™). This fact

can be used to  show th a t the g  exists and is in fact the inf aJ^n

L e m m a  1.1 Let {c„} be a subadditive sequence o f real numbers. Then the lim ^ o o  ^L 

exists and equals inf„>!

P r o o f o f  Lem m a: Let Ck =  m axi<r<kCr- Then for any given n  we can find j  such 

tha t n = j k  + r w ith 1 <  r  <  k.

Using the subadditiv ity  of {c„} we obtain

n
C n <  j C k + C r  <  T Ck +  C k
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Then we divide bo th  sides by n  and take the lim s u p , , .^  to  obtain

lim sup — <  l im s u p (^  +  — ) <  ^  
n—+ 00 n n—»oc k  n k

Finally we take the liminfjt-»oc and obtain th a t the lim sup <  lim inf thus proving the

lim it exists.

As the limit exists it equals the lim sup and so as this is less than ^  for ail k  we 

obtain

.. c O71lim — =  inf —n—>oc n n> 1 n

□

T h eorem  1.1 I f  {an} is a sequence of positive terms fo r  which an+m < then

H =  limn^oo an " exists. Further p. < an * .

P roof: As discussed above < OnOm implies tha t the sequence {logo,,} is

subadditive. This means log /1  =  lim ,!-^  lo&-n =  lim,^,*, log a£ exists and further 

log =  inf„>i =  inf„>i loga„ n ^  log an n for all n. This gives the required

results.

□

1.4 T he N aive A pproach

A t this point we are only considering linear sequences. Later we will investigate 

the case of cyclic sequences.
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For any given word we define its m —weight a t follows:

Wm(w) =  sn x[v\,
v £ V

where v extends over all the factors of w  for which l(v) < m.

For example the 3-weight of the word apple would be 

s5x{a]x\pfx[l\x[e\x[a, p]x[p, p\x\p, l\x[L e]x[a, p, p]x\p, p, l]x\p, I, e]

Then if x[v\ — 1 the coefficient of sn will give us the number of words of length 

n and if x[w] =  Probability(u) then we obtain the probability of finding a word of 

length n. The first case is considered in most of the following chapters. The second 

case is discussed in C hapter 11.

This means are goal becomes to find the generating function th a t has all words of 

length n (or often ju st the number of them) that meet our criteria as the coefficient 

of sn. When we consider probability we will be using the 2-weight of the words, but 

in general we will only consider the num ber of words of length n  and not how they 

are made up.

One m ethod for doing th is is to use a m atrix, A, to analyze the interaction between 

all possible blocks of length m  then by taking (1 — A )-1 and adding all the result­

ing entries we obtain a generating function for all words over the chosen alphabet. 

We then set any blocks th a t are disallowed equal to zero and obtain the generating 

function for the desired set of words.

We call this method the Naive Approach because it produces all possible words 

without taking into account the bad words until the very end. For example if we
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were to take the English alphabet and look for all words th a t did not contain any 

bad “4-letter” words we would need a m atrix  th a t was 264 by 264. and worse yet need 

to find the inverse of such a matrix, a very slow task, even for a  com puter. Thus this 

approach is only useful in very small cases and as a  check for our clever techniques, 

like the Goulden-Jackson Method.

1.5 T he G oulden-Jackson M eth od

One m ethod used throughout this dissertation is the Goulden-Jackson Cluster 

M ethod [GJ79]. This m ethod can be used to find the generating function f ( s ) =  

ans " for words th a t avoid certain mistakes. In many cases we can not find f ( s )  

explicitly as we are looking at infinite sets of mistakes, but we can obtain f m{s) (the 

memory m  scenario) which gives correct values for an when n  < m  and good over 

estim ates for n > m,  as it only considers mistakes up to  length m.

We will discuss briefly this method, for a more in depth explanation and some 

applications see [GJ79].

If L ( B ) represents the set of words th a t avoid any of B  as factors, Bad(w)  denotes
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the set of factors o f w  that belong to B  and N (w )  =  \Bad{w)\ then 

f ( s ) — 53 weight(w)
weL(B)

=  5  weight{w)0A(u,)
w e v -

=  5 3  weight(w)(  1 -+- ( —
loev

w e v -  t=o  ̂ ‘
Xf(w)

= 3̂ weight(w ) 3̂ (number of subsets of Bad(w)  of size i ) ( —1)‘
w e v -  t=o

= 5  ^ weight(w) 5 3  ( —1 )^
weV- SCBad(w)

=  53 s ‘( w) E  (-1)151’ (L1)
weV-  SCBad(w)

where 0° =  1 and we are only considering the num ber of words, not their m-weight.

We now m ark the  words by the  overlapping mistakes in them  and call the set of

all marked words M  =  E «,ev  EscsaiKwjC^i ^ ) .

For example if B  =  {[a,p], [p,p, Z], [p, Z, e]} and we take the word [a, p, p, Z, e] we obtain 

the following m arked words: ([a, p, p, Z, e];), ([a, p, p, Z, e]; [1,2]),

([a,p, p, Z, e]; [2,4]), ([a ,p ,p , Z, e]: [3, 5]), ([a ,p ,p , Z, e]; [1,2], [2,4]),

([a,p, p, Z, e]; [2,4], [3,5]), ([a ,p ,p , Z, e]; [1, 2], [2,4], [3, 5]). Where the indices refer to the

position of the m istakes and are ordered so th a t the end of each marked block exceeds 

the end of the previous block. T he m inim ality of the  set of bad words assures us th a t 

the s ta rt of each block also exceeds the  s ta rt of the previous block. These are called 

c lu s te rs .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here is one of the clusters: 
a p p l e
a p

P P 1 
p 1 e 

Then equation 1.1 becomes

/w = Y  s““,,(-i)|S|
(ui,s)eM

We now note th a t every marked word is either the em pty word, ends in a cluster 

or ends in a le tter th a t is not part of a cluster so letting C  represent the clusters, and 

recalling M  are our marked words and V  our alphabet of size k  we have

M  =  {empty word} U M V  U M C.

Taking weights in this equation we obtain

f ( s )  = l + f ( s ) k s  +  f ( s ) w  eight (Clusters)

W hich yields

^   ̂ 1 — ks  — w eight(C lusters ) (l-^)

So now we need only find the weight of the clusters.

F irstly note th a t we can divide up the clusters by the last m istake in them so th a t 

if we let W(C[v]) represent the weight of the clusters ending in v then

weight (Clusters) =  ^  W(C[v\)
v € B

Now when two mistakes overlap the additional contribution to  the cluster is 

( u : v ) =  n u m b e r  of new letters in v not in u  ) For examp le in the cluster above
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([a.p] : [p.p, /]) =  s2 and ([p.p./] : [p,/,e]) =  s. We must in fact consider every 

possible overlap i.e. ([1,1,1] : [1.1.1]) =  s2 +  s, and if two words do not overlap 

(u : v) =  0. Then we have

W(C[v\) =  —weight(v ) — : u)W (C[u]) (1-3)
ueB

T h e o re m  1.2 (The Goulden Jackson Method) Given a set o f bad words B the num ­

ber of words o f  length n that avoid these words as factors is given by the coefficient 

of s n in

f ( s )  = ------------------ -------------------
1 — ks  — weight {Clusters)

where

weight (Clusters)  =  ^  W(C[v\)
ueB

and

W(C[v}) =  —weight(v) — u : u)W (C[u])
ueB

A n E xam p le o f  A pplying th e  G oulden-Jackson  M eth o d

Let our alphabet be {a, 6} and our bad words be {[a, a], [b, 6]}.

Then

W(C[a, a]) =  —s2 -  sW (C[a, a])

W(C[b,b\) = - s2 -  sW (C[6,6]),
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and  solving we obtain

So th a t

as would be expected.

11

W (C[a,  a]) =  - f -  
1 +  s

W-(C[6,6]) =  -ZfL
1 +  s

m  =

1 — s

1 +  2s +  2s2 +  2s3 +
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C H A PTER  2 

BINARY CUBE-FREE W ORDS

2.1 Introduction

Let us now look closely at a specific non-trivial example.

D efin itio n  2 .1  A word zs cu b e-free  i f  it contains no factors o f the fo r m x x x ,  where 

x  is any non-em pty word.

E.g. The cube-free words of length 3 over the alphabet {a, 6} are 

{[a, a, 6], [a, b, a], [a, b, 6], [6, a, a], [6, a, 6], [6, b, a]}

My Maple package Cubefree (available from 

h ttp : //w w w .m a th .te m p le .e d u /~ a n n e /c u b e fr e e .h tm l) can be used to  derive 

cube-free words over any given a lphabet up to  the required length. The number 

of binary cube-free words of length a t  most n for 0 <  n  <  47 are given below.
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These results were obtained by applying the Goulden-Jackson M ethod with all 

cubes of length at most 45 as the input mistakes.

2.1.1 T he Sequence o f  B in ary  C ube-Free W ords o f  length  up  

to  47

1. 2. 4. 6. 10, 16, 24, 36, 56, 80, 118, 174, 254, 378, 554, 802, 1168. 1716. 2502, 

3650. 5324. 7754, 11320, 16502, 24054, 35058, 51144, 74540, 108664, 158372, 230800. 

3364S0. 490458, 714856, 1041910, 1518840, 2213868, 3226896, 4703372. 6855388, 

9992596. 14565048, 21229606, 30943516, 45102942, 65741224, 95822908. 139669094.

2.1.2 T he ‘C on n ective C o n sta n t’

Let a n be the number of cube-free words of length n. Brandenburg [BRA83] 

proved th a t for n > 18

2 x 1.080n <  2 x 2? <  a n <  2 x 1 2 5 1 ^  <  1.315 x 1.522n

Thus 1.0S0 < ii <  1.522

L e m m a  2.1 {an} is sub-multiplicative.

P ro o f: Given a cube-free word of length n +  m  if we split it into the first n letters 

and the last m  letters both of these words must be cube-free or the original word was 

not. Hence cin+m < aTlam.
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It is also worth noting th a t when we adjoin two cube-free words we do not neces­

sarily obtain a  cube-free word so this is not a multiplicative sequence.

By Theorem 1.1 we know that p  =  limn_).0 0 a i/n exists and p  =  lim in f^ -^  an.

□

Using the ‘memory-45’ analog (i.e. the corresponding sequence tha t enumer­

ates words th a t avoid cubes x3, w ith length(x) < 15), th a t was generated us­

ing the Maple package, up to word-length 300, we find the rigorous upper bound 

(j. < 1.457579200596766, which improves on Brandenburg’s result.

Using Zeilberger’s implementation of Zinn’s m ethod obtained from his Maple 

package GJsqfree (available from h ttp ://w w w .m ath .tem ple .edu /~ zeilberg /), we also 

found tha t, assuming that an ~  nefin, then n  «  1.457, and 6 % 0. Hence it is 

reasonable to conjecture th a t ~  /j,n, where fj. :=  lim„_fooa y n «  1.457.

2.2 Low er-Bounds and th e  Brinkhuis M eth od

2.2.1 Lower B ou n d s for Square-free T ernary W ords

Jan  Brinkhuis [BRI83] obtained a lower bound for the num ber of square-free 

ternary words in the following way. He found a pair of words, 6*0, U0, on {0,1,2} 

and from these formed 6 1 , U1 and U 2 ,V 2  all with the following property. If W  is a 

square-free word over {0,1,2}, and 5(IU ) is obtained by replacing all the 0’s in W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.math.temple.edu/~zeilberg/


15

with UO or VO, the l ’s w ith U 1 or V'l and the 2’s w ith U2 or V2  then S(W ) is also 

square-free.

L e m m a  2 .2  (Brinkhuis) I f  we can find. UO, V'O, U 1, V I ,  U2, V2 that satisfy the above 

condition and are of length k then [i > 2 *=*.

P ro o f: As we have two choices of what to  substitu te  for each of the letters of W

O-kn >  2nOn

Thus

> 2Hah*

and taking the limit with respect to n  we obtain

H > 2

which simplifies to

t* > 2 ^

□

Brinkhuis chose words th a t were palindromes and obtained U 1 from UO by adding 

1  mod 3 to  each letter of UO, U2 is obtained from UO by adding 2 m od 3 to each 

letter of UO, likewise for V'l and V2. He found (by hand) such a Brinkhuis pair (UO 

and VT)) of length 24. Giving lower bound of /z >  2 ^  =  1.030595545
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Zeilberger and Ekhad [ZE98] removed the palindromic requirement and com put­

erized the search for good pairs. They thus found a Brinkhuis pair of length 18, and 

so improved the lower bound to /x >  2iV =  1.04162.

In their paper Zeilberger and Ekhad note th a t the relationship between C/0, C/1 

and C/2 and VO, V I and V2  is not necessary, and it is with this comment in mind 

th a t we begin our adaptation of the  Brinkhuis m ethod to cube-free words.

2.2 .2  Lower B ounds for C ube-Free B inary W ords

T h e o re m  2.1 The number of n-letter binary cube-free words is greater than 2"/8.

This result can be obtained as a corollary of Brandenburg’s result, but as our 

m ethod is different from his we will give the full details.

The goal is to find binary words UO, C/1, V'O, VT of minimal length such that if we 

take a cube-free word W  over the alphabet {0,1} and substitute UO or VO for the 

zeros and U 1 or VT for the ones the resulting word *S(1V) will also be cube-free.

L e m m a  2.3 //C/0, V'O, C/1, and V'l satisfy the following conditions and i f W  is cube- 

free then S(1V) is cube-free.

1) All legitimate triples o f UO, VO, C/1, V I are cube-free

2) None ofUO, VO, C/1, V I are non-trivial factors o f all the possible pairs ofUO, VO, C/1, VI 

P ro o f:
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Clearly as C/0, VO, C/1 , and V'l meet condition 1 then if W is cube-free and of 

length at most 3 then S(VV) is cube-free.

So if S(VV) contains a cube it has length greater than 3. For such a word to  contain 

a cube the pa tte rn  of a t least one of C/0, VO, C/1, and V I must be repeated elsewhere in 

S(H '). If every time such a repetition occurs it is as C/0, VO, C/1, and VI respectively 

then the original word W  cannot have been cube-free (contrary to assumptions). So, 

the only way the repeat can occur is as a factor of a pair of concatenated words, but 

condition 2 eliminates this possibility. Therefore S(W ) is cube-free whenever W  is.

□

L e m m a  2 .4  I f  we can find UO, V'O, C/1, VI that satisfy the above condition and are 

of length k  then n  =  l im ^ ,^  a l/n > 2 * ^ , where an is the number of cube-free words 

of length n.

P ro o f: As for the lemma 2.2 in the square-free case.

P r o o f  o f  T h e o re m : It is easily verified (by hand , or more quickly by com puter) th a t

UO =  [0 ,1 ,1 ,0 ,0 ,1 ,1 ,0 , 1 ], VO =  [0 ,1 ,1 ,0 ,1 ,0 ,0 ,1 ,0 ], C/1 =  [1 ,0 ,0 ,1 , 1 ,0 ,0 ,1 ,0 ] , and 

VT =  [1 ,0 ,0 ,1 ,0 ,1 ,1 ,0 , 1 ] satisfy the conditions of the lemma. Hence a(n)

1.09.

□
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It should be noted th a t our words are  not palindromes, but C/1 and V'l can be 

obtained by switching l ’s and 0’s and vice-versa in UO and V'O. Removing this 

condition does not produce any shorter choices for C/0, VO, C/1 and V'l
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CH APTER 3 

PATTERN FREE W ORDS

In this chapter we will look a t several specific cases of words avoiding certain 

patterns. The cube-free words in the previous chapter are an exam ple of th is type. 

The sequences were obtained using our Maple package patfr. In the table below we 

summarize the results when various patterns are avoided over various alphabet sizes. 

Each sequence is given a num ber so that it can be referenced in the discussion that 

follows. It should also be noted th a t all symmetries of the representative p a tte rn  are 

avoided and th a t k  is the size of the alphabet. Note in these examples, A  =  B  is 

allowed.

Pattern  1 represents square-free ternary words, which as we have m entioned were 

studied by Noonan and Zeilberger in [NZ99], and pattern  8  represents cube-free binary 

words, which were discussed in the previous chapter. T he next case in this sequence 

occurs when we avoid blocks of the form x x x x ,  and is p a tte rn  1 0 .
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Table 3.1: Enum eration of pattern  free words.

No. J  Pattern k n = l 2 3 4 5 6 7 8 9 1 0

1 1 A A 3 3 6 1 2 18 30 42 60 78 108 144
2 | A B 2 2 0 0 0 0 0 0 0 0 0

3 A B k k 0 0 0 0 0 0 0 0 0

4 A B A 2 2 4 4 2 0 0 0 0 0 0

5 A B A 3 3 9 18 24 18 6 0 0 0 0

G A A B 2 2 4 4 4 0 0 0 0 0 0

i A B B 2 2 4 4 4 0 0 0 0 0 0

8 A A A 2 2 4 6 1 0 16 24 36 56 80 118
9 A B C 2 2 4 0 0 0 0 0 0 0 0

10 | A A A A 2 2 4 8 14 26 48 8 8 160 292 532
11 j  A A A B 2 2 4 8 1 2 2 0 32 48 72
1 2 A A B A 2 2 4 8 1 2 16 18 16 1 0 4 0

13 | A B A B 2 2 4 8 1 2 2 0 26 38 42 52 56
11 ! A B A B 3 3 9 27 72 198
15 A B B A 2 2 4 8 1 2 18 18 14 8 6 2

1 0  i  A B B A 3 3 9 27 72 192
17 | A A B B 2 2 4 8 1 2 18 2 2 28 28 2 2 18
IS | A B A C 2 2 4 8 8 4 0 0 0 0 0

19 A B C A 2 2 4 8 8 4 2 0 0 0 0

2 0  | A A B C 2 2 4 8 8 8 0 0 0 0 0

2 1  I A B B C 2 2 4 8 8 8 0 0 0 0 0

22 | A B C A B 2 2 4 8 16 24
23 ; A B A B A 2 2 4 8 16 28 52 90
24 A B A B  A, A A A 2 2 4 6 1 0 14 2 0 24 30 36 44

Further examples like the generalization of pattern  2 to the case of general dimen­

sion size in pattern 3 will be discussed in the next chapter.

Patterns 13 and 14 are examples of square-free words where we require the length 

of each block x  in the square x x  to  be of length a t least 2. Unlike the regular square- 

free situation, here we do make it past n =  4.

Overlap-free words [FI99] are represented by pattern  24. The o ther patterns shown
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have not been studied in any detail. Some sequences quickly converge to  zero, but 

others do show signs of continued growth. The number of terms given for each 

sequence depends on the am ount of memory required to calculate each case, and can 

usually be improved on by w riting sequences specific programs.
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CH APTER 4

DIM ENSION TWO A N D  

BEYOND

In this chap ter we explore the use of the Goulden-Jackson m ethod in the situa­

tion when the alphabet size is unknown, or it can be thought of as symbolic. We 

first explore several examples, then look into how we can im plem ent the process on 

computer.

4.1 Linear B u rstein -W ilf

In a later chapter we will look a t the result of Burstein and  W ilf [BW97] for cyclic 

words. Here we are looking a t the linear analog. On an  alphabet of size k , how 

many words are there of length n  th a t avoid any long constan t blocks of length m  or

greater?
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For example in a two le tter alphabet if we avoid all blocks of length 2 or more 

then the only possible words of length 5 are [1, 2 .1 ,2 ,1] and [2 ,1 ,2 ,1 , 2].

In the general situation, it is fairly easy to apply the Goulden-Jackson Method. 

Referring to the notation of Chapter 1 and letting o m represent a block of length m 

made up of some letter a  we have:

m — 1

VF(C[am]) =  - s m -  £ V W ( C [ a m])
t=i

Thus for each a  £  L  we have

W (C [am}) =  7 sm (s ~ V
J' — 1  +  sm

Assuming the alphabet is of size k there are k  such clusters so the to tal cluster weight 

is A;-times this and the resulting generating function is:

f ( s )  = -------- - 1  +  Sm--------
— 1 +  sm +  ks  — k sm

4.2 Linear a/3

In this example we consider words over a  A;-letter a lphabet that avoid any blocks 

of the form [a, /?] where a  ^  /3.

For example over a  three letter alphabet we avoid all blocks in the set 

{[1,2], [1,3], [2,1], [2,3], [3,1], [3, 2]}.

So let us go right ahead and apply the Goulden-Jackson Method.

W(C[q, g\) =  -s2 -  £  sW(C\fi, 7])
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Thus, summing over all a , fi 6  L we have

" ' - E E  W{[C[ol,0\) =  - E E s 2 - E E E  sW(C\pn ])
0 Q L  a * 0  0 € L  a * 0  0 € L  a * 0  7 */?

B € L  7 * 0

Noting that the double sum on the far right is equivalent to th a t on the left hand 

side of the equation and th a t this is our desired cluster weight we obtain.

w  = ~ fc(fc~ 1)s2
1 +  (k — l)s

And hence

f ( s )  = * ~l~- — —  =  1 + ks + k s2 +  ksz +  k sA 4- ...
1 — s

In fact this exam ple is fairly easy to deduce without the Goulden-Jackson Method, 

as the only words allowed are those containing only one letter repeated.

Let us now look a t a more general example of this type.

4.3 Linear a  _ uj

This is the general analog of the above example. Here we wish to  avoid words of 

the form [alt « 2 , c*3 , • - • , <*P] with a , ^  ctj for i ^  j .  As before we simply apply the 

Goulden-Jackson Method.

p - i

W  (C[qi,  a 2> a 3: ■ ■ ■ , a p]) =  - s p - ^ 2  ^ ^ ( C [ a l+1, a t+2, a t+3, - . .  , a t+p])
£=1 t + l < i j < t + p
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By summing over the a . ’s we obtain:

w = k[sP -  V" k̂ ~ P + t '̂stW 
( k - p ) l  y  (k - p ) \

where the factorials are due to the number of letters we have choice over. We can 

now solve for W  and find our generating function.

f ( s )  = ___________ H pt = o ( k  -  p  +  ty.s*________

k\sp +  (1 — ks) 5Zt=o_1(^ ~  P +  ^)'s£

which agrees w ith our previous result for p  =  2 .

4.4  Linear a mf3n

Here we look a t the linear case of words over some alphabet L with k  letters th a t 

avoid any blocks of the form [am5n] where a  #  0. In a la ter chapter we will look a t 

the cyclic version of this case.

T h eorem  4.1 The number o f words of length r over a k  letter alphabet that avoid 

[amBn] where a  ^  /3 is the coefficient of s r in the generating function

 _______________ s - l  + ( k -  -  gmax(m'n))_______________
( s - l  + ( k -  l ) ( s m+ri -  s max(m’")))(l -  ks) + k (k  -  l ) s m+"(s -  1 )

Proof: As in the  above examples the proof is by the Goulden-Jackson M ethod. 

Firstly we find the weight of a general cluster.

m in(m ,n )

W (C [am5 n]) =  - sm+n -  ^  W(C[/3m7n]) sm+" - £.
7*/S t=i
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Now we sum  over a  and 3  to obtain the to ta l weight of the clusters

w  =  I E
a & L ,a ^ 0  0 € L

min (m,n)

=  I E  E  E  E  » ' ( c ^ m7"i) £  sm+" - ‘
a € L ,a ^ &  &Q.L a £ L ,a ^ 0  0 € L  7€£-,7#£  t= l

m tn(m ,n )

=  -* :(*  - -  (* -  i)(JE I E  H' W ^ i ) ) (  iE sm+" ' ' ) -
0€L  i € L , y ^ 0  £=l

By evaluating the geometric sum on the far right and noting th a t the double sum 

in the first line and th a t in the last are equivalent we can solve for them to obtain:

w  =  I E  2Ew -(C [a"'/3"])
a e L ,c t ^ 0  0 £L

- k ( k -  l ) s m+n( s -  1 )
s -  1 +  (k -  1 )(sm+n -  smax(m’n)) 

And we obtain  our required result by substitu ting this into

1
f(s) = I - k s -  W

□

To enable calculation of more generating functions of this type with k,  the  alpha­

bet size, symbolic the Goulden-Jackson M ethod was extended to  produce generating 

functions for an arb itrary  size alphabet. The package developed, called G Jdim , uses 

the fact th a t the number of ways one pattern  can overlap w ith the sym m etries of 

another is related to the num ber of letters th a t we are free to choose after the  letters 

to  match the overlap have been defined.
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We shall use the memory m situation to apply G Jdim  to  square-free and cube-free 

words. T ha t is th a t we shall obtain formulas for the generating function for all words 

th a t avoid squares (or cubes) up to length m.

4.5 Square-Free W ords

M em ory  2

Here the fundam ental mistake is [1,1], to find our generating function we note

W([  1 , 1 ]) =  - s 2  -  slV([ 1 ,1]).

Solving for W ([l, 1]) and noting that there are k  m istakes of this type we obtain

 Ir
W  (clusters)  = -------

1  + s

and hence

1 4- s
/2(S) = — 1 — s +  ks
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M em ory 4

Here the fundam ental mistakes are {[1,1], [1, 2 ,1 ,2]} and we obtain  (by hand or 

using our Maple package GJdim)

1 + 2 s ■+■ 2 s 2  +  k s3 
4 — 1 — 2 s — 2 s 2  +  ks  + k s2

M em ory 6

Now the mistakes are {[1.1], [1, 2,1,2], [1, 2 ,3 ,1 ,2 ,3 ]} , and it is still fairly easy to 

do the calculation by hand, but much quicker by com puter. The generating function

is

t  ( \ _  ^ s 2  +  1 +  2 s 3  +  2 s — k s 5 +  ks3 +  ksA + s5k 2
6  ks3 — 2s3 — 1 — 3s 2  — 2s + k s  + k s2
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M em ory 8

In th is case we have a much larger set of m istakes, and doing the  calculation 

by hand becomes much harder. The mistakes are {[1,1], [1. 2. 1 , 2], [1 ,2 ,3 ,1 , 2,3], 

[1, 2 ,3 . 4 ,1 ,2 ,3 ,4 ] , [1. 2 ,1 ,3 ,1 ,2 ,1 ,3 ], [1, 2,3, 2 ,1 ,2 ,3 , 2]} and our generating function

is

/ 8 (s) =  - ( - 1  -  4s -  10s2 -  32s6 4 s 14k 4 -  ks3 -  18s3 -  26s4 -  30s5 4  2s l2k 2 

+ s l7k 4 4 14sls/t2 -  3s 6k 2 +  6 s l l k 2 -  4k s 17 -  8 k s 13 -  2s 7k 2 

- 4 ks6 -  3k s 7 -  2k s 16 -  9k s 15 4 4A;s10 4 k s 14 4  3k s 12 

+2k s 11 4  4k s 9 -  4s 13k 3 4  9 s 1 3 fc4 4 s l6k 4 -  2s l4k 3 

—3k s 4 4  5s16fc2  — 5 sI7 A:3  4 8 s 1 7 k 2 — 4 s 1 6 / : 3 — 33s 11 — 27s12 

- 3 7 s 9  -  38s10 -  12s13 -  6 s 14 -  2 su k3  -  s 7k 3 -  9s l5k 3 -  2s*k3 

- k 2s 5 +  2 s 1 5 A:4 -  3s9 A:3  -  oks5 -  33s 8  -  32s7 +  3s9 A:2  -  3 s 1 0 A: 3 

+ 6 s 1 0 A: 2 ) / ( 1  -  3ks2 +  4s +  10s2 +  32s6 -  ks  -  6 k s3 +  18s3 

+ 26s4 +  30s5 +  4 s 1 2 A: 2  +  5 s l lA:2  -  10A:s13 +  s 7k 2 -  12ks6  

- l o k s 7 +- '2ssk2 -  28ks10 -  o ks14 -  2 l k s 12 -  26A:su  -  18A:s8 

—2bks9 +  2s l3k2 + s u k 2 — 9ks 4 +  33s 11 +  27s12 +  37s9  4 - 38s10 

4 1 2 s13 +  6 s 14 -  llA;s5  +  33s8  4  32s7 4  4s9 A:2  4  5 s 1 0 A:2).
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The generating functions get fairly complex quite quickly and we are limited by 

the mem ory of the com puter and the complexity of the system of equations th a t must 

be solved.

4.6  C ube-Free W ords

M em o ry  3

In th is case our fundam ental mistake is [1,1,1] and it is fairly easy to apply the 

G oulden-Jackson m ethod by hand to obtain

_  1 -I- s 4- s2
— 1 — s — s3 4- ks 4- ks2

M em o ry  6

Now our mistakes are {[1,1,1], [1 ,2 ,1 ,2 ,1 ,2 ]}  and the generating function ob­

tained using G Jdim  is

_  1 -t- 2s -I- 3s2 4- 3s3 -I- 3s4 4- ks° 4  s5 4- ks6
—s5 — 3s4 — 3s2 — 2s 4- ks  4- ks5 -I- 2ks4 4- 2ks3 -I- 2ks2 — 3s3 — 1

Again we are lim ited by com puter capacity and currently can go no further.
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C H APTER 5 

SELF-AVOIDING WALKS THAT  

AVOID OTHER FACTORS ON  

THE 2-D CUBIC LATTICE

5.1 Self-A voiding W alks on th e  2-d C ubic L attice

Anyone who likes a little variety will try to take self-avoiding walks. For now we 

consider walks much like those through a city whose streets form a grid. A walk is 

self-avoiding if we never visit the same intersection twice. This is modeled by a walk 

on the integer lattice in 2 -dimensions, where we never return to a lattice point after 

we have left it.

D e f in itio n  5.1 A  se lf-av o id in g  w a lk  is a path on any lattice that does not visit the
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Figure 5.1: A self-avoiding walk.

sume site twice [MS96J.

In 2-diinensions we can use the alphabet { 1 ,-1 ,2 ,  —2} as our set of possible steps. 

Here 1 represents a step to the right, —l a  step  to  the left, 2 a  step up and —2 a step

down.

Using our notation this is equivalent to a word is self-avoiding if it contains no 

fac tors for which the number of Is  and —Is are equal and the num ber of 2 s and —2 s 

are equal. The Maple package walk (available from

h t t p : / / \v \v w .m a th .te m p le .e d u /~ a n n e /sq fr w a lk .h tm l) can be used to derive or 

count the num ber of self-avoiding walks on a  cubic lattice th a t avoid an input set of 

mistakes in any given dimension.

We will investigate walks th a t are not only self-avoiding, but also avoid a pre­

scribed set of additional mistakes.

5.2 Self-A voiding W alks th a t A void  D ou b le  Steps.

These are walks for people who get bored of the view ahead of them and so at 

every cross roads tu rn  right or left, never going straight on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http:///v/vw.math.temple.edu/~anne/sqfrwalk.html


33

D efin itio n  5 .2  A word avoids d ou b le  s te p s  i f  it contains no factors o f the form  

ww, where w is any single step.

In our notation this means it excludes 

{[1 , 1 ], [2 , 2 ], [ - 1 , - 1 ], [ - 2 , - 2 ]} as factors.

T h eo rem  5.1 The number of self-avoiding walks that avoid double steps fo r  n from  

0 to 20 are:

[1, 4, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1128. 1808, 2896, 4640, 7368, 

11744, 18752, 29920, 47376].

Or equivalently:

a(0 ) =  1

a(n) =  2n + 1  i f  1 <  n < 3

a(n) =  a(n  — 1 ) +  a(n  — 2 ) i f  A < n <  1 1

a(n) < a(n  — 1) 4- a(n  — 2) i f  n > 12

P roof: Firstly we note th a t all double steps have been elim inated and the walk 

m ust contain no immediate reversals if it is to be self-avoiding. Thus every 1 or — 1 

m ust be followed by a 2 or —2 and vice versa. This means th a t the only o ther way a 

walk of length less than 1 2  can fail to be self-avoiding is if it contains a  unit square. 

This is due to  the fact the next self-avoiding polygon th a t avoids double steps is of 

length 1 2  (it looks like a plus sign).
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The case n  =  0 is a convention. There is precisely one empty word.

For 1  <  n < 3 we note th a t there are 4 initial steps and we have 2 choices for our 

second step and again for our third step as explained above.

Finally we consider the interesting case n > 4. As explained above our only danger 

for 4 < n < 11 are unit squares, and for n > 12 we will only consider this danger. 

This means it suffices to only look at the three previous steps to decide w hat our next 

step may be. W ithout loss of generality we may assume the first two steps of this 

block of three steps are 1 and 2. Then regardless of w hether the th ird  step is 1 or —1 

we may chose 2 for our fourth step. See Figure 5.2. This generates a(n — 1 ) walks.

 J  or L_ _ _

Figure 5.2: Fourth step equals second step.

Now we investigate when we may allow —2 to be our fourth step. We may only 

do this if step one and three are the same, else we will form a square. See Figure 5.3. 

Thus for every step one and two there is only one way we can have step  four as minus 

step two. This generates a(n  — 2) walks.

Thus for 4 <  n  <  11 we have a(n) =  a(n — 1 ) -+- a(n — 2), our Fibonacci style 

sequence, and when n >  1 2  we have th a t a{n) < a(n  — 1 ) +  a{n — 2 ), in fact this 

inequality is stric t as we are now avoiding plus sign style shapes.
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or

Figure 5.3: Fourth step is minus second step.

□

5.3 Square-Free Self-A voiding W alks

Now we consider a much stricter case. Here our walks are not only self-avoiding, 

but at no time do we repeat the same sequence of steps twice in a row. For example 

we cannot go left, straight, right, left, straight, right.

T h e o re m  5.2 The number o f square-free self-avoiding walks o f length n is given by 

the sequence 1, 4, 8,16,16, 16 ,16 ,16 ,0 ,0 ,0 , 0, 0, 0,0, 0 for  0 <  n < 15.

Proof:

By making our walks self-avoiding we know we must elim inate all immediate back 

steps and all polygons, at the very least. This means th a t none of the following set 

of words may appear as a factor of any of our words:

{ [1, - 1], [2 , - 2], [ - 1, 1]. [ - 2 , 2], [1, 2 , - 1, - 2], [2 , - 1, - 2. 1], [ - 1. - 2, 1, 2], 

[ - 2 , 1, 2 , - 1], [ - 1, 2, 1, - 2], [ - 2, - 1, 2 , 1], [1, - 2 , - 1, 2], [2 , 1, - 2, - 1] }.

The fact the w^alks are also square free elim inates double steps and double ‘corners’, 

th a t is paths like (right, up, right, up). So we must also elim inate all of the following
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as factors:

{ [1, 1], [ - 1, - 1], [2 . 2], [ - 2, - 2], [2, 1, 2, 1], [ - 2, 1, - 2, 1], [2, - 1, 2, - 1],

[ - 2, - 1, - 2, - 1], [1, 2 , 1, 2], [ - 1, 2, - 1. 2], [1, - 2, 1. - 2], [ - 1, - 2 . —1, - 2] }.

So let us now try  to form a square-free self-avoiding walk. By sym m etry it does 

not m atter in which direction we start, so let our first step  be a 1 .

Now our second step m ay not be —1 as the walk is self-avoiding, and  it can not 

be 1 , because our walk is square-free. So, our next step m ust be 2 or —2. Again by 

symmetry it does not m atte r which we chose, so we will pick 2 .

Our walk so far is [1,2]. Now as before, we may not pick —2 or 2, because our 

previous step was 2, so we m ust pick 1  or —1. Both cases are very sim ilar so we will 

only look a t the case th a t the next step is 1. The case when the next step is —1 is 

left to the reader.

We now have [1,2,1]. For our next step we may not pick — 1 or 1 , because the 

last step was a  1 , and we may not pick 2 , because [1 , 2 , 1 , 2 ] is a square (of [1 , 2 ]), this 

means we are forced to pick a  —2 .

Now we have [1 ,2 ,1 , —2]. From here we may not pick —2 or 2 as usual, and we 

may not pick —1 , or the last four steps will form a polygon [2 , 1 , —2 , —1 ], and so our 

walk will not be self-avoiding. Thus we are forced to pick 1 .

We are forced into our next step up until the eighth step. Here is the position 

after 7 steps:

[1 ,2 ,1 , —2 , 1 , 2 , 1 ]. See Figure 5.4.
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Figure 5.4: A seven step  square free self-avoiding walk

Now based on the previous analysis we must chose —2 as our next step, but if we 

do th is we will have the [1,2,1, —2] twice in succession. So as we w ant our walk to be 

square-free we are stuck, and can take no further steps. Thus for n > 8 the number 

of square-free self-avoiding walks is zero.

□

5 .4  C ube-Free Self-A  voiding W alks

In this section we consider walks th a t are both self-avoiding and cube-free as in 

the sense in Chapter 2 .

T h e o re m  5 .3  The number of cube-free self-avoiding walks fo r  0 <  n < 10 is 

1, 4, 12, 32,80, 200, 472, 1136, 2656,6256,14584.

P ro o f :  O btained by using the cubes of length <  9 and the m istakes for self-avoiding 

walks up to length 10 in a Maple application of the Goulden-Jackson method.
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5.5 R ate  o f G row th

The idea behind investigating Self-Avoiding Walks th a t also avoid other steps is 

that we will be able to  produce sequences th a t grow slowly enough to  be analysable 

(unlike Self-A voiding Walks), but quickly enough to give us information about Self- 

Avoiding Walks in general. The three examples given above are all of interest in their 

own right, but do not help us to learn more about Self-Avoiding Walks. Clearly the 

second exam ple’s sequence becomes zero too quickly to be of use and the first and 

third examples are a little  bette r but provide no new information. There are many 

other examples th a t can be explored and there is still hope tha t this approach will 

help us learn more about Self-Avoiding Walks.
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CHAPTER 6 

SELF-AVOIDING WALKS IN k 

DIMENSIONS

So far we have only looked a t Self-Avoiding Walks in two dimensions, bu t the 

idea is not dimension dependent. In fact we shall see la ter it is not even lattice 

dependent. As in Chapter 5 where we looked at words th a t avoided certain patterns 

in undefined dimensions, here we look at self-avoiding walks in k  dimensions. As this 

is an example where there are infinitely many mistakes we can not obtain an exact 

generating function using the Goulden-Jackson M ethod, but we can use the finite 

memory approach to see the general pattern. Using a  M aple package we developed 

called SPG Jdim , which takes into account the symm etry of the mistakes both  with 

regard to the symmetric group and sign changes, we obtained the following generating 

functions.
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M em ory 2

Here we use the fundam ental mistake [1 ,-1 ] and the package SPG Jdim  to obtain

r ( \ +  5
— — 1  — s +  2ks

M em ory 4

The mistakes are now of the form {[1, —1], [1, 2, —1 . —2]} and the generating func­

tion is

1 +  2 s +  2  s2 — s 3 +  2  s 3k
Ms)  =

- 1  -  2 s -  2 s 2 +  s3  +  2 ks  +  2 k s 2
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M em ory 6

Now we have {[1, —1]. [1, 2. - 1 ,  -2 ] , [1,1,2, - 1 ,  - 1 ,  -2 ] , [1, 2, 2. - 1 ,  - 2 ,  -2 ]}  as our 

set of fundam ental mistakes and our generating function becomes

f 6(s) =  —(1 — 24 k s 6 +  7 s7 — 9s8 -F 4s — 4s5 A: — 4A:s19 +  9 s2 +  18/rs4 

+ 16k3s 17 -  8k3s 16 -  48k2s 17 +  8 s18A:3 -  16s18 A:2 +  24s16A:2 

+  10s18A; -  26s16A: -  32A:3s 15 -  24A:3s 14 +  92A:2s 15 +  48s14A:2 

- 2 s 14A: -  9s4 +  10s3 +  16s5A:2 -  19s5 -  14s13 +  32A;3s9 +  34s17A;

—64s15A: -  8s13A:3 +  17s12 +  8su A:3 -  12s11̂ 2 -  36sl lA: +  s 17 

+  10s16 -  3 s15 -  28s14 -  60A:s7 +  36A:2s7 -  s 18 -  26s6 +  16s10A:3 

+  14sl0A: -  44A;2s l° +  16s10 +  4s3A: +  102s9A: -  108A:2s9 -  22s9 

+28A:2s6 +  60s8 A: — 64s8 A:2 +  24A:3s 8 — 8A:2s 12 +  20s13A:

+4A:2s 13 +  48s11 +  4A:2s 19) / ( - l  -  32ks6 -  7s 7 +  9s8 -  4s 

- 1 8 s 5A: +  6A:s2 -  9s2 -  6A:s4 +  2sk +  6 s l6A: +  4A:2s 15 +  8 s14A:2 

—32s14 A: +  9s4 +  4A:2s4 — 10s3 +  8s5 A:2 +  19s5 +  14s13 +  2 s17A:

— 10s15A: -  17s12 -  20s11 A:2 +  64su A: -  s 17 -  10s16 +  3 s15 +  28s14 

— 12A:s7 +  8k2s~ + s 18 +  26s6 +  22s10A; -  8A:2s 10 -  16s10 +  8s3A:

- 2 2 s 9k + 4k2s9 + 22s9 +  12A:2s6 -  24s8A: +  8s8k 2 -  12A:2s 12

- I 0 s l3k + 3 2 s 12k -  48s11)
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As is clearly seen by the case memory' 6 the generating function gets very com­

plicated very quickly, and in fact the current package cannot handle the memory 8

case.
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CH APTER 7

SELF-AVOIDING WALK TYPE  

PROBLEMS

So far we have looked a t walks tha t are based on unit steps in the available 

directions. In th is section we consider the case of a less traditional walker. Specifically 

we will look a t the Self-Avoiding Knight. In this example we are allowing steps of the 

form {[1,2], [2,1]} and all their symmetries on a two dimensional rectangular lattice. 

You will probably recognize these as the legitim ate moves for a knight in chess. W ith  

the aid of M aple it is fairly easy to count the num ber of different walks of n  knight 

steps long th a t never visit the same lattice point twice. In fact you can simply th ink  of 

this as counting the number of walks of n  moves th a t a  knight can make on a infinite 

chess board w ithout ever visiting the same square twice. We obtain  the following 

sequence:
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[1,8,56,392,2696,18584]

We are unable to  go further due to  com puter memory, but what is interesting is 

for 1 <  n < 5 this exactly agrees with the num ber of regular Self-Avoiding Walks on 

a 4-d cubic lattice.

W ith improved memory, it would be possible to  see w hether an isomorphism 

between the two situations is likely to exist or if  this is purely a coincidence.
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CHAPTER 8

SUPER k SELF-AVOIDING  

WALKS

Super k  Self-Avoiding Walks are like self-avoiding walks only more so. In addition 

to never visiting the same sight twice, they also never get within j  steps of a previously 

visited sight once they have gone j  steps away from it for 1 <  j  < k.

The conditions we need for this to be true  for a given walk in two dimensions are

l# ( l )  _  # ( -1 )1  +  l# (2 ) — # ( —2)| >  k

and

l# ( l )  -  # ( -1 )1  +  l#(2) -  # ( - 2 ) |  >  j , 0  < j  < k — 1 for previous j  +  1 steps

For example on the 2-d cubic lattice w ith k  =  2 the allowable 3 step walks are

represented by {[1,2,2], [1, 2,1], [1,1,2], [1,1,1], [1,1, -2 ]} .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

The normal Self-Avoiding Walk can be considered the case k  =  0. th a t is to  say 

that we can get as close as we want to  any previously visited sight as long as we do 

not visit it. The following table summarizes the number of Super k Self-Avoiding 

Walks for 0 <  k  <  10 and 0 <  n  <  10, and the corresponding values of //.obtained by 

Ziun's m ethod.

Table 8.1: Super k self-avoiding walks.

k 0 1 2 3 4 5 6 7 8 9
n = 0 1 1 1 1 1 1 1 1 1 1
1 4 4 4 4 4 4 4 4 4 4
2 12 12 12 12 12 12 12 12 12 12
3 | 36 28 28 28 28 28 28 28 28 28
4 100 68 60 60 60 60 60 60 60 60
5 2S4 164 132 124 124 124 124 124 124 124
6 7S0 396 292 260 252 252 252 252 252 252
7 2172 940 644 548 516 508 508 508 508 508
S 5916 2244 1420 1156 1060 1028 1020 1020 1020 1020
9 16268 5324 3132 2436 2180 2084 2052 2044 2044 2044
10 44100 12668 6884 5132 4484 4228 4132 4100 4092 4092
1' 2.738 2.378 2.208 2.106 2.027 2.032 2.018 2.006 1.997 1.997

It is d e a r  from the table tha t as k  increases the number of possible walks decrease 

and the rate of this decrease also decreases, th a t is that the effect of increasing k  by 

1 is more noticeable when k is small than when k  is large. It should also be noted 

that the effect of k  does not appear until the k  +  2nd step.
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C H APTER 9

SELF-AVOIDING WALKS ON A  

HONEYCOM B LATTICE

Previously we have been considering only the trad itional rectangular lattice. In 

this chapter we consider the case of a Seif-Avoiding W alk on a Honeycomb L attice as 

in Figure 9.1 below.

Figure 9.1: Self-avoiding walk on a honeycomb lattice.

In order to  make use of the com puter in exploring the  growth of this type of walk
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we must find a  notation for describing it. We let the basic steps be {a, b, c, —a, —b, —c} 

with the added conditions th a t a. b and c may only be followed by —a, —b or —c, and 

that —a. —b and —c may only be followed by a, b or c. Under this notation the example 

in Figure 9.1 would be [—c, a, —b, c, —a. c, —a, b, —c, b]

We will let N (t)  = th e  number of tim es t appears in the sequence for 

t € {a. b, c , —a, —b, —c}. Then as in the previous examples of self-avoiding walks it is 

easy to see th a t a walk on the honeycomb lattice is self-avoiding if for no sub-sequences

N (a) =  iV(—a), N(b) =  N ( -b )  and N(c) = N ( - c ) .  (9.1)

By producing sequences for which 9.1 is true we can apply the Goulden-Jackson 

Method using these for our mistakes. Due to memory lim itations we are only able 

to obtain the first 13 term s of the sequence a(n). Then applying Zinn’s m ethod we 

obtain the estim ate n  =  1.899963712 for the connective constant. This does not 

improve on the current best upper bound which was obtained by Aim [ALM93] as 

H < 1.87603.
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CHAPTER 10

ENTROPY OF A LANGUAGE

In probability entropy is a  measure of the randomness of a random  variable. For 

a distribution with N  outcomes the entropy will be greatest when the probability of 

each outcome is Thus, the greater our entropy the more evenly distributed our 

events are.

D e fin itio n  10.1 The entropy of a discrete random variable X  whose ith outcome 

has probability pl; is given by

Ar
H (X ) = -  5 Z Pi l°SmPi (10-1)

t = 0

where the choice of the base o f the logarithm is one o f convenience.

When considering the entropy of a language we divide the words into blocks of 

length k. For example if k  =  3 then the word [a, b, c, d, e, / ,  g, h, i, j ,  k, /] would be 

broken down to [a, 6, c], [d, e, /J, [g,h,i], and [j, k. /]. We will only consider words
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whose length is a  multiple of k. We then count the frequency with which these 

blocks occur and thus find their probability. We will look a t two examples in depth 

square-free ternary  words and then cube-free binary words.

10.1 E ntropy o f Square-Free Ternary W ords

Recall that square-free words avoid any factors of the form x x  where x  is any non­

empty word. In our choice of base for the logarithm  we first considered all possible 

ternary words of length k giving us a  base of 3*. see Table 10.1.

Table 10.1: Entropy of square-free ternary  words w ith base 3fc

! k  i 2 3 4 5 6 7 8 9 10
n i

2 |  .8155
O \ O  | .7540
4 ; ; .8155 .6577
5  I .6192
G | .8155 .7508 .5670
"  ! ! .5324
8 j ! .8155 .6564 .4957
9  i ; .7487 .4735
10 i I .8155 .6092 .4524
i l l  :

12 j J .8155 .7476 .6567 .5658
13 i
1-1 | i .8155 .5183
15 |  ! .7455 .6083
1G .8155 .6571 .4939
17 j j
IS j j .8155 .7450 .5644 .4721
19 1 |

20 | j .8155 .6575 .6064 .4507
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Then as each of ourblocks must autom atically be square-free we used a base of 

the number o f square-free ternary  words of length k  see Table 10.2.

Table 10.2: Entropy of square-free with base the num ber of valid k  length words.

k 2 3 4 5 6 7 8 9 10
n
2 1.000
3 1.000
4 1.000 1.000
5 1.000
6 1.000 .9959 1.000
7 1.000
8 1.000 .9980 1.000
9 .9931 1.000
10 1.000 .9838 1.000
11
12 1.000 .9915 .9984 .9979
13
14 1.000 .9734
15 .9888 .9824
16 1.000 .9991 .9964
17
18 1.000 .9882 .9954 .9970
19
20 1.000 .9996 .9794 .9962

Com paring these two tables we can see th a t once we allow for the fact th a t only 

certain blocks of length k can possibly occur the entropy of square-free te rnary  words 

is close to  1. This shows th a t the square-free blocks of length k are fairly evenly 

distributed throughout the words.
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10.2 E ntropy o f C ube-Free B inary W ords

A cube-free word avoids any factors of the form x x x  where x  is any non-empty 

word. In our choice of base for the logarithm  we first considered all possible binary 

words of length k  giving us a base of 2*. see Table 10.3, then  as each of our blocks 

must automatically be cube-free we used a  base of the num ber of cube-free binary 

words of length k, see Table 10.4. The results are summarized in the following tables, 

as usual n represents the length of the words.

Table 10.3: Entropy of cube-free binary words with base 2k

| A- 2 3 4 5 6 7 8 9 10
n
2 j i 1.000
3 i : .8617
4 i .9855 .8305
5 ; .8000
c ; ; .9820 .8617 .7642
/ i i .7386
S ! .9772 .8275 .7259
9 ; ! .8617 .7024
10 i i .9738 .7932 .6883
l i  i  i
12 ! ! .9712 .8617 ..8233 .7594
i d ; i

11 ! .9696 .7346
15 j 8617 .7886
10 ; .9686 .8207 .7156
17 '
IS 1 .9679 .8617 .7563 .6993
19 ; i
20 : i .9672 .8192 .7858 .6852

Comparing the two tables for cube-free words we again can see that once we allow
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Table 10.4: Entropy of cube-free with base the number of valid words of length k

k 2 3 4 5 6 7 8 9 10
n
2 1.000
3 1.0000000000
4 .9855 1.000
5 1.000
6 .9820 1.0000000000 1.000
i 1.000
8 .9772 .9964 1.000
9 1.0000000000 1.000
10 .9738 .9916 1.000
11
12 .9712 .9999978390 .9913 .9938
13
14 .9696 .9955
15 .9999965264 .9857
16 .9686 .9882 .9857
17
18 .9679 .9999967883 .9897 .9956
19
20 .9672 .9865 .9823 .9955

for the fact th a t only certain blocks of length k  can possibly occur the entropy of 

cube-free binary words is close to 1. This show’s th a t the cube-free blocks of length k 

are fairly evenly distributed throughout the words.

In contrast to the square-free case, where for block length 2 the entropy was 1 for 

all n (see Table 10.2), implying th a t the square-free blocks

[0,1], [0. 2], [1, 0], [1, 2], [2,0], [2,1] all occur with equal frequency in the cube-free case 

with block length 3 we see a slight deviation from 1 (see Table 10.4).
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CHAPTER 11

APPLYING THE  

GOULDEN-JACKSON M ETHOD  

TO A PROBABILISTIC  

SITUATION

11.1 T he Formula

The work of Noonan and Zeilberger to apply the Goulden-Jackson M ethod to 

various situations can be extended to  a probabilistic situation in the following way.

In Chapter 1 the generating function for words th a t avoid a  certain set of bad 

words was found to  be:
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/ ( s )  1 -  ks -  w eight(C ) (1L1)

where k  is the num ber of letters in the alphabet used and w eight{C ) the weight

of the clusters formed by bad words.

We extend this equation to include the following information:

1. The probability for each letter being in the first position. y[a\.

2. The conditional probability for each pair of letters, t[a,b}.

And the new' equation for the generating function is:

T h e o re m  11.1

r, \ r i x[a] + w eight'(C a)f ( s )  =  1 +  X > a   ----- = - - - L J ------ * , . , ( n  , 11-2
1 -  llb e v  x l6J “  llb e v  w eight'(C b)

P ro o f: Clearly if we let L(B)  be the set of words that avoid all bad wrords then

f ( s )  = weight{\\) +  E E  w eight{w )
agV w£L(B),w=au

= 1 +  ^  weight(w)
a£V' w^La(B)

where L a(B)  represents the set of good w'ords th a t begin with the letter a.

Now the goal is to find / Q(s), th a t is the generating function for all good words 

that s ta rt with the le tter a for each a €  V.  As all words in f a s ta r t with a their 

weight includes the factor y[a] so we define weight’(w) =  u,eî (— . We now have

/(« ) =  l  +  ^ y [ a ] / ' ( 5 )  (11.3)
aev
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/ '( s )  is the generating function for the members of L a(B) using w eight1.

Now we use the ideas described in C hapter 1 to find f'a(s).

Let M a be the set of marked words th a t start with the letter a, M  the set of

marked words. Ca the set of clusters beginning with a, and g(s) = weight'(w).

Also note th a t / '  =  weight!{w).

Now if w  €  M a then one of the following is true

•  w =  a

•  w s ta rts  with an a th a t is not part of a cluster

•  w  is a  cluster starting  with a

•  w s ta rts  with a cluster beginning w ith a 

This results in the following:

\ I a = a U a M  U Ca U C aM , and

M  = UagV'A/« =  V  U V M  Ua6V- Ca Ua6V- CaM

Hence.

/ '  =  x[a\ + x[a]G + weight'(Ca)G + w eight'(C a)

g =  ^  x[b\ +  x[b\G +  weight' (Cb)G + weight' (Cb)
bev bev bev bev

By solving the second expression and substituting it into the first we obtain

i  [a] +  weight! {Ca)
H b e v x [b] ~  IZb&vwei9ht'{Cb)
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and finally we obtain  f ( s )  by substitu ting this into equation 11.3.

□

We will now look a t an applications of this m ethod th a t analyzes the relationship 

between vowels and consonants in a  sample of English.

11.2 Vowels and C onsonants

To obtain d a ta  we took the list of English words from Unix and converted them 

to Maple format. VVe substitu ted  .4 for every vowel and B  for every' consonant. This 

gives us a large d a ta  set th a t is easily handled. From this d a ta  we were able to find 

the generating function produced when certain patterns are avoided. The coefficient 

of s n in this generating function is the probability th a t a word of length n  avoids the 

mistakes pattern  as a factor.

Clearly if we do not define any bad patterns then our generating function is — tty  

and if we avoid both [̂ 4] and [B] then f ( s )  =  1, as we cannot find any words containing 

no vowels and no consonants. Interestingly if we avoid ju st vowels, /U (s), or just 

consonants / s ( s ) ,  we do get non-trivial generating functions, and for each length we 

find the likelihood of finding a word with no vowels higher than for finding one with 

no consonants. This makes sense because there are more possible consonant pairs
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than  vowel pairs and statistically they are more likely.

1 160824891s +  383780432
/ a ( s ) =  

f B{s) =

5017 30077s -  76496
1 13756751s +  257020910 

5017 6877s -  51230

We see a similar situation when we look a t words avoiding [.4, .4] { / a a { s ) )  and 

those avoiding [B , B\ ( / b b ( s ) ) .  Again the probability of finding a word w ith no vowel 

pairs is higher than  the probability of finding one w ith no consonant pairs. Just 

looking a t the previous sentence we can find very few words with vowel pairs, and 

alm ost all the words contain consonant pairs.

1 1105992775407s2 +  11930653621290s +  19661071531360
5017 2058851907s2 +  1540844710s -  3918890080

1 413761799827s2 +  17021813500496s +  19661071531360 
5017 2058821907s2 +  526062992s -  3918890080

The same scenario occurs when we avoid blocks of three vowels or three conso­

nants. In fact the probability of finding a  word of length n  tha t avoids three vowels

in a row is close to 1 for all n. This makes sense as it takes most people a  couple of 

moments to th ink of a word with 3 vowels in a row (conscious is an example), but 3 

consonants is not a problem (there are 3 examples in th is sentence).

The results are summarized in the following table for 0 <  n  <  8.

f . A A ( s )  =  

I b b ( s ) =
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Table 11.1: Probability of avoiding vowel and consonant patterns.

0 1 2 3 4 5 6 7
none 1 1 1 1 1 1 1 1
A 1 .812 .319 .126 .0494 .0194 .00763 .00300
B 1 .188 .0252 .00338 .000454 .0000610 .818 * 10~5 .110* 10"5
A A 1 1 .975 .909 .869 .819 .779 .737
B B 1 1 .681 .617 .440 .383 .283 .239
A A A 1 1 1 .997 .988 .982 .975 .969
B B B 1 1 1 .874 .849 .780 .732 .683
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CHAPTER 12 

CYCLIC WORDS

Previously we have only been looking a t linear words. Those are words for which 

there is no interaction between the end of the word and the beginning. For cyclic 

words on the other hand there is such an interaction. They are like necklaces.

In order to explore such words we will write them as a  linear word (like an un­

clasped necklace), bu t we will have to analyze the interaction between the s ta rt and 

the end of the word.

12.1 T he N aive A pproach

In the linear case the Naive Approach required tagging words by their endings 

(see [NZ99]). For the cyclic words we will tag  words by both  their beginning terms 

and their end terms.

For example if we are looking at sub-blocks of length 2 we would say [a, n, n, e] €
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{words th a t begin with[a, n]and end with[n, e]}.

We let W[[-u/i,. . . .  Wk], [t-'i.. . .  . u*]] represent the linear weight of all words that 

begin with [wi , . . .  , u;*] and end with [i/i,. . .  , u*]. Then it is easy to see th a t

U ' f f W i , . . .  ,U7fc], .U/fc]] =  W [ [ w 2 , . . .  , U7 * , Q ] .  [ P , V i , . . .  , U * _ i ] ]
a € V ,0 e V
k

* IT x [W l- • • • ’ • - • t?fc] initial term s.
1 = 1

Where the initial terms are: x[w\ , . . .  Wk) if [w i,. . .  Wk] =  [uj., - - • w*], and x [ w \, . . .  Wk, u*] 

if [w2, . . . w k] =  K ,  •. .t/fc-i]

We then solve this system  of equations and obtain the generating function in the 

following way.

9f  :=  £  W  [u.’. u] * overlap(w, v) +  (term s of length <  k)
w , v £ V ‘ : l (w )=l ( v )=k

Here the overlap(w , v) refers to the weight caused by doing up the necklace.

overlap(w. v ) =  n f = 2  x ivi ■ ■ ■ • > wi-> • • • > ^ - i ]

As in the linear case we are not taking advantage of the fact tha t we avoid the 

bad blocks until the end.

12.2 T h e Edlin Zeilberger E xten sion

Here we take advantage of the Goulden-Cluster M ethod to do most of the work 

for us. W hen looking a t cyclic words which contain bad clusters there are three 

possibilities.
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C ase  1: The cluster does not cross the “invisible” clasp of the necklace. T h a t is 

th a t the cluster does not contain a mistake tha t contains both the first and last letter 

of the word. This is equivalent to a linear cluster as discussed in Chapter 1, as if we 

undid the clasp it would no t affect the cluster. This gives us the generating function

( 1 2 - l )

where L =  w eight (C lu sters).

C ase  2: Here the cluster may cross the clasp, but it does not make it all the 

way around, so th a t we can break the necklace a t some point w ithout breaking the 

cluster. This is then a translation  of the first case and it can easily be seen th a t in 

this case the generating function is given by

C ase  3: This is the case th a t truly extends beyond the Goulden-Jackson M ethod. 

We now look a t clusters th a t  wrap all the way around the necklace. It is impossible 

to break the necklace anywhere without breaking the cluster. To count these cluster 

we set up a m atrix  .4 th a t shows the interaction between each of the bad words. T hat 

is .4[z,_7']=the sum of the weights of all possible overlaps from mistake i to mistake j .  

Now in order to make sure th a t no cluster is counted twice we must find a way to 

identify the “first” m istake in the cluster. We do this by labeling the first le tter of 

the imbedded word and it can only be one of the letters tha t stick out from the last 

mistake. For example if the end of the cluster was
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ci n n 0 , . then any of the last four letters could be the initiale d 1 1 n J

letter of the word. In general this will result in m possible starting  points if the word 

provides additional weight of sm to the cluster, or more simply s ̂ (w e ig h t).

From this we obtain a new m atrix B in the following way:

B  =  £  - v | . 4  (12.3)
r = l

A  - s ^ -A  (12.4)
I  — A  ds

The last step is to remove those words th a t are too short. For example if one of 

the mistakes is [1,1,1] then we will get [1,1] as a bad word, because at this point 

the procedure is unable to  realize th a t it has counted the same 1 twice. To deed with 

this we simply remove the lower terms of the power series of all the diagonal terms 

(these are the ones that s ta r t and finish a t the same mistake, and so the ones we are 

interested in). Let us define a function Chopr tha t does this. If our mistake i has 

length li then

00 OO

Chopr(m istakei) = ChopT(^~ ' ats*) =  £  ats l (12.5)
£=0 £=/,

This results in the generating function for case 3 of

n

Y C h o p ^ i  ( 12.6)
£=i

T h e o re m  12.1 The generating function fo r  cyclic words whose first letter is marked
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over a k  letter alphabet and which avoid a set o f n mistakes as factors is given by:

+ ' £ c h °p ‘-u « -  ( i 2 j )  
i = l

P ro o f: Combine Equations 12.1, 12.2 and 12.6.

□

12.3 C yclic B u rste in -W ilf

The m otivation for finding general formulas for cyclic words with labeled first

letter comes from Burstein and W ilf’s wonderful discovery of a general formula for

words avoiding blocks of the form a “,+1 [BYV97]. Their form ula is:

,k , . 1 — sw , w  +  1 — w ks w + 1
f w ~~ 1 -  s ( +  ( ”  )S(1 -  ks  + ( k -  l j s ^ 1 “  1 -  s'"-*"1  ̂ *

You will recall in C hapter 5 we looked a t the linear analog of this. The package CGJ

which implements the above method can verify Equation 12.8 for any specific k. By

performing the work by hand it also possible to  verify for general k  using the above

method for Case 1 and 2 and some thought for case 3.

12.4 C yclic a m(3n

Recall from C hapter 5 th a t we are trying to  avoid blocks of m  a 's  followed by n 

3's in this example. The linear case was discussed in th a t chapter, here we look at 

the cyclic case.
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The Maple Package CG J was used to obtain formulas fo r all triples of 2 <  m , n, k < 

5. First formulas for fixed k were deduced and then from these a  formula for general 

k  was conjectured as

min(n,m) —1

f m , n ( s ) =  - ( (  (k(k -  l f t ( m  +  Tl)
t =  1

- c | ( *  -  1 f k t  +  i  (* -  12)(* +  2))()s2r71+2n-(-1}
min(m.n) —2

+( ^  (((A: — l )2k t  — k(k  — 1)) m ax(n , m)
t = i

+ ( | ( *  -  1 )2k t -  i(/b -  1)2(A: +  2))t + k  — 1 )sm+n+t)

4-k(k — l)(m  + n — l ) s m+"

- ( k  -  l)(m ax(n , m)  -  1) +  (k -  l ) 2)s2rnax(n'm)
min (m ,n)

~ (k  ~  2)( s"1* ""4) -  1
«=i

min(m.n) — I

+ ( ^ 2  s2max(n’m)+*(((fc _  \ )2kt  — fc(k — 1)) max(m, n)
t =  i

+ (*  -  1 ) ( i* (*  -  1 )(2 -  ( i* ( *  +  1) -  l ) t  +  1)))
mi n (m ,n )—2

— ( ■sm+n‘,"<(((A: — l ) 2A:f — k(k  — 1)) max(m, n)
t=i

+ (*  -  1 ) ( i* ( *  -  l ) t2 -  ( i* ) *  +  1) -  l ) t  +  1))))
min(m,n)

/ ( ( (  s”,+”- ‘) - l )
£=1

m in (m ,n )—1

((A: — 1)2( ^  s™+"-‘) _  ( f c - - 1  +  A:s))
£=1

The situation for Case 1 and 2 is fairly easy to prove, in fac t most of the work for it 

is done in the linear case. Case 3 is more difficult and curren tly  is purely conjecture.
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CHAPTER 13 

THE LAST WORD

In this dissertation we have looked a t several classes of words from both a combi­

natorial perspective and a statistical viewpoint. As there is no general way to count 

words that avoid infinite sets of mistakes the knowledge of the sequences discussed is 

lim ited by com puter memory and the efficiency of the algorithm  used. This means 

th a t there is still much to learn about these topics.

Self-avoiding walks are studied by both m athem aticians and physicist and the 

exact value of // is regularly being refined. In the case of cyclic sequences the work 

has only ju st begun, and there is much more exploration to be done using GJcyc as 

a starting  point. It is hoped tha t more general equations of the Burstein-W ilf type 

will be produced by further study.

In this dissertation we have only discussed one application to a normal language 

(Probability of vowel and consonant runs in English), bu t there is much more to be
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studied, and the relations between m athem atics and the field of statistical linguistics 

have not been made. There is also the relationship between formal languages [RE83] 

and the m athem atical objects to be explored.

So many objects can be considered as words from our DNA to the structure  of 

crystals th a t their study can help us learn much about the world around us, and 

though some patterns have yet to find real world applications in these days when 

more words are transferred by zeroes and ones than  by letters it is only a  m atter of 

time.
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