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ABSTRACT

POLYHEDRAL SUMS AND THETA SERIES

David DeSario
DOCTOR OF PHILOSOPHY

Temple University, August, 2007

Professor Sinai Robins, Chair

The Ehrhart polynomidl of a d-dimensional integral polytope P is a poly-
nomial of degree d whose evaluation at the positive integer r gives the discrete
volume of rP, i.e. the number of integer points contained in the r-fold dilation
of P. This counting function was first studied by Ehrhart [23], who proved
that it is always a polynomial. He also showed that the Ehrhart polynomial
encodes the continuous volume of P by showing that its leading coefficient is
in fact volP. In discrete geometry, there is often an intriguing interplay be-
tween a discrete property of an object and its continuous counterpart. In this
dissertation, we use polyhedral sums and theta series to study both discrete
and continuous volumes of polytopes.

In chapter 1 we extend the methods of Diaz and Robins [21] to obtain
computable formulas for the Ehrhart quasi-polynomial of simple rational poly-
topes. In chapter 2 we study solid angles of polyhedra by analyzing the asymp-
totics of polyhedral theta series. Solid angles are the generalizations of two-
dimensional angles to higher dimensions and they can be interpreted as the
volume of spherical polytopes. We also define new solid angles with respect
to [P-norm and find computable formulas for *-solid angles. In chapter 3 we
use Fourier methods to generalize the solid angle theory in Computing the
Continuous Discretely. Integer-Point Enuwmeration in Polyhedra by Beck and

Robins [7] by extending several results to include real polytopes.
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CHAPTER 1

The Ehrhart Polynomial of a
Rational Simple Polytope,
Using Fourier Methods

1.1 Introduction

We begin by defining some key terms that will be used throughout this
dissertation. A convex polytope is the convex hull of finitely many points in
R<. Therefore, given a finite set of points {vy,Vvs,...,vn} C R%, the polytope

P is the smallest convex set containing those points: that is
'P:{)\lv1+)\2v2+--~+)\nvn:all )\k ;20and A1+)\2++/\n:1}

This definition is called the vertex description of P and we note that a
polytope is a closed subset of R%. Every polytope is the bounded intersec-
tion of finitely many half-spaces and hyperplanes, and therefore also has a
hyperplane description. A hyperplane H = {x € R%|a-x = b} is called
a supporting hyperplane of P if P lies entirely on one side of H. A face
of P is a set of the form P N H, where H is a supporting hyperplane. The
(d — 1)-dimensional faces are called facets, the 1-dimensional faces are called

edges, and the 0-dimensional faces are called vertices.
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If a polytope P is of dimension d, we call it a d-polytope. If each vertex of
a d-polytope P lies precisely on d edges of P, we call P simple. P is called
integral (rational) if all of its vertices have integer (rational) coordinates.

A convex cone K C R? is the intersection of finitely many half-spaces of
the form {x € R%la-x < b} whose corresponding hyperplanes {x € R¢|a -
x = b} meet in at least one point. A cone is called pointed if the defining
hyperplanes meet in exactly one point.

Now that our terminology is set, we can discuss the content of this chapter.
In this chapter, we obtain computable formulas for the integer point enumer-
ator of any simple rational polytope P, for any rational dilate of P, and for
any real translate of P. The rt* dilate of P is by definition rP := {rz|z € P}.

The integer point enumerator that we study here is
#{Z°n{rP - T}},

the number of integer points inside the polytope obtained by dilating P by any
rational dilation r € Q and translating the dilate by any real vector T' € R?.

To fix notation, we let

Lp(r,Tyy) = > Lip(l+ T)e*™ ¥, (1.1)

lezd

a generalization of the integer point enumerator, called the integer point trans-
form of P (see [7]), and defined for any rational number r, any real vector
T € R%, and any complex vector y € C%.

We note that Lp(r,T,0) = 3, cz0 Lip(l + T) = # {Z*N {rP — T}}, the
integer point enumerator of a translated rational polytope, and that spe-
cializing further to T = 0 gives us the classical integer point enumerator
Lp(r) == 3 ,cza 1,p(l) studied by many authors ([14],{16],(21]) and known
as an Ehrhart quasi-polynomial in r € Z.

Our use of the word computable refers to computing in polynomial time,
and in fixed dimension, certain universal functions defined over any convex

rational polytope that we call polyhedral Dedekind sums (see equation (1.12)
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below). Thus, this chapter focuses on the structure of the polyhedral Dedekind
sums, and how we may take linear combinations of them to obtain the integer
point transform Lp(r,T,y) and integer point enumerator » ;. za 1o (I) of any
convex rational polytope.

We will use Fourier methods, and in particular the Poisson summation
formula, extending the methods of Diaz and Robins [21] to rewrite Lp(r, T, y)
as a finite linear combination of the polyhedral Dedekind sums S(v,u,y,T)
over the vertices of P . One difference from the paper [21] is that the method
therein was based on first coning over the polytope, whereas here we deal with
the polytope directly. Although the analysis here is more involved than in
[21], the resulting formulas are much more general. In particular, we obtain
computable formulas for any rational dilate P, in contrast with previously

known formulas that hold only for integer values of the dilation parameter r.

1.2 Poisson summation, and statements of the
results

The main theorem, stated at the end of this section, is retrieved using Poisson
summation, Lipschitz summation, and various facts from Harmonic analysis.
Poisson summation states that if f is a “sufficiently nice” function (for exam-
ple, a function which is L' and continuous, and has a Fourier transform which

is also L! and continuous), then

Y =Y fm). (1.2)

le Z4 me Z4

Since the indicator function of a polytope is discontinuous on R¢, we must first
smooth the function 1,p by convolution before we can apply the Poisson

summation formula. We wish to apply Poisson summation to the function

f(@) = Lp(z+ T)e ?™®¥ for fixed T € R* and y € C¢, (1.3)
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but to avoid infinities in the computations, we first smooth f with the approx-

imate identity function

| f(-f-)

¢e(z) = T

and then use the following lemma:
Lemma 1.2.1.
lim (f * ¢) (1) = £ (1), for all 1€ R,
Proof
lim (f *¢) (1) = lim (g % ) (1
= lim | ¢c(2)f(l - z)de

_ E%Ed_ll__d)d} /Rdf(f) fl—2)ds. (14

Making the substitution = = ez in equation (1.4) gives us

li_x)r(% (Ff*o0)() = lim——r— f(z)f(l —€e2)dz

1
0 fRd f(z)dz

1

f(z)

= lim ———

[ FENmll = e+ T)erli= 0z
e—0 fRd

z)d

lim f(2)1,p(l — ez 4+ T)e 2=V,

fRd (ac Ydzx /]Rd e—0

- txd / F)F(Ddz
= f().

We note that f has compact support due to the indicator function of rP in
(1.3), the definition of f. Therefore, the integral above converges and we can
bring the limit inside the integral sign by Lebesgue’s Dominated Convergence
Theorem. |

We will use various facts from Harmonic Analysis, which can be found in

the Appendix, such as the fact that for any simple rational convex polytope
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P, the Fourier-Laplace transform of its indicator function is given by

. 1 exp(2ni(v, m))| det A
bp(m)= s 2 p(2mifv, m)ldet Av] - g
i v a vertex of rP Hk=1 <Wk (V)i m>
where wi(v), ..., wg(v) are the 1 dimensional edges of the vertex tangent

cone Ky := {Av+ (1 =Xz :z € rP,X € Ryo}. Throughout the chapter, A,
is the matrix whose k*h column is the edge vector wy,(v).

Let € > 0. Then we have

Z 1,«73 l -+ T —2m(l v}

leZ4
leZd
me 24
= lim Z f(m) Pe(m) (1.8)
me Z4
= ll_r;% 1r7)(m + 'Ly) —27i{ T, m+iy) ¢ (m) (1 9)
mGZd
d Z Z eXp 271’1 V m+1y>)|detA | e—2m (T, m+zy>¢ ( ) (110)
6—)0 vVa egd Hk 1 Wk: 7n—}—zy>
P
d .
= lim (_1.)"1 Z |detAv|e27ri(v—T,iy) Z e);p(Qm(v— T, m)) '¢§e(m),
e—0 (27”) va %/ert:ex me Zd Hk:1<Wk (V), m + zy>

where we used Lemma 1.2.1 in equation (1.6) and Poisson summation in equa-~
tion (1.7). We also used Facts 2, 3 and 4 from the Appendix in equations
(1.8), (1.9), and (1.10) respectively. We note that the infinite lattice sum is
now absolutely convergent due to the presence of the damping function (56. To

evaluate this inner sum, we first let

ne = (Wi(v),m), and z, = (wi(v), iy).

my (4

Thus, A, and hence m = A,*n and iy = A;*2. Similarly,
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(wi(u),m) is the k*h element of Am = A% A7*n. Also, we will use Facts 4

and 5 to get

; R f(‘nf) |6|“d|e|df(em) _ f(gm)
Pe(m) = |e| e f@de ~ [ f@dz e S

(=2 ) exp(2mifu, em + iy))| det Aul __ari(r, emi)
f]Rd f(z)dz e Hk L(wi(u),em + iy) .

of rP

Then we have

Z 17‘P(Z _.|_. T)e——27r<l7 y)
lezd

mezZ®

N —2d
= hr% } 2;”) Z | det Ay|| det Ay|e? v ru2Tow) . g

Vv, u vertices
of rP

where S is the infinite lattice sum

g exp(2mi({(v— T, m) + (u— T, em))) . o
vrgd ITics (Wa(V), m + iy) (Wi (w), em + iy) (1)

By the results of Section 1.3 below, we have

2 —2mi{ap 4B}z
lir% S= d :ZA H - 1 —omizg
- | det Ay 9EL/ AL TA k= 7 ¢ )’z> RRuY)

1 (emiakl(ck(u,v),z>/ckk(u,v) L ) ,

1— e—27rzz;c
keR(u,v)

where A% AGY = [Cy;(u, V)], Ci(u, V) is the & row of [Cy;(u, V)], the ax’s and
the Bi’s are defined by:

aq B1
P = AT v =T, L = AT ),

oy Ba

and R(u,v)={k|1<k<d, Cuu,v)#0, {ap+ Bc} =0and oy, < 0}.
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We will omit the notation (u,v) whenever the dependance on u and v is
clear from context. Recall that z = ¢A%y. Therefore, we have z; = i (A%y),,
the k*® element of the vector iAly. From the definition of A,, we see that
i (A%y), = i(Wg(V),y). Putting this all together we have the following:

Theorem 1.2.1. Let P be a simple rational convex polytope, T € R?, and

y € C% Then
Z Lp(l+ T)e 2 y)/ Lp(z 4 T)e 2= ¥ dy
le 74 Rd
1 |det A, | e~2rtvtu—2T,y)
= (_Qﬂ)d Z d At : S(V7 u,y, T)7
v, 1 vertices Hk=1< k> vy>
of rP

where

e27r{ak+,3k}<w(v)7 y)

1
_ —2m|ax|(Ck, ALy)/C| -
Sviuy, 1) =3 |l 4—Fweow H<e TR A+ e27r(w(v),y>>
gEZd/AVZd k¢R keR
(1.12)

is the polyhedral Dedekind sum.

We note that the singular set in Theorem 1.2.1 is contained in a countably

infinite union of hyperplanes, defined by

Q= U {y € CH{AyCr(u,v),y) =0} U {y € C¥(wy(v),y) €iZ}.

u,v vertices of rP
k=1,...,d

1.3 Polyhedral Dedekind Sums

In this section, we use Lipschitz summation formulas and some basic facts
from Harmonic Analysis to evaluate the limiting value, as € approaches zero,

of our infinite lattice sum

g_ exp(2mi((v — T, m) + (u — T,em))) . 113
2 I (welw), m+ iy} (), em +i3) ()

This evaluation is given in the following theorem.
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Theorem 1.3.1.

e—27ri{ak+,@k}zk
limS =

d
IS = [ Z chkuv 5 Il ==

k¢R(u,v)

11 (ezmwamok(u,v),z>/ckk(u,v>+ 1 >
1_6—27rizk
kER(u,v)

where ALATT = [Cii(u, V)], Cr(u, v) is the k™ row of [Cy;(u, V)], the oy ’s and
the By ’s are defined by

respectively, and where
Ru,v) ={k|1<k<d, Ci(u,v)#0, {ar + B} =0 and o < 0}.

We will need the following technical lemma, which is a variation of Lipschitz

summation, in the proof of Theorem 1.3.1.

Lemma 1.3.1. Let 1y € H,, € C\R and z € R. Then

eZMmz e |: e—2m‘{x}‘rg e—21r'i{a:}‘r1

mEE:Z(m+7'1)(m+7'2) T

1-— e~27ri'r;> - 1-— 6—27”'7'1 .

Proof. We will use the following Lipschitz summation formulas:

For Re(s) > 0, o € R, and 7 € H, the complex upper half plane:

2wimao

€ — (_27”;)3 - n—{a s—leZWiT(n—{a})
e = T e (e o aw

me L
For Re(s) > 0, a € R, and 7 € —H, the complex lower half plane:

e?mﬁm(l—a) 27” 0

T Ry 2 e e (L

me Z n=1

Note: Formula (1.15) is obtained by putting —7 into (1.14) and changing the

variable m to —m
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meZ

By Facts 8 and 9 and formula (1.14), we have for 7, 7, € H, and z € R:

2mima

>

(r + me)sl(ﬁ tm)e /o1 (TL%

oo

n=1

Z

2min(z—t) 2mikt
e - Z _ \a
(11 +mn)= ke (72 + k)=

k=1

_m 1 n — {1 — 1)1 1g2min (n—{z—t}) S — )21 2mina(k—t)
”F<sl>r(sQ>/o <Z( te =) > (k=1) dt

(Letting s; = s = 1)

> 1
:(271'2)2 Z e27ri(71n+T2k)/ e-—27ri(7'1{z—t}+7-2t)dt

n, k=1

0

9 eZm“rl eZm’TQ 1 i famt) r2t)
= 3 . —2mi(m{z— T2
o (27”) 1 — e2mimt ] — e2mim / € dt
e21ri-rl e2miT2 rp{z} 1
— (27‘_,1/)2 . : / e—27ri(‘rl({x}—t)+7'2t)dt + / e—27ri('r1({z}—t+1)+7‘2t)dt
1— 621rz7'1 1-— e27r1'rz | Jo (=}
e2m‘7—1 e27ri‘r2 B ) {z} . . 1 ,
- (27ri)2 . e~ 2 (=} 6_2Mt(7—2_n)dt + 6_27”71({15}‘(’1) e—zmt(‘rz—n)dt
1— 6271*1'7'1 1— 6277727'2 i 0 (2}
e27rz"r1 e2m"rz r e—27ri‘rl {z} . ) i
= (274)2 . : 1 — g~ 2mint —2mi{z}(m2—71) e~2mm _q
( Z) 1— 627\’1,7'1 1— 62m7'2 __271-7:(7-2 _ 7_1) e ) € + )

2mi 1 1 —27im —2ni{z} -2 —2mi{z}T
:TI—TQ.6-27”'7—1—1‘6—27”;72—1|:(1—6 1)@ 2__(1——6 Tz)e £ 1
i |: e—27ri{z}7'2

1- e—-27riT2

e—27ri{a:}7'1
T — T - 1-— e~27TiT1:| :
To finish the proof of the Lemma 1.3.1, we now let m, € H, m, € —H, and

z € R and use formula (1.15) to get:

2mima

e 1 27rm(m t) 2mkt
2 (1 +m)s(rp +m)= /o > T (1 +n)e z; (12 + k)*2

meZ nez

_ (—2m’)31(2m)5i Y& n— {z — tV)-lg2mimn—{z—t}) | |
 T(s))T(s2) /()(,Z;( e =) )

(Z(k _ {1 _ t})”‘le‘%”"’(’“‘{l"t}))dt.

k=1
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Letting s; = s3 = 1, we obtain

e2mima 1 "y > X
— 27TZ o2 (n—{z—t}) e—27rz7'2(k+t—1) dt
LT T / (5 2

meZ

= - (271-1,)2 e27Ti(T1’n—T2k:) / 6—27”'(7’1 {z—t}+7ot) dt
1 0

n=
k=0
eZm"rl 1

= —(2m)?

1
/ e—2m‘(7’1 {z—t}-{-'rzt)dt

1-— e27rz'7'1 ) 1-— e—27‘ri'r2

1
. —2mi(Ti {x—t}+7at)
1 _ g2min | ] _ g2mim /0 ¢ dt

i |: e—27rz'{x}m e-—27ri{z}7'1

e27r'£'r'1 627”'7'2

= (2m)?

— — . as above.
T — To 1 — e—2mim 1 - 6—271'17'1:| ?

Proof of Theorem (1.8.1). We first note that the notation (u, v) is suppressed
throughout the proof since u and v remain fixed. To evaluate the sum
G- 2 exp(2mi({(v — T, m) + (u— T,em)))
[Tt (W (V), m + i) (W (w), em + iy)

we first diagonalize the linear forms in the denominator by letting ny =

meZ4

my ny

(Wr(v),m) and z, = (wg(v),iy). Thus A%, : = : and hence
mq g

m = A7'n and iy = A7tz Similarly, (wi(u),m) is the &*" element of the

vector ALm = A% A7'n. Hence,

g = exp(2mi({v— T,m) + {(u— T,em)))
mezz;d Hi:l(wk(v) m + iy) (Wi (ll) em + ty)

)
_ exp(2mi((v — T,m) + (u— T,em)))
2 +(

L T ((Wr(v), m) + Wk(V) ) ((wi(u), m)e + (wi(u), iy))
_ exp(2mi({(v — T, m) + (u— T,em)))
mezzd [Tz (s + 2 ((Wr (W), m)e + (Wi (w), iy))

k(u
_ exp(2mi((v — T, m) + (u — T, em)))
,,Z;d szl(nk + 2) (AL AT (ne + 2))k
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where (A% A% (ne + 2))g is the k™ element of the vector A% A7%(ne + 2). Note
that the coefficient of € is a rational linear combination of n,,...,ny, and as
m runs through Z¢, n runs through the lattice I := AT 0 Z¢. With this change
of variable, our lattice sum over m € Z¢ is transformed into a lattice sum over
n € L. We now have
¢ — Z exp(27ri§(v —T,An) + (u— T,eA; n)))
nel. Lot (i + 26) (ALAT (ne + 2))i

= > Fln)

nel

1 ' mi{Av g,
- | det A, | Z ZF eiridvia!

V9gezd/A, 24 1e7d

using the orthogonality relations of characters on the finite abelian group
Z2/AyZ? (Fact 6 in the appendix), where F is defined by the penultimate

equality above. Therefore

s - Z Z exp(2mi((v — T, AJMl) + (u — T,eA7M) + (A7lg,1)))
gEZd/AVZd lezd Hk—l(lk + Zk)(Au vt(l6 + Z))
_ 1 Z Zexp @Cri((AJH (v — T +9),1) + (A7 (u — T),€l)))
| det? A"| g€Z4 ) Ay 74 €T Hk 1(17C + zk)(Afo t(le + z))k
_ 1 exp(2mi(( ak + Br)lk + axlie))
o S[erro
_ 1 z Hzexp%rz (14 €)ak + Br)lk)
IdetA !geZd/Adek ez lk +Zk AtA (le+z))
231
where the ay’s and the 8;’s are defined by A7} (v—T) = © | and A7 (g) =
Oy
15}
respectively. We note that the order of the product and sum can
Ba
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be switched due to the absolute convergence of the sum. To streamline the
notation, we let AS A7t = [Cy;]. Then the k™ element of A%, A3t(le + 2) can be

written as
Ckl(llé —+ 2‘1) + Ckz(lge + 22) 4 de(ldé + Zd).
We now investigate the cases when Cir, =0 and Cy # 0 for 1 < k < d.

Case 1. Cp = 0.
Then

exp(2mi((1 + €)ay + Br)lk)
2 (b + 2) (AL AT (le + 2))i

ke Z
_ exp(2mi((1 + €)ay + Br)lk)
ez (e + 2e) (Crr(lie + 21) + - -+ + Crr(lee + 21) + - - - + Crallae + 24))

eZTri((l-i—E)ak; +08k)

— ————— 3

(Cri(lie + z1) + ++ + Crr(le + 2) + - - - + Cra(lae + 24)) i ez by + 2k

where the ~ means that the corresponding term is missing. Now we can

apply Lipschitz summation (1.14) to write this sum as
—2m >
(Cra(lie+21) + - - + Cpe(le + 21) + - - - + Crallae + 24)) n=1
—omi e~ 2miz{(1+e)an+0i} 2Tz

e2mizr(n—{(1te)ak+6k})

- — "1 2wz

(Crallie+ z1) + -+ Cr(le + z) + - - - + Cra(lae + 24))
Therefore

lim Z exp(2mi((1 + €)ay + Bi)lk)
(Is + 2,) (AL At (e + 2))i

-1 e—27rizk{(1+e)ak+ﬁk} e2mizg
= lim —
0 (Cvkl(ll6 + Zl) +--+ Ckk(lk€ + Zk) +.---+ de(lde + zd))
—97i e—2mizk{on+Bk} e2mizk
Ciizy + oo+ Cragzg 1 — e2™ize
1 Irie—2mi{an+Bi}zr

(Ck, 2) 1 — e—2miz

€—0
k€ Z

’ 1 — e27rizk
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Case 2. Ci, # 0.
Since Cyy, # 0, the k'™ element of A% A7t (le + z) can be written as

Ckl(he =+ zl) =+ CkQ(ZQG + Zz) 4+ 4 de(lde + Zd)

= €Cpily + €Craly + -+ - + €Cialg + Cr121 + Crozp + - - - + Crazy
Crali + Cralo+ .. . Cirli + - + Crala  Criz1 + Crozo + -+ + Cra2q
= Crp | Ix + +
Chk eCri

= eCpp(lp +7),

_Ck1l1+---+@+-”+ckdld+Ck121+"'+0kdzd

for 7 ,
Chk €Cl

(1.16)

where the ~ means that the corresponding term is missing. Thus we have

$ exp(2mi((1 + e)ax + Br)li)
5t (et 2 (AGAT (e + 2)

1 Z exp(2mi((1 + €)ay + ﬂk)lk).

€Cri (le + zi) (i + 1)
€L

Now we use Lemma 1.3.1 with = (1 + €)oy + Bk, 71 = 2k, and 7 = 7 to get:

1 exp(2mi((1 + €) oy -+ Br)lk)
Z (e + z1) (I +7)

.1 exp(2mizly)
= lim
l’cze:z (I + 1) (I + 72)

1 Qi |: e——2m’{x}‘rg 6—2m’{z}1'1 jl

= lim

e~0eCy, TI—To|l—e 22 1 — e 2rin

1 omi [e2rid(+eartBe}r  g=2mi{(l+e)ar+Bi}ai
= lim . : — :
e—0eChr 21— T |: 1 — e—2miT 1 — e—2mizk :|
—2mi i e 2mi{(l+eap+Be}r  o—2mi{ak+Bilzk
= im , — ‘
Ciriz1 + Crazo + - - - 4+ Cryzg |:€—>0 1 — e—2mir 1 — e 2miz |’

using definition (1.16) of 7. To finish Case 2, we must evaluate the remaining

nontrivial limit. We may assume without loss of generality that 7 € H.
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Then 27i7 — 0 as € — 0. Thus if {a, + fi} # 0, we have
e~ 2mi{(1+€)ar+Be}r e2mi(1—{(1+€)ar+Be )T
lim ‘ = lim ‘ = 0.
e—0 1 — e—2mir e—0 e2mit _ ]

Therefore, if Cyi, # 0 and {oy + B} # 0, then
1. Z eXp(27TZ((]. ‘I‘ 6)@]‘; + /Bk)lk) . 271'2 . 6_27l'i{ak+;8k}zk

(I + 21) (AL AT (e 4+ 2) (Ck, 2) 1 — e—2mizk

e—0

e Z

We now assume that {ax + Bx} = 0 and hence

€0y, if ap>0

{(T+e)ay + B} = {eag + ap + By} = _ )
1—¢€log| if ar <O
‘We recall that

_Ck1l1+"'+m+"'+ckdld {Ck; %)
T = +
Chrr €Cri

and for simplicity we write 7 = A+ £, where Im(B) :Im<<CCLk:kl> > (0. Then

( e—27ri6ak'r
limeo =5~ if x>0
- 2mi{(1+ st} 0 1—em2miT
lim - = 9
€—0 1 — e—2mir )
. e—2m(1—e|ak|)'r .
\ lim,_.o T o—2mir if ap<0
( e—2mioy (eA+B) )
lim,_,o T o2 if a2>20
e 2miT ) )
lim,_g m-e%ﬂaﬂ(ﬂﬁ-m if ap<0
\ —C
0 if ap>0

—e?miloklBif o < 0

0 if ap>0

_e2ﬂi|ak|(ck1z)/ckk if ap<0 .

To summarize cases 1 and 2, we let

R={k|1§k)§d, Ckk;«éO,{ak+ﬂk}=0andak<0}.
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Therefore
v Z exp(2mi((1 + e)_ak + Bi)lk)
0 L (i + 21) (AL A (le + 2)),
omi e~ 2mHonthila if k¢ R

(Cy, 2 t T e Zmiag

TC%kL,iz:')- ( 2milak|(Cr, 2)/ Cre - _____%Tk) if keR.

Putting this all together, we finally obtain the following limit:

Z H — exp(27mi((1 + €)ag + Br)lk)
(I + z) (A% ATt (le + 2))k

e—2mi{an+Br )2k )

1 2m
| det Ay Z (H (Cr,2)  1— e2mim

1
limS = lim——
0 <=0 |det Ay| gE€TA/ AT k=11} eZ

g€Zd /A T4 \kgR
2mi .| 2milekl{Cr, 2}/ Crr + 1

< ) 1 — e—2mizy

) 27T’L{Ozk+,3k}zk

= Z H H 1 - e—-27rzzk ’

gezd/A 74 k=1 ko %
4 1

2milag|(Cr, 2)/C

H <e K} {(Cr W | -—_—.—1 — e_zm,%) .

keR

1.4 The Ehrhart Quasi-polynomial of a Trans-
lated Simple Rational Polytope

In this section, as a corollary to Theorem 1.2.1, we find a formula for the
Ehrhart quasi-polynomial of a translated simple rational polytope P +T given
by

> Lp(l+T).

leZd
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Recall that for fixed T € R? and y € C?, the left-hand side of Theorem 1.2.1

gives an explicit formula for the integer point transform

LP(Ta T) 2/) = Z 17113(!3 -+ T)6_2”<l79>‘

le z¢

We would like to set y = 0 to get the integer point enumerator that we are
seeking. Unfortunately, y = 0 is a singularity of the right hand side of Theorem
1.2.1. Fortunately, we can find our way around this singularity, which is the
content of this section. We are free to choose any complex value for y as long
as it is not a singularity of the right-hand side of Theorem 1.2.1.

There are an infinite number of such choices since the set of these singu-
larities, €, is collected in a countably infinite union of hyperplanes. We recall

that the singular set in Theorem 1.2.1 is

Q= U {y € CU(A,Cr(u,v),y) = 0} U {y € C¥(wi(v),y) € iZ} .
u,v ‘l:;rtll,ces, gf rP
In particular, we choose y = iv/N for some v = (vy,vs,...,v4) € Z% such

that ged(ve,va,...,v4) =1 and N € Zso such that y ¢ Q. Now consider the

following set of discrete hyperplanes:
L;:={l € Z% (l,v) = j(mod N)}, j=0,...,N—1.

It is clear that the integer lattice is stratified by these N discrete hyperplanes;
that is, Z* = U;‘V:_ol L;. By making the substitution for y = iv/N, we have

ST Lp(l+ D9 = S 15(1+ D)) (1.17)
le 74 le 74
N-1 B
= Y N 1+ T)eF (1.18)
j=0 leL;

Making the substitutions y = wk/N for £ =1,2,3,..., N — 1 and adding up
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all the corresponding sums (1.17) we get

N-1 4 N-1N-1 i
Y pll DD = 33 S (i 1))
k=1 le 74 k=1 j=0 leLy
N— N-1
- Z Y L+ 1) EF).
=0 leL; k=1

By the orthogonality relation of the roots of unity, we have

= 162,” gy _ [ N-1if j=0
— —1  if j+#£0
Therefore
N-1 _ N-1
ST e+ D)EFED = (NI Lp(l+T)= Y. > 1p(l+ T)
k=1 |e 74 lelg j=1 lely;
N-1
= NY 1Lp(+T)=> > Lp(l+T)
lelo 7=0 lely
= N> Lp(l+T)= > Lp(l+T).
lelo 1ez4

Since Lp(r,T,0) = > ,cza Lip(I + T'), we retrieve from the last equation a for-
mula for the Ehrhart quasi-polynomial of a translated simple rational polytope
P-T:

Corollary 1.4.1.

N-1
Lp(r,T,0)=N Z Lp(l+T)— }:: Z Lp(l+ T)e&;\}_’c(l, v)

lelo k=1 e 74
We note that the right-hand side of this formula is computable by using The-
orem 1.2.1. Indeed, the double sum is just N — 1 evaluations of theorem 1.2.1,
where y ranges over iwk/N for k = 1,2,3,..., N — 1. To evaluate the sum
>, rp(l 4+ T), we note that Lo is a sublattice of Z%, say Lo = M*Z? for
some M € GL4(Z). Then we can use Fact 6 from the Appendix to get
3 D) = ey W D
which can now be computed by theorem 1.2.1 with the additional assumption
that for all g € Z%/MZ%, iM~1g is not in the singular set Q.
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CHAPTER 2

Asymptotics of Polyhedral
Theta Series and Solid Angles

2.1 Introduction

Theta series are important tools in many areas of mathematics, including
elliptic functions, modular forms, algebraic and analytic number theory, and

discrete geometry, to name only a few. For instance, the classical

theta function, defined by  6(¢) = Z e ™ for t >0, (2.1)
neEZL

satisfies the following transformation law 6(t) = -7 () of Jacobi [29] and

was used by Riemann [40] to prove the functional equation for the Riemann

zeta function by means of the integral

r (-;-) 72 (s) = -;- /0 “lo) - 1]ts/2%.

In this chapter, we define polyhedral theta series and investigate their
connection with solid angles, the generalization of two-dimensional angles to
any dimension. We will show that polyhedral theta series are useful tools for
studying solid angles by analyzing the asymptotics of such series. Overall, this

chapter serves as an introduction to the tools and methods used to study solid
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angles and it represents a starting point for future study on asymptotics of
polyhedral theta series. As a warmup, in the following section we present an
application of a one-dimensional theta series, namely the Twisted Landsberg-

Schaar Identity.

2.2 Twisted Landsberg-Schaar Identity

The Poisson summation formula states that if f is sufficiently nice, then
S =3 fm). (2.2)
lezd me Z4

One application of this formula is in the proof of Jacobi’s transformation law
for the classical theta function. This transformation law is in turn used to prove
the following identity of Landsberg and Schaar [33|: For positive relatively

prime integers p and q,
/4 2-1

1 - 2min?
— e2rinta/p e~ Tin°p/2q
B m

Formula (2.2) can be “twisted” to include Dirichlet characters, but we first

recall the definition of a Dirichlet character modulo an integer N.

Definition 2.2.1. A Dirichlet character modulo N is a function y : Z — C,
which is periodic with period N, such that x(nm) = x(n)x(m) and

Ix(n)l={ 1 if(n,N) =1,

0 otherwise.

A Dirichlet character y mod N is called primitive if x is not a character mod
M for any divisor M of N.
The following is the twisted Poisson summation formula:

o

> gty = X S 567 (), 23)

n=—oo
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where x is a primitive character mod N and g(x) is the Gauss sum defined by

the formula

900 = > x(n)em V.

nmod N
(For a proof of (2.3), see [15]). As an application of (2.3), we let x be a

nontrivial primitive character mod N such that x(—1) = 1, (so, x is even).
Then for f(z) = ™" ¢ > 0, we have

- —7tn? g(X) S —— —mn? /N2t
ne = === n)e . 2.4
D xme™ = 3 % 2.4
n=-—o0o n==00
If we let 7 =it, for t > 0, we get
Z X(n)ewifn2 _ _g_(}i Z X(n)e_ﬂinz/NzT. (25)
n=—oo N —iT n=—o00

By analytic continuation, (2.5) is true for all 7 € H, the upper half complex

plane. We will now use (2.5) to prove the following result:

Theorem 2.2.1 (Twisted Landsberg-Schaar Identity). Let x be a non-
trivial even primitive Dirichlet character mod N and let ¢ € Z~o such that

(g, N) =1, then

N—-1 4gN-1
S e 200V S S s,

Ve x(J)

Proof. We start with the left-hand side of equation (2.5) and 7 = it + 2¢/N::

o0

N-1
D7 ()N N7 ()N N e (26)
§=0

n=—00 n=j mod N

2 . .
2mign®/N a5 n, varies over Z. We will need

We used the periodicity of x(n) and e
the following claim:

Claim:

: —'rrtng_i
%EI%\/Z Z e =N

n=jmod N
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Proof of Claim.

o0 2
1 = / e " dr
—CQ

= lim Z Azf(x,)

Am——rO
— llm Z \/_Ne—ﬁt(Nn+])2
TL——'OO
— : —1rtn
= fgVav 3, e
n=j mod N

where we used f(z) = e g, = Vt(Nn + j) and hence Az = /tN. B
This claim, along with (2.6), shows that

1Nl

(o]
Vit Z X(n)e"“tnz*'z”q" x(J 27”‘” N oast—0. (2.7

]:0
Now we play a similar game with the right-hand side of equation (2.5). Again,
we let 7 =it + 2q/N and get

9(x) o —mtn? 2mign
T INii- 2N - 2.8
N2t — 2igN Z X(n) exp <N2t2 + 4(]2 N32 4q2N2 ( )

N \/ N;j;b—()2lq]\f Z We—wtnzﬂq?e—?m‘n2/4qN+O(t4)’ ast — 07 (29)

4gN—1
— o7 .2 — 7 n2 2 o) 4

m Z x(5)e % /4‘1N_J§M A7+ a5t — 0. (2.10)
In (2.8) we wrote the exponent as a + bi where a,b € R and in (2.9) we used
the Taylor series representations of both a and b centered at 0. In (2.10) we
used the periodicity of x(n) and e=27"*/4N a3 n, varies over Z. We note that X
has period N, and thus is also periodic with period 4¢/N. By the above claim,
it is easy to see that

APV

n=j mod4¢N
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This limit, along with (2.10), shows that as ¢ — 0

4qN—1
g(X)\/Z S —min? /N2t—2igN g(X)\/Q—(i i) e~ 2mig? /4N
SR A VA7 S n)e — IV 2 e .
VNt — 2igN n;ooX( ) Nv—iN gﬁ X

(2.11)
By equating the asymptotic equalities (2.7) and (2.11), we obtain the desired
result. |

2.3 Solid Angles

As we stated earlier, the motivation for this chapter is the study of solid
angles via appropriately defined theta functions. Suppose P C R is a convex
d-polytope. Then the solid angle wp(x) of a point x (with respect to P)
equals the proportion of a small ball centered at x that is contained in P.
Thus, for all positive e sufficiently small,

vol(B.(x) N P)
wp(x) = vol B(x)
where B(x) = {y € R? : |x—yll2 < €}. This definition holds for any
polytope P or pointed cone K.
Before discussing solid angles further, we first define several terms from the

language of polyhedra. A pointed cone K C R? is a set of the form
K= {V+)\1W1+>\2W2+"'+)\me|>\1,)\2,...,)\7)1 > 0},

where v, wy,...,w,, € R% are such that there exists a hyperplane H = {x €
R¢|a-x = b} for which HNK = v. The vector v is called the apex of K, and
the wy’s are the generators (or edges) of K. The pointed cone is rational
if viwi,...,wn € QY. We say that H is a supporting hyperplane of K
if K lies entirely on one side of H. A face of a cone K is a set of the form
K N H, where H is a supporting hyperplane of . If K is of dimension d, then
we call it a d-cone. The d-cone K is called simple if K has exactly d linearly

independent generators.
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With the language now set, we have the following alternate definition of

the solid angle of a cone:

Definition 2.3.1. Given a cone K C R? with apex at the origin,
wie(0) = / e=lelP g,
K

We note that one can replace the integrand e~™l=I* with any radially symmetric
function f (||z||) in definition 2.3.1, as long as one divides by the total mass,
Jga f (l|lz]]) dz. The benefit of using the Gaussian function in our definition is
that the total mass equals 1. We now define the tool that will help us analyze

the solid angle of a cone.

Definition 2.3.2. Given a cone K C R?, we define the following conic theta

function for ¢ > 0:

Oe(t) = > e™imi, (2.12)

meknZd

The connection between 8x(t) and wi(0) becomes apparent when we discretize
the integral definition 2.3.1 as a Riemann sum and obtain the asymptotic
result:
Theorem 2.3.1. Given a cone K C R? with its apez at the origin,
wic(0)
9;C(t> ~ t—d/Q——’ as t — 0+.

Proof. Let f(z) = e ™IeI*, Then we have that

we(0) = /}CCRde_"”r'de

= lim Y (Az)'f(Az-n).

Ax—0t
neknzs
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If we let Az = t1/2, it follows that
we(0) = lim Y t¥2f(t"*n)

= lim Z td/2e—7'l'”tl/2n”2

neknzd

= lim Z t4/2g=mtlinl?

t—0+
nekNZd

= lim t%26x(t).
L )

Therefore, we have the desired result:

1920, (t)
t—0+ WK(O) o

2.4 Asymptotics of the Conic Theta Functions

We have just shown that the conic theta function fx(t) ~ wi(0)/t%2, as
t — 0T. In this section, we study finer asymptotics of 6x(t) using Euler-
Maclaurin summation and the transformation law of the classical theta func-
tion. In particular, we will use the geometry of the positive orthant, O, to
study the behavior of 0 (t) as t — 07,

The classical Euler-Maclaurin summation formula for a function f having

2m continuous derivatives on the interval [1, 00) can be written in the form

FQ) 4+ fn) = / " Fa)de+ O L 1m) + 2 f ) + ot () +

B2m (2m—-1) (2m) BZm(x I_CCJ)
* ! / L T T

(2.13)

The By’s are the Bernoulli numbers and they have the generating function

_1—ZB’° E (2] < 2m).

k>0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

The By(z)’s are the Bernoulli polynomials and they are defined through the
generating function

ze™ Bk(as)zk
et —1 k!

k>0

(|z] < 2m).

The symbol |z| means the greatest integer < z. The number C is a constant

independent of n given by
1
C==f(1)- Ba g Bom_
2 !
It is known that [26]
B _o@m)ar)tm(—nymn S SRR 103
om(z — |2]) = 2(2m)!(27)~ z — orm=1,2,3,....
Therefore, we have the following:

Ban( — [2])] < 22m)I(2n) ™Y o = [Ban(0)] = Bl (214)

This bound is useful in estimating the last integral in (2.13).

For fixed a > 0 and n € Z.o, we consider the sum

N
_ 2
k=—N

Using the Euler-Maclaurin summation formula (2.13) with f(z) = e~***/", we

have
= [ syt JU0 + M)+ 200 - PN +
B m 2m—1 2m—1
+. “+(2:n) (fem=D(N) — f@™=D(=N)) = Ry,
where
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We now take the limit as N — oo to get

o]

S(a,n) = Z e~ ok /n

[ e [ e

@_ /_oo f(?m)(x) B2m((;n:)'LmJ) d.’E, (215)

since f®)(£N) — 0 for k=10,1,2,.... We denote the integral in (2.15) by R
and notice that R does not depend on m, since —R = S{a,n) — y/7an/a. We

can use (2.14) to estimate R:

A= |7 Bt lal

TG
< [ JremoR=t ol o

/ 1™ (@) d

In [20], de Bruijn uses Hermite polynomials and Stirling’s formula to show that
-R=0 (ne‘”%/ a> , as n — oo. Alternatively, we realize that S(a,n) =

8(a/mn), where 8(t) is the classical theta function

0(t) = Z e ™ for t > 0.

n=—o0

We know that 6(t) satisfies the following transformation law

o(t) — % 0 (%) . (2.16)

Therefore

S(a,n) = Z e~ ok /n

k=—00

— /7('7’L Z —k2n?n/a

k=—00

™ ™ 2,2
— AT, T i —k2n?n/a
V «a * V a kz_:le ’
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and hence we obtain the improved result:

o
_R — 2 ﬂ § e—k27r2n/a =9 @e—WQn/a +O (\/’ﬁe—4n2n/a> , as 1 — 00.
v < V (8%
k=1

Thus, we have shown that

o0
S ekt J g [Ty 0 (ﬁe“‘"Q"/“) , asn — oo.
k::—OO o @

(2.17)

Let us express this result in terms of #(t). By making the substitution a/n =

wt, equation (2.17) becomes

N e 12 1 4
(t) := Ze tk =77 /t—{—O(%e 4”), ast — 0%, (2.18)

Equation (2.18) is the key result that we will use to find asymptotics of the

k=-—o00

conic theta function 8o (t) defined over the positive orthant. But first, we will
need to define a weighted conic theta function over a cone K. The weighted
characteristic function Cx(z) is the function on R? that takes the value 0
if z ¢ K, the value 1 if z € K°, the interior of X, and the value 1/2* on the
relative interior of a face of K of codimension k. So for example, for the cone
[a, c0) C R, the function Ciq )(z) assigns the value 1 to = > a, 0 to points
z < a, and 1/2 to a. Then the weighted conic theta function over K,
Ok(t), is defined as

Ox(t) = Y. Cr(m)e™mF fort>o0.
meknzd

The positive orthant in R? is the set
O = {(z1,23,...,74) € Rz >0, Vi}.

Clearly, O is a pointed cone and we want to study the asymptotics of ©¢(t) as
t — 0. As we shall see in the next result, the geometry of the positive orthant
is particularly nice for studying conic theta functions because we can reduce

the analysis to the one-dimensional classical theta function.
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Theorem 2.4.1. The weighted conic theta function defined over the positive
orthant in RS, ©p(t), is a product of classical theta functions, 6(t). In fact,

6%t
Oo(t) = 2—2) for t>0.
Proof.
d
oc;gt) — __21_d ZOO: e—wtm2>

(2.19)

= > 1 NS | >
_ Z _ﬂ—t(m%_}_..._}‘mg) + Z §e—wt(mf+...+m3_l) 4ot Z 56—-7rt(m§+...+md)
ml,‘,,,mdzl mi=1 m1-=1
~ ~ i#d i#1
interior of © ~ ~ —
(d—1)— dimensional facets of O
oo oo 1
—rtm% . —wtmg -
™ +ngle + —}—E:lee + 2d
mai=1 mg=1 N
~ ~  apex of O

1— dimensional edges of O

= Z Co(m)e—ﬂ-t”m]P

meONZe

= Op(t).

From equation (2.19), we get essentially for free a transformation law for ©¢.

Corollary 2.4.2. The weighted conic theta function defined over the positive

orthant in R?, Op(t), satisfies the following transformation law:

1 1
@O(t) = W@() <'Z) R fOT‘ t > 0.
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Proof. This follows from Theorem (2.4.1) and the transformation law for 6(¢)

in equation (2.1).

2 = o wr T oy

oo = 0 _ (Wﬁ(%))d 1 #) 1 (1)
[ |

We can now use the asymptotics of the classical theta function in equation
(2.18) to study the asymptotics of ©p. But first we will need the following

lemma.

Lemma 2.4.1.

e—4r/t 0 1 — Qe 7/t
_ — s i O+.
Vi ( Vi ) e

Proof. It suffices to prove that

—4r/t
e -
- 7 . e 4 [t
hm — = hm —_— = (.
10+ 122778y o+ 1 — 2e 7/t
Vit
By L’Hopital’s rule, we have
—Ar/t —4dr/t
, € . —2e . _
lim —— = lim ————— = lim —2e sm/t — 0,
10+ 1 — 2"/t 1ot e/t t—0+

Now we can state the asymptotics as ¢t — 07 of the weighted conic theta

function defined over O, the positive orthant in R%.

Corollary 2.4.3. Ast — 0%,

meOnZd
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Proof. From theorem 2.4.1 and equation (2.18), as t — 0%, we have that

If we expand this expression, we get the term

<1 - ze—w/f)d
21/t ’

plus error terms involving products of

1— 26-71'/:‘, e—47r/t
El(t) = ——2-7t—- and Eg(t) = \/%

By lemma (2.4.1), E1(t) dominates Fs(t), and hence the largest error term is
—A4n [/t _ 9,—T/t d-1
O £ . <1 2c > as t — 0F.
Vi G

The following lemma relates the asymptotics of the weighted conic theta func-

tion, Op(t), to the non-weighted version, 8o (t).

Lemma 2.4.2.
Given a cone K C R, O (t) ~ O (t), as t— 0.

Proof. We will use the same proof as in theorem 2.3.1 to show that Ok (t) ~
wi(0)t=%2,  as t — 0F. Then we will have

—d/2
lim @;C(t) = lim @)C(t)w)c(())t

BB 0l ~ 0 B0V~ -

We begin with

we(0) = /}CCRde"””I”zda:

= / CK;(I)G_””’:”zda:,
KCR4
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since Cx(z) only affects the boundary of £ and the integral over the lower-
dimensional AK equals 0. Then we let f(z) = Ci(z)e™™*I” and write the

following Riemann sum

we(0) = lim > (bz)f(Dz-n). (2.20)
neknZd4

If we let Az = t1/2, it follows that

— 1 d/2 f(41/2
we(0) = Jim Z tEf (¢ n)
neknZd

= lim td/Z‘C £1/2 —7|[tt/2n|j?
t—0+ Z IC( n)e
neknz¢

= lim 23" Cy(n)e ™I’ (2.21)
neknNZe

= lim t¥20k(t).

t—0+
In (2.21), we used the fact that for ¢ > 0, if n is on a face of IC with codimension

k then so is t'/?n. Therefore lim;_,o+ ﬁ(g—gg/—g = 1 and the lemma follows.

Corollary 2.4.4. Ast — 0T,

i3 = (S o (122,

meONZ4
(2.22)

Proof. This follows directly from lemma 2.4.2 and corollary 2.4.3. |

In dimension d, there are 2¢ orthants and hence the solid angle of the positive

orthant is wy = 1/2%. We point out that the leading term in (2.22) is

1 1376

2d¢dj2z T td/2’

which is consistent with theorem 2.3.1.
The goal for future study will be to use corollary 2.4.4 to study solid angles
of any rational simple cone X, where X = MO, for some d X d matrix M.

When we apply the transformation M to the standard orthant, it results in
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conic theta functions with matrices in the exponent of the Gaussian. This
greatly increases the difficulty of studying wy through the asymptotics of such
theta functions. In the following sections, we generalize the notion of a solid

angle in order to find a more computable measure of volume.

2.5 [P-Solid Angles

The solid angles that we have studied thus far have measured the volume of
the intersection of a polytope with a small ball. Without saying so, we assumed
that the ball was defined with respect to the [2>-norm. We now extend our
notion of a solid angle by considering balls with respect to P-norm for p > 1.

Given x = (z1, %2, ...,7q4) € RY the [P-norm of x is defined by

I xllp = (|21 + | zal? + - - - + | zaf?)?, for p> 1.

The ball with respect to [P-norm of radius € centered at x is the set

By e(x) ={y eR": |x-yl,<e}

For any convex d-cone K C R, we define the generalized [P-solid angle of a
point x, denoted by w,, x(x), to be the proportion of a small [P-ball centered

at x that is contained in K. That is

B vol(B,, (x) N K)
wp,e(x) = vol By ((x) '

for all positive € sufficiently small. We note that the {>-norm is the usual norm

associated with R¢ and hence the usual solid angle is the [2-solid angle. We

also have the following integral definition:
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Definition 2.5.1. Given a cone X C R? with apex at the origin,
wp,(0) = / eclielb g
K
_ / ¢ aalPHaal?+- Haal?) g
K
where c is a constant dependent on p such that if £ = R?, then w, x(0) = 1.

We will now solve for the constant c in the following lemma:

Lemma 2.5.1. The following identity holds for all p > 1:

P
/ e—clllngdx = ]_, fO’I" C = <2I‘ (1 + 1)) s
R4 p

where I'(s) is the Gamma function defined for s € C with Re(s) > 0 by
(o.¢]
[(s) = / et Lt
0
Proof. First, we note that

1 — / e=cllzl g
RE

= [ eellmlP btz gy
Rd

- (fesy

Thus we have reduced the identity to the one dimensional integral:

1 =/e‘°|z|pdm.
R

Making the substitution c'/?z = y, we have

1
1 = —_— “lylpd
cl/p R € Y
2 * .
— )
= 5 /0 e ¥dy
2 1 [
= — = [ etrTld (2.23)
C /p p 0
2 1 1
- Al 1_9 I (;)
2 1
= CT/;-F<§+1>, (2.24)
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where we made the substitution ¢ = y* in equation (2.23) and we used the well

known relation I'(s 4+ 1) = sI'(s) in equation (2.24). Thus the identity holds

1
&”:2F(~+Q.
P

Now that we have nailed down the constant ¢ for each p > 1, we extend to

for

all x € R? the integral definition 2.5.1 of a solid angle:

Definition 2.5.2. Let ¢ > 0. Then for x € R? and p > 1, the IP-solid angle

of x with respect to the cone K is given by

1 —C ¥4
wp, k(x) = 11_{% i ), e l=xlz gy, (2.25)

This definition of w,, x(x) is more analytic in nature, as opposed to geometric,
and it opens the door to Harmonic Analysis techniques that will be used to

study solid angles in the next chapter. As a preview, we analyze (2.25) further.

Fore >0, p > 1, and t € R% we define
belt) = —— M, (2.26)
€ ed/P
Notice that ¢.(—t) = ¢.(t), by the properties of the [P-norm. Then equation
(2.25) becomes

() = lm | oot =)
= lim [ ¢.(x —t)dt
e—0 K
= lim [ 1x(t) de(x —t)dt

e—0 Rd

= lim (1 = ¢¢) (x).

The last equality follows from the definition of the convolution. This fact will

be used a great deal in the next chapter, so we highlight it here:
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Fact 1.

wp, k(X) = lil%(l;g * @) (x), for all x € R%

We now take a moment to comment on the properties of ¢., which will
also be used later. The Schwartz space ,., is the vector space of infinitely
differentiable functions f : R? — C which are bounded, smooth (i.e., all partial
derivatives exist and are continuous), and rapidly decreasing (i.e., |z|" f(z)
approaches zero as || — oo for any N). The Fourier transform f : R* — C is
defined as

fo) = [ e e

It is known [32] that if f € &, then f € . For example, when p = 2, ¢ €
and hence ¢§E € & where

1

Ge(t) = €T e HME and (1) = 7 e,

The fact that gi;E is rapidly decreasing will be used to show absolute convergence

of series in the next chapter.

2.6 [P-Conic Theta Functions

In order to study [P-solid angles, we define the following [P-conic theta

functions for any p > 1.

Definition 2.6.1. Given a cone K C R¢, the IP-conic theta function for £ > 0

and p > 1 is given by:

» P
Op c(t) = Z e~ lmly  where ¢ = (2F (%—kl)) .

meknZd
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Let us pause to examine a couple of these new objects before we state and

prove a key result on the asymptotics of [P-solid angles.

Example 2.6.1. When p = 1, ¢ = 2I'(2) = 2 and we get the following *-conic

theta function over K:

Or(t)= D e, (2.27)

mekKNZd

For p = 2, we have ¢ = (2I'(3/2))? = 4(y/n/2)? = m and hence the [%-conic

theta function over K,

bo ()= Y el (2.28)

meKNZ4

is just the d-dimensional classical theta function defined over K.

Solid angles are constant along the relative interior of the apex of any cone
K. Therefore, we define the [P-solid angle of a cone K as wj, k¢ := wp 1(x),

for any point x in the relative interior of the apex of K.

Theorem 2.6.1. Given a cone K C R% with its apex at the origin,

Wp, K
ep’;c(t) ~ '[;510 , as t — O+.

Proof. Let f(z) = e_cllzllg, where ¢ = (2I‘ (1 + 1>>p. Then we have that

»

wpx = wpx(0)

/ —cllel?
= e rdx
K

= lim Z (Ax)f(Lx - n).

Ax—0+
nekKnz4
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If we let Az = t1/? it follows that
wpx = lm Y t4Pf(t/Pn)

lim Z 4/p g=cllt/Pnllp

t—0+
neknzs

— lim Y lreedinl}

-0t
neknzd

= lim 470, x(t).

Therefore, we have the desired result:

1420 (t
lim ———p’K( ) =1.

t—0+ wp, K

2.7 1'-Solid Angles

Our motivation for studying generalized solid angles is the fact that
I*-solid angles are much easier to compute than {?-solid angles, as the next two

theorems illustrate.

Theorem 2.7.1. The I'-solid angle of a d-dimensional simple pointed cone

K C R? contained in any one orthant with its apex at the origin is given by
Y P

det K
wi,x(0) = _(_il_d_l_, (2.29)
21, [will
where Wi, Wa, ..., Wy are the d edges of K and det K is the determinant of the

matriz whose i column is the edge vector w;.

Proof. Without loss of generality, we assume K is contained in the positive

orthant of R?. We know that w; x(0) is defined as

o VOl(Bl,l(O) M ’C)
(.L)L)C(O) - vol B1,1(0) 9
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where B; 1(0) is the unit ball with respect to the {*-norm, centered at the
origin. It turns out that the closure of this ball, By 1(0), is a well studied
polytope called the cross-polytope, which is defined by

&= {(xl,xg,...,xd) ERdC ‘.’L‘l’—f- |Z‘2I++ del < 1}

Therefore ( )
vol(ONK
0) = ————.
w1, (0) vol &
It is known that vol® = 2¢/d!. Thus, it remains to show that
vol(ONK) = |—%
d iz wills

Since K is simple, by definition it has exactly d edges, which we assume are
contained in the positive orthant. Therefore, the intersection of K with ¢
forms a d-dimensional simplex with one vertex at the origin and d vertices on
the boundary of ©, corresponding to the d edge vectors of K.

It is known that the volume of a d-dimensional simplex A with vertices

0,vy,..., vy is given by
) Do
volA = 3 det | v vy -+ wvg |]- (2.30)
Let v; for i = 1,...,d, be the non-zero vertex of & N K in the direction of the

edge vector w;. Since v; is on the boundary of ¢, we must have ||v;||; = 1 for
y )
each i. Also, v; is a scalar multiple of w;. Hence, we must have v; = —7—”:,",’“1, for
1

each i, because
_ willy

Tl

” HWzlll
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Therefore,

vol(®NK) = = det | vi vo -+ vy
det | w; wo -+ Wy
d Ty wills
_ | det K|
24 TTizy lwilly

Before we start the next theorem, we pause to clarify what we mean by a
“polynomial time algorithm.” Let C be the class of all rational polytopes in R?
with d fixed. An algorithm on C is called a “polynomial time algorithm in
fixed dimension” if there exits a fixed polynomial f such that the algorithm
only takes f(t1,...,t,) time, where the ¢;’s are the log, | ¢;| of the coordinates
¢; of the vertices of P, for any P € C. The polynomial f is known as a

polynomial in the input size of P.

Theorem 2.7.2. Let us fix d. Given any pointed rational d-cone K C R¢,
there exists a polynomial time algorithm in fized dimension which computes

the I*-solid angle at the apex of K.

Proof. We can assume that the apex v of K is at the origin, otherwise we
can calculate the ['-solid angle of the translated cone K — v. Theorem 2.7.1
gives the formula for simple cones contained in one orthant. We know that
[P-solid angles are additive, i.e. if K = K; U Ky where dim(Ky N Ky) < d,
then wp k() = wp k,(2) + wp x,(x) for all z € R¢. Therefore, we wish to
decompose K efficiently into cones, the ['-solid angles of which are computable

using theorem 2.7.1.
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As is well-known, any pointed cone can be triangulated into simple cones
using no new generators {7], and in fact every rational cone can be triangulated
into unimodular cones (simple cones whose edges form a basis of Z%) [24]. But
triangulations are not enough to ensure polynomial time computability. We
will use the following theorem of Barvinok [6] which says we can break up K

as a signed decomposition of unimodular cones in polynomial time:

Theorem (Barvinok). For a fized dimension d, there exists a polynomial
time algorithm, which, given a rational polyhedral cone K C RY, computes
unimodular cones IC; for i € I and numbers ¢; € {—1,1} such that
Ig = Z €ilk,,
i€l
where 1 is the indicator function of K. In particular, the number |I| of cones

in the decomposition is bounded by a polynomial in the input size of K.

Therefore, we assume that KC has such a signed decomposition. Then by the
additivity of [P-solid angles, we have
wi,c(0) =Y ewn, i, (0). (2.31)
iel
According to [4], computing the edge vectors of each K; can be done in poly-
nomial time. Thus, the {!-solid angle at the vertex of K can be computed
in polynomial time using theorem 2.7.1 and equation (2.31), as long as the
unimodular cones in the decomposition are all contained in one orthant.
Alternatively, we can use the fact that X N < is a polytope. Polytopes are
simply the bounded intersection of a finite number of half-spaces of the form
{x € R%: a171 + agxgy + - - + agzq < b}. The boundaries of these half-spaces
are called hyperplanes. A hyperplane is called rational if it is of the form
{x € R% : ayzy + apzy + -+ + agzy = b} for some a;,as,...,aq4,b € Z. A
polytope is called rational if all of its defining hyperplanes are rational.
Since < is a rational polytope and we assume that K is a rational cone,

all of the defining hyperplanes of their intersection X N & will be rational.
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Thus, £ N < is a rational polytope. In [4], Barvinok gives an algorithm that
implies polynomial computability of the Ehrhart quasi-polynomial of a rational
polytope when the dimension is fixed. The Ehrhart quasi-polynomial of P is
an expression of the form Lp(r) = ¢4(r)ré+- - -4c1(r)r+co(r), where cg, . .., co
are periodic functions in r and Lp(r) = #{rP N Z%}, the discrete volume of
the r** dilate of P. It is known that the leading coefficient, c4, equals the
continuous volume of P. Therefore, the volume of K N < is computable in

Kno
polynomial time and so is wy (0) = %—g—)ﬂ
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CHAPTER 3

Generalized Solid Angle Theory
for Real Polytopes

3.1 Introduction

We have seen in the previous chapter that solid angles are a generaliza-
tion of two-dimensional angles to higher dimensions. 1. G. Macdonald initiated
the systematic study of solid-angle sums in integral polytopes. Recently, there
has been a resurgence of activity on solid angles and we now have a theory
of solid angles that parallels the theory of integer-point enumeration known
as Ehrhart theory. This solid-angle theory for rational polytopes, including
results from the 1971 paper [34] of Macdonald, can be found in Chapter 11 of
[7]. '

In this chapter, we extend many theorems of solid-angle theory for rational
polytopes from {7] to results involving generalized solid angles and real poly-
topes. The proofs we give here rely on Harmonic Analysis and therefore do
not resemble the proofs in [7], which are combinatorial in nature. Further-
more, it is the power of Harmonic Analysis that allows us to use generalized
solid angles and to extend our results to real polytopes. We also note that
solid-angle theory for real polytopes is still in its infancy, primarily due to the

considerable increase in difficulty associated with the study of polyhedra with
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irrational vertices. Theorems for irrational polytopes are hard to come by,
even in Ehrhart theory, and thus the significant contribution of this chapter
to solid-angle theory is the extension of several fundamental theorems to real
polytopes. We also note that in this chapter the word cone always refers to a

pointed cone.

3.2 Generalized Solid-Angle Generating Func-
tions

The integer-point transform of a polytope P € R¢, given by

op(z) == Z z™, (3.1)

mePnZd

is a multivariate generating function that lists all integer points in P as a
formal sum of monomials. This special format encodes information about
the integer points in a way that allows us to use both algebraic and analytic
techniques to study the discrete geometry of polyhedra. By analogy, we form

the solid-angle generating function for a polytope P
ap(z):i= Y wp(m)z™ (3.2)

me PNZI

In order to employ the methods of Harmonic Analysis, we often need to

consider functions of a complex variable. For this reason, we redefine ap using

the substitution z, = €™ for each k = 1,...,d, so z™ = e*>™ and we
obtain
ap(s) = Z wp(m)er &™) - for s € C2 (3.3)
me PN Zd

This substitution will prove essential when we use the Poisson summation
formula in our proofs. Using this technique will introduce sums of Fourier-
Laplace transforms defined over polyhedra and the complex variable will ensure
convergence of such sums. We note that while defined similarly, the Fourier-
Laplace transform is defined for the complex variable s € C%, while the Fourier

transform is only defined on R€.
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We wish to point out that ap(s) is a finite sum for any polytope P C R? and
for all s € C? because the wp(m) = 0 for all m ¢ P. Therefore, convergence
is not an issue when dealing with polytopes. However, when we consider
the solid-angle generating function for a pointed cone X, this is not the case.
To discuss the convergence of ax(s), we need to define K*, the polar cone

associated with K. The polar cone K* is defined by
K ={zeR*: (z,y) <0,Vy e K}.
Thus, ax(s) converges if s € C¢ such that —Im(s) € K*, because

—Im(s) € K~
= (-Im(s), m) <0, VmeknZ
& |FEmEm| <1 ¥ e KNZ

& lezm(s’m)| <1, YmeknZ-

We now further extend our definition of ap, by allowing wp(m) to be the

generalized [P-solid angle measure defined in (2.25) and which we restate here:

1 - P
wp () 1= lim == /P e lxlE gy, (3.4)

e—0 ed p

We will use Fact 1 from the previous chapter which states that:

wp(m) = lim (1p * ¢c) (m), (35)

for an appropriate choice of ¢. with ¢.(—z) = @(z). In fact, we will use

de(s) = 6_%6_777<S’S>, since we will need ¢ to be rapidly decreasing. We
i P

could use ¢(t) = ed_l/P- e I for any p>1and c= (2I‘ (}% + 1)) as long

as ¢ decreases rapidly enough to ensure absolute convergence in the series

that will follow.

We will now show that the solid-angle generating function ax(s) obeys the

following reciprocity relation:
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Theorem 3.2.1. Suppose K is a simple d-cone in R?* with vertex at the origin
and s € C*. Then
ax(—8) = (—1)%ax(s). (3.6)

Proof. For j =1,...,d, let w; be a generator of the simple cone K. By abuse
of notation, we denote the determinant of the matrix whose j*' column is the

edge vector w; by det K. Then

ax(=s) = lim » (Ix* ¢e) (m)e*™>m (3.7)
meZd

= 11_{% sz (1 * ) (m — s) (3.8)

= lim sz Tc(m — 8)e(m — s) (3.9)

(—=2mi)~ ¢ det K| b —3) (3.10)

= lmé d .
T mezd [Ti=1{wj,m —s)
The last equality uses the formula for ix, which is exercise 10.4 in [7]. We
used Poisson summation in the second equality, which is valid because the
convolution of 1x with ¢, is an integrable and continuous function whenever
¢, is integrable and continuous.
Now we will use the fact that the lattice sum is invariant under the substi-

tution m = —n. Thus, we have

ag(—s) = lim Z I%;f;i;{lj?‘i’?) pe(—n — 3) (3.11)

e—0

neZd
(—27i)~ Y det K| ,

= (=1)*lim (n+s 3.12

P AT R

= (-1)%lim Y lc(n+s)de(n+s) (3.13)
neZd

= (”1)d£%%(1m€)(n+s) (3.14)

=~ lm Y (L x ) (n)e?mHen (3.15)
nezd

= (=1)%ax(s). (3.16)
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In (3.12), we used the fact that, for all complex vectors z € C, Ge(—2) = be(2).

This last remark holds because
¢€(—Z) — / e27r7;(—z,ac)¢6 (a:)dx
Rd
— / e2m‘(z,—-az)¢e (m)dﬂf
]Rd
_ / e27ri(z,u)¢e(_u) du
Rd

— / e27wl(z,u)¢6 (u) du
ARd
= @(2).

We now generalize the previous theorem to any real d-cone.

Theorem 3.2.2. Suppose K is a d-cone with its vertez at the origin, v € R?,
and s € C%. Then the solid-angle generating function v yx(s) of the d-cone
v + K satisfies

oy ixc(—=8) = (=1)%a_yix(s). (3.17)

Proof. Since solid angles are additive, it suffices to prove this theorem for
simple cones. Therefore, let w; for j = 1,...,d be the generators of the

simple cone K. Then the cone v + K has generators v + w; and we have

Oviic(=s) = lm > (lysc* ge) (m)e?™
mezZ3

= lim 3 (Loax * 6)(m — 5) (3.18)

meZs

= li% Z Ty (m — s)(;ge(m —8).

meZd

We used Poisson summation in the (3.18) above and we note that the formula
for the Fourier-Laplace transform of the shifted cone v 4 K is obtained from

that of K, since 1y = 1k - €2™v:"), Thus
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— N\—d t KC 2mi(v, m—s)
deri(-s) = lm 3 (Z2TD Ttk e Felm —5)
mezZd Hj=1<wj’ m - S>

(—2mi)~ 4| det K| €2tV o)
e—0 d ¢e(—n N S)
ez L=(wi—n—s)

—9i —d det 2mwi(—v, nts)
(omi)Jdet k] bn+9

= (=1)%lim
(=0 T (wyynts)

neZd j=1

= g 3 vl i+ o)
nez?

_ (_1)d££% Z (1_‘:;;;(1)6)(71—!—8)

neZd

= (-1)%lim (1_yix * B¢) (n)e?mitem

e—0
nezZd

= (=1%a_yix(s).

We again used the fact that the lattice sum is invariant under the substitution

m = —n and that ¢.(—z) = d.(2), for all z € C<. [ |

We now state and prove the analogue of Brion’s theorem in terms of gen-

eralized solid angles.

Theorem 3.2.3. Suppose P is any convex d-polytope. Then we have the
following identity of meromorphic functions for s € C%:
ap(s)= Y e, (s) (3.19)
Vv a vertex
P

of

where Ky = {v+ ANy —v):y € P, € Ry} is the vertezx cone of P at the

vertex v.

Proof. We begin with the Brianchon-Gram identity [7]:

1p(x) = 3 (1) 71, (x), (3.20)

where the sum is taken over all nonempty faces F of P and K is the tangent

cone attached to F defined by Kz = {x+ My —x):x € F,y € P, € R>¢}.
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Then we take the convolution of both sides with ¢., multiply by 2™, and finally

sum over all m € Z¢ to obtain

Z (Ip x @) (m)2™ = Z Z DA™ (1, * ¢o) (m)2™. (3.21)

meZd meZd FCP
We wish to take the limit as ¢ — 0 of both sides of equation (3.21), but we

first note that the infinite lattice sums are absolutely convergent due to the
presence of the damping function ¢. and hence we can take the limit inside

the sum. Thus, we obtain

dwpm)z™ = D> (1) e, (m)2m

meZd meZd FCP
= 2 2 enm D, (NI we(m
v aO\%e;)tex meZd FCP meZd

dim F>0
With the substitution 2™ = e?™“*™ we have shown that
ap(s)= > ok (s)+ Y (=1)™Fax,(s). (3.22)

v a vertex FC
of P cP
dim F>0

Therefore, it remains to show that ax.(s) = 0 for every face F of P with
dim F > 0. To this end, consider such a ax,.(s). Since K is also a cone, we

can write Kz as the disjoint union of its relative open faces G° and obtain

ok, (s Z wi(m)z™ = Z Z Wi (m)z™. (3.23)

mezd GC F mezdnge
Since wi,.(m) is constant on the relative interior of each face G of F, we denote

wi - (m) by wg when m € G°. Then we have

a ()= wg Y 2" (3.24)

GCF  meZinge
Recall that dim F > 0, and so dim G > 0 for every face G of F. Therefore,

G° contains a line and by theorem 3.1 in [6]

> Zm=o. (3.25)

meZinge
Thus, by equation (3.24), ax, (s)= 0 for every face F of P withdimF > 0. W
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3.3 Solid Angle Reciprocity

We now introduce a measure of discrete volume:
Ap(t) =) wip(m), (3.26)

where wgp(m) is the generalized solid angle measure at m € Z2 N ¢tP defined
in (3.4). Our next theorem is a generalization of the solid angle analogue of

Macdonald’s reciprocity, which states that
Ap(t) = (-=1)¥mP Ap(—2). (3.27)

for rational convex polytopes [7]. First, we define a generalized function for
s € C? by
Ap(t,s) =) wep(m)e?™me), (3.28)

We will show that Ap(t,s) is an entire function of ¢ which satisfies the reci-
procity relation Ap(—t,s) = (=1)4"P Ap (¢, —s). Furthermore, the following
proof extends Macdonald’s reciprocity to real convex polytopes via Ap(t) =

lims__,o Ap (t, S) .

Theorem 3.3.1 (Generalized Macdonald’s Reciprocity). Suppose P is
a real convex d-polytope in R?. Then
(1) Fort € R and s € C¢, Ap(t,s) satisfies

Ap(—t,s) = (—1)?4p(t, —s). (3.29)

(2) Furthermore, if P is a simple d-polytope, t € R and s € C¢, then the

analytic continuation of Ap(t,s) to an entire function of t is given by

| det KK(v)| exp(2mit(v, m+s)) ¢e(m + s)
(—2mi)? ze%d Hj wi(v),m +s)

A’P(t7 S) = 11_3% Z

v a vertex
o

(3.30)
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Proof. Since solid angles are additive and we can assume a triangulation of a
polytope, it suffices to prove this theorem for a real simplex P. We will use
the fact that

wrp(m) = lim (Lep * 6.) (m), (3.31)

for an appropriate choice of ¢, with ¢¢(—z) = ¢(z). Then we have

Ap(t,s) = Z wyp (m)e2mim <) (3.32)
mezZ
= lim > (Lep * ) (m)e2mitm:e) (3.33)
meZd
= lim > (Lep # de)(m + s) (3.34)
meZd
= lim % 1p(m + 8)e(m + 3). (3.35)

We used Poisson summation in the (3.34). Next, we use an extension of Brion’s

theorem for real polytopes due to Barvinok [2] to obtain

Ap(t,s) = lim > lwskw(m+s) | de(m+s).  (3.36)

e—0 g 8
7 Vv a vertex
me of P

Brion’s theorem allows us to write 1,5 as the sum of Fourier-Laplace transforms
over the tangent cones at the vertices of tP. Therefore, if v + K(v) is the
tangent cone at the vertex v of P, where K(v) is a simple cone with apex at
the origin, then t(v 4+ K(v)) = tv + K(v) is the tangent cone at the vertex tv
of tP, since a cone whose apex is the origin does not change under dilation.

Using the formula for the Fourier-Laplace transform of a simple cone

| det K(v)| exp(2mi(tv, m+s))| »
Pt )= Pe(m + s) (3.37
° Egnn%d ; 2m H] Hwi(v),m+s) (m+s) (3.37)

[de v)| exp(2mit(v, m—f—S))(ﬁe(m‘i‘S). 3.38
6—-)0 Z 27rz %d Hf Wi (v),m+s) (-39

vertex
of P
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We note that the only place a ¢t appears in this last equation is in the exponent
of an exponential. Hence, Ap(t,s) is an entire function of ¢, because we can
differentiate inside the ) sign due to the “fast enough” convergence provided
by ¢e. This proves part (2).

Now for the proof of part (1), we evaluate the analytic continuation of

Ap(t,s) at —t to obtain

|deth V)’ Z 27rz( t)(v, m+s)¢ (m“r‘ S)

(-2mi)? [T (w;(v), m +s) (8:39)

Ap(=t,s)= lim )~
V a vertex
[o}

= lm Y | det K{v 'E M R (3.40)

(=2mi)t S TTea(wy(v), —n o+ s)

Vv a vertex
of P

27rit(v, n—s)¢; (’I’L _ 3)

- (_1)(111—1»% Z lc(let2§z 'Z szl(wj(v),en—s> (341

v a vertex neZd
o

= (=1)%Ap(t, ~s). (3.42)

We again used the fact that the lattice sum is invariant under the substitution

m = —n and that d(—z) = ¢.(2), for all z € C. n

Corollary 3.3.2. Suppose P is a real conver d-polytope in R? with d odd.
Then
Ap(0,0) =0.

Proof. By Theorem 3.3.1, we have
Ap(0,0) = (=1)*Ap(0,0) = —Ap(0,0).
|

We pause for a moment to discuss the subtlety involved in computing
Ap(t) using the previous theorem. We know that Ap(¢) is an entire function

of t and in fact is a quasi-polynomial in ¢ when P is a rational polytope
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[34]. The introduction of the complex parameter s in Ap(t,s) prevents the
denominators of 1,4k from being zero. So one might wonder if Ap(t) =
lim,—,0 Ap(t, s) even exists. It is Brion’s theorem that tells us that when we
add up iv+1<(v) (m + s) at every vertex v, magically all of the singularities in
s € C? cancel.

To compute Ap(t) from (3.30), we write all of the rational functions on the
right-hand side over one denominator and use L’Hépital’s rule to compute the

limit as s — 0. The following example will illustrate this procedure.

Example 3.3.1. Let P be the triangle in R? with vertices v; = (0,0), vy =
(0,1) and v3 = (v/3,0).
Vg = (0, 1)

vi = (0,0) v3 = (v3,0)

Figure 3.1: The triangle P.

To calculate Ap(t), we use equation (3.30) in Theorem 3.3.1 and we begin by

evaluating the determinant of the tangent cone at each vertex. We have
10
| det IC(v1)| = det =1,
01

0 \/5):\/5
-1 ’

| det IC(v2)| = det (

and |det IC(vs)| = det (
0

V8 *1>=1.
1
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‘We also need to evaluate

eQm‘t(v, m+s)
2 )
[T=i{w;(v),m +s)

for each of the vertex cones Ky,, Ky,, and K,,. Then (3.43) equals

(3.43)

1 _627Tit(m2+82)

(m1+s1)(ma+s2)"  (mg+ s3)(V3(my + 81) — my — 83)

and

e2m‘t\/§(m1 +s1)

(mq + 51)(\/§(m1 +81) —my — S3)
Thus

, for v{, vy, and v; respectively.

|deth | Z th (v, m+s) ¢§(m+s)
(—2mi)? meZ2 HJ 1{(w;i(v),m + s)

Ap(t,s) = lim Z

v a vertex
(&)

) 1 - 1
- P—I»% —47'('2 Z ¢6(m+5) <(m1 +31)(m2+52)

(m1,mo)€Z?

\/§e27rz't(mg+sg) 627rit\/§(m1+sl)
- +
(mg + 52)(\/§(m1 +81) —mg —s3)  (mg+ 51)(\/§(m1 + 51) — Mg — S7)

ol 1(t,5)
- 1_}0_47_‘_2 Z ¢€( ) (75))

(m1,m2)eZ?
where
F(t, ) \/g(ml +51) — My — 85 — \/g(ml + 1 )e2mitlmatse) 4 (1my 4 32)e2m‘t\/§(m1+s1)
alt,s) (my + s1)(ma + 52)(V3(my + 81) — ma — s9) '

All that remains is to use L’Hdpital’s rule to calculate

i L3

s—0 g(t7 5)
In order to take the derivative with respect to s, we first let s = o(z1,z9) for
some fixed (x1,z3) # 0 and then take the derivative with respect to o. Since t
appears in an exponential in the numerator, each iteration of L’Hépital’s rule
will produce a factor of ¢ in the numerator. It is known that for a rational
d-polytope, Ap(t) is a quasi-polynomial in ¢ of degree d. Therefore, in general,
one must apply I’Hopital’s rule d times for a d-polytope. Thus
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t t
mf()s)_ ].lmf(’a-)
s—0 g(ta 8) a—0 g(ta 0)
!
(o)
o0 gl(ta U)
1!
o (8,0)
a=0 g"(t,0)
f(t,0)
g9"(¢,0)
—67r2m2$%t2 627rz't\/§m1 + 9 ﬁxlxzt(e%it\/ﬁml — g2mitma ) + 272 \/§m1 x%tQ g2mitms

—29(2maxy + myx9) + 3z (Mo + 2my2)

¥

where we used Mathematica in these last steps. We can now choose (z1,z5)
to be any non-zero vector as long as the denominator is never zero. Therefore,

we let (z1,22) = (1,1) and we have

Ap(t) = limAp(t,s)

s—0
‘ 1 f//( 7 )
= ll_r)% 42 Z ¢e( ) ) ( )
(m1,ma2)€Z2
. 1
= lm—— ) édm):
(m1,m2)€Z2?

—67 m2t2 2mitv/3my +27T'l\/_t( 2mit\/3m, __627rztm2) +27T2\/—m1t2 2mitmo
—2m2 —my + \/_(m2 + 2m1)

When

b(8) = €% exp (%ﬂ(s, s)) =¢texp (—tg (s?+ 33)) , (3.44)
it follows that
be(my, my) = €7 exp (—me (mf +m3)). (3.45)

Since ¢.(m1, mg) provides absolute convergence, we can break up the series for

Ap(t) and use equation (3.45) to obtain the following:
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(27{'2 \/gmleZM'tmg _ 67r2m2e27rit\/§m1> e—ﬂ'f(m%-f-m%)

——27712 - my + \/g(mg + 2m1)

1
. €2
Aplt) = | lim—s
(m1,me)€Z?

_1 . mit\/3my _ 2mwitma —we(m%+m%)
+otfim<S S 2miv/3(e L
e—=0 —472 -2y — my + \/§(m2 +2my)

(m1,m2)€Z2

In the previous example, we note that Ap(0) = 0 and the dimension, d = 2,

is even. This leads to the following conjecture:

Conjecture 1. Suppose P is a real conver d-polytope for any dimension d.
Then
Ap(0,0) =0.

3.4 The Generating Function of Ap(t)

We conclude this final chapter with an extension of an identity for the solid-

angle series of a d-polytope P, defined by

solidp(z) := Z Ap(t)2t.

>0

This series encodes the solid-angle sum over all dilates of P simultaneously

and the identity we wish to extend is the following [7]:

Theorem 3.4.1. Suppose P is an integral d-polytope. Then

solidp G) _ (=1)solidp(2).

To extend this theorem to real simple polytopes, we first generalize our defi-

nition of solidp with the parameter s = (sq,..., 84, S441) € C*1:

Solidp(s) = ZAP(t’ 1y, Sd)GQﬂ-itsd“'l,

>0
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By theorem 3.3.1, if P is a simple polytope, then

Solidp(s) = ZAP(t, S1yenn, Sd)e.’zm'tsdH

>0
— (_1)d Z Ap(—t, —81,..., __Sd)e2m'tsd+1
£>0
SIS U i i\ ol B = 3) s,
t>0 e_)Ov a Veg;ex ( 27” meZd H] 1 Wj(V), m — S>
(&)
where § = (sy,...,84) € C% The presence of ¢, in the inner-most sum ensures

uniform convergence and allows us to bring the sum over ¢ inside. The resulting

equation is

2mit{v, m—8)+2mwi(—t)sq4+1 =
Solidp(s) = (—1)%lim 'de“C ' 2i0® delm — 5)
e—0
vavertex meZd H] 1<W (V)7 - S)

Theorem 9.2 in [7] gives us the identity “3,., 2* = 0,” at the rational function

level. We use this identity to rewrite the inner sum Y, etV m=8)+2mi(—t)sa 11

as —1 times the same sum over ¢ > 1 to obtain

2mit(v, m—3)+2mi(—t)sq+1 3
Solidp(s) = d""l lim Z | det K(v)| Z Zt> e ¢( 5)
E—)Ov a vertex 27” meZd H] 1<W.7( ) m— S)
d tIC e2mit(v, m—8)+2mit(—say1) =
— (—1)# Y lim Z | det K(v)]| Z Be(m — 3)
e—0 —2mi)? HJ (wi(v),m = )

t>1 va vertex
of P

= (=1)*Solidp(—s) + (—1)%45(0, —3).
We have just shown the following:

Theorem 3.4.2. Suppose P is a simple d-polytope. Then Solidp satisfies the
identity

SOlidp(Sl, ceey Sd_|_1) = (—1)d+1Solidp(—31, ceey —8d+1)+(—1)dAp(0, —S81y..-,y —Sd).
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APPENDIX A

We recall here some well known, and some not-so-well known facts about

Harmonic Analysis.

Fact 1.
WP,/C(X) = hr% (1IC * ¢e) (X)7 fO’/‘ all x € R¢.

Fact 2. (f +g)(z) = f(2)i(z).
Fact 3. If f(I) = 1p(l +2)e"2™ 9 then f(m) = 1,p(m + iy)e 2mils miy),
Proof.

fm) = /IR ) 1Lp(u + z)e ™27 ) 2mit, m) gy,

= / Lp(u+ x)e%i(u’ mHY) gy,
Rd

— / 1Tp(1U)627ri(w—I’ m+z’y)dw
R
_ e—27ri(z, m+iy) / 1rp(w)e27ri(w, m+iy)dw
R4

— o 2wilx, m+iy>irp(m + iy).

Fact 4. (Continuous Brion Theorem)

Suppose P is a stmple rational convex d-polytope. For a vertex cone K of P,

fix a set of generators wy(Vv), ..., wa(v) € Z%. Then
-z)| det(wi (v), . .., wa(v))]
exp(x - z)dx = (—1)* exp(v -z i
L va 'uerztm of P HZ:l(wk (V) ) Z)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Fact 5. Let g(z) = f(£). Then §(z) = le]¢ f(ex).

Fact 6. Given a sublattice L of Z¢, say L = M TZ¢,

SR = L 3 PO,

nel g€ 74/ M4 le 74
Proof. The lemma is equivalent to the statement that the “delta function” for
the sublattice MTZ? of Z? is:

1z (l) — @IM Z e27‘ri(l,M_lg>7
9eZd | MZ2
since D, cpa F(n) = > 1cpa F(1)1L(I). This statement follows from the
orthogonality relations for the character g — e2™{5M79) on the finite abelian
group Z%/MZ®. That is, in one direction, if [ € L. = MTZ¢, then M~TI € Z¢
and so (I, M~'g) = (M~Tl,g) € Z, so that €™M 7"9) =1 and we have
L) = o 3 = [detM] = 1.
| det M| ey | det M |

In the other direction, if MTI ¢ Z¢, then g — LM 7'9) gives a non-trivial
character, and hence ) €74/ M7 e2milb M~ e) — 0, by the orthogonality of char-

acters on the finite abelian group Z¢/MZ. |

Fact 7. For Re(s) >0, a € R, and 7 € H, the complex upper half plane:

S g = T D (e,

mEZ(T+m)s n=1

Fact 8.

Suppose that F(z) = Z a4, e”™* and G(z) = Z bne>™"* converge absolutely
nez neZ

1
forallz € R. Then D a.b.e™™™ = / F(z — t)G(t)dt.
0

nEZ
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Proof.

i

/1 <Z an@Qm‘n(z-—t)) (Z bme27rimt) dt
0

neZ meZ

1
- / Z anbme2m'[n(a:—t)+mt] dt

0 nez
meZ

1
Z anbr, e2minz / e2m‘t(m——n) dt

neZ 0
meZ

— § :anbme2mnm5nm

neZ
meZ

— § an bn e2mnx .

neZ

/ ' Fle - 0G0t

Fact 9.

{z} -1 if t<{z}

ForceRand0<t<l, {z—-t}= .
{z}—t+1 if t>{z}

Proof. We note that 0 < {z} < 1 for all z € R. The key to this proof is the
following identity:

|z] =2z — {z}, forall z € R, (A.1)
where |z ] is the greatest integer < z. If t < {z}, then |z| = |2 —t]. Thus, by
(A.1), we have z — {z} = # —t — {# — t}, which implies that {z —t} = {z} —¢.
Now if t > {z}, it follows that |z] = [z —t] + 1. Then (A.1) gives us
z—{z} =2 —t—{z —t} +1, which implies that {z —t} ={z} —t+1. N
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