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A B STR A C T

POLYHEDRAL SUMS AND THETA SERIES

David DeSario 

DOCTOR OF PHILOSOPHY

Temple University, August, 2007 

Professor Sinai Robins, Chair

The Ehrhart polynomial of a ci-dimensional integral polytope V  is a poly

nomial of degree d whose evaluation a t the positive integer r  gives the discrete 

volume of rV ,  i.e. the number of integer points contained in the r-fold dilation 

of V.  This counting function was first studied by E hrhart [23], who proved 

th a t it is always a polynomial. He also showed th a t the E hrhart polynomial 

encodes the continuous volume of V  by showing th a t its leading coefficient is 

in fact voIP. In discrete geometry, there is often an intriguing interplay be

tween a discrete property of an object and its continuous counterpart. In this 

dissertation, we use polyhedral sums and th e ta  series to  study both  discrete 

and continuous volumes of polytopes.

In chapter 1 we extend the methods of Diaz and Robins [21] to  obtain 

computable formulas for the Ehrhart quasi-polynomial of simple rational poly

topes. In chapter 2 we study solid angles of polyhedra by analyzing the asymp

totics of polyhedral th e ta  series. Solid angles are the generalizations of two- 

dimensional angles to  higher dimensions and they can be interpreted as the 

volume of spherical polytopes. We also define new solid angles with respect 

to  P-norrn and find computable formulas for F-solid angles. In chapter 3 we 

use Fourier m ethods to generalize the solid angle theory in Computing the 

Continuous Discretely. Integer-Point Enumeration in Polyhedra by Beck and 

Robins [7] by extending several results to  include real polytopes.
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C H A PTER  1

The Ehrhart Polynom ial of a 

Rational Simple Polytope,

Using Fourier M ethods

1.1 Introduction

We begin by defining some key term s th a t will be used throughout this 

dissertation. A convex polytope is the convex hull of finitely many points in 

R d. Therefore, given a finite set of points {vi, V2 , . . . ,  v n} C Rd, the polytope 

V  is the smallest convex set containing those points: th a t is

"P =  {AiVi +  A2 V2 +  • • • +  Arav„ : all A& 0 and Ai +  A2 +  • • • +  A„ =  1}.

This definition is called the vertex description of V  and we note th a t a 

polytope is a closed subset of R d. Every polytope is the bounded intersec

tion of finitely many half-spaces and hyperplanes, and therefore also has a 

hyperplane description. A hyperplane H  =  {x G R d| a • x  =  b} is called 

a supporting hyperplane of V  if V  lies entirely on one side of H.  A face 

of V  is a set of the form V  fl H . where H  is a supporting hyperplane. The 

(d — l)-dimensional faces are called facets, the 1-dimensional faces are called 

edges, and the O-dimensional faces are called vertices.
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If a polytope V  is of dimension d, we call it a d-polytope. If each vertex of 

a d-polytope V  lies precisely on d edges of V,  we call V  simple. V  is called 

integral (rational) if all of its vertices have integer (rational) coordinates.

A convex cone /C C is the intersection of finitely many half-spaces of 

the form {x G Md| a • x  < b} whose corresponding hyperplanes {x G Rd|a  • 

x  =  b} meet in at least one point. A cone is called pointed if the defining 

hyperplanes meet in exactly one point.

Now th a t our terminology is set, we can discuss the content of this chapter. 

In this chapter, we obtain computable formulas for the integer point enumer

ator of any simple rational polytope V,  for any rational dilate of V,  and for 

any real translate of V.  The r th dilate of V  is by definition r V  :=  {r x \x  G V}.  

The integer point enumerator th a t we study here is

# { Z d n  { r V - T } } ,

the number of integer points inside the polytope obtained by dilating V  by any 

rational dilation r  6  Q and translating the dilate by any real vector T  G Md. 

To fix notation, we let

Lr (r ,T ,y )  = ' £ l rV( l + T ) e 2̂ y \  (1.1)
le zd

a generalization of the integer point enumerator, called the integer point trans

form  of V  (see [7]), and defined for any rational number r, any real vector 

T  G M.d, and any complex vector y G C^.

We note th a t LP (r, T, 0) =  Y^ieid W O  + T) = f f  { Z d C\ { r V  — T}}, the 

integer point enumerator of a translated rational polytope, and th a t spe

cializing further to  T  = 0 gives us the classical integer point enumerator 

L P(r) := Yhieid l*-p(0 studied by many authors ([14],[16],[21]) and known 

as an Ehrhart quasi-polynomial in r G Z.

O u r use of th e  w ord  com putable  refers to  co m p u tin g  in  p o ly n o m ia l tim e , 

and in fixed dimension, certain universal functions defined over any convex 

rational polytope th a t we call polyhedral Dedekind sums (see equation (1.12)
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below). Thus, this chapter focuses on the structure of the polyhedral Dedekind 

sums, and how we may take linear combinations of them  to obtain the integer 

point transform  L-p(r ,T,y ) and integer point enumerator Y h e z d °f any

convex rational polytope.

We will use Fourier methods, and in particular the Poisson summation 

formula, extending the m ethods of Diaz and Robins [21] to  rewrite L-p(r, T, y ) 

as a finite linear combination of the polyhedral Dedekind sums S ( v , u , y , T ) 

over the vertices of V  . One difference from the paper [21] is th a t the m ethod 

therein was based on first coning over the polytope, whereas here we deal with 

the polytope directly. Although the analysis here is more involved than  in 

[21], the resulting formulas are much more general. In particular, we obtain 

computable formulas for any rational dilate rV,  in contrast with previously 

known formulas th a t hold only for integer values of the dilation param eter r.

1.2 Poisson sum m ation, and statem ents o f the  

results

The main theorem, stated at the end of this section, is retrieved using Poisson 

summation, Lipschitz summation, and various facts from Harmonic analysis. 

Poisson summation states th a t if /  is a “sufficiently nice” function (for exam

ple, a function which is L 1 and continuous, and has a Fourier transform  which 

is also L 1 and continuous), then

-ft*) =  (L 2)
i e z d m e  i d

Since the indicator function of a polytope is discontinuous on W1, we m ust first 

smooth the function 1 r-p by convolution before we can apply the Poisson 

sum m ation formula. We wish to apply Poisson summ ation to  the function

f ( x )  =  l rV{x +  T ) e - 2< x^  , for fixed T  G and y e  C d, (1.3)
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bu t to  avoid infinities in the computations, we first smooth /  w ith the approx

im ate identity function

- d f ( *
f Rdf ( x ) d x ’ 

and then use the following lemma:

Lemma 1.2.1.

Proof.

lim ( /  * 4>e) (0  =  / ( / ) ,  f ° r 1 e
e—+0

lim ( / * & ) ( / )  = lim (& * /) ( * )6—>0 e—»0

=  lim /  cf>e(x ) f ( l  — x)dx  
e_>0 JK<J

= lin̂ 7~TTTr f  f  (-) f(l ~ x)dx- (1A)J ^ f ( x ) d x  JRd V e/

Making the substitution x  — ez in equation (1.4) gives us

lim (/*</>e) ( 0  =  lim f * , [  f { z ) f ( l - e z ) d z
ê °  e~*° jRd f { x ) d x  JRd

= lim J: .. [  f { z ) l rV{ l - e z + T ) e - ^ l- ^ d z
£-"° JMd f(x)dx Jr*

= r 7 T vT~ /  l i m / W W 0 - ^ + T ) e - 27r̂ - “ -^dz J& f { x )d x  JRd £-»o

[  f ( z ) f ( l ) d z  
J s.df Rd f ( x ) d x

=  m -

We note th a t /  has compact support due to  the indicator function of r"P in 

(1.3), the definition of / .  Therefore, the integral above converges and we can 

bring the limit inside the integral sign by Lebesgue’s Dominated Convergence 

Theorem. ■

We will use various facts from Harmonic Analysis, which can be found in 

the Appendix, such as the fact th a t for any simple rational convex polytope
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V,  the Fourier-Laplace transform  of its indicator function is given by

1 exp(27ri(v, m ))| det Av |
1 M m )  =

-2iri)a E (1.5)
v a vertex of r V  llfc=l (W* (v ), m)

where Wi(v), . . . ,  w,/(v) are the 1 dimensional edges of the vertex tangent 

cone K v := {Av +  (1 — X)x : x  € rV ,  A € M>0}. Throughout the chapter, A v 

is the m atrix  whose kth column is the edge vector w k (v ) .

Let e > 0. Then we have

Y  l r v ( l +  T)e~2vAy) 
le zd

iezd

[is E
m£

E /(to) •
m €  &

lim E i  rV(m + iy)e —2,K i{T , m + iy )

me l

lim ( - 1)
o (2mi / E E exp(27ri(v, to +  iy))| det Av| 2™<T,m+«,

vertex 
of r V

me i

— lim
e-+0 (27TZ)

IIfc=l(Wfc(V)>m +  *y) 

Y  |d e tA v |e2,ri<v- T' ^  Y( _ 1 ) d K 2 * i ( v - T t iy)  V -  exP(2m ( v - T , m ) )

v  a  vertex 
of r V

rife=i(w fc(v )) m +  iy)

(1 .6 )

(1.7)

(1.8) 

(1.9)

e(m) (1.10)

• M m ) ,

where we used Lemma 1.2.1 in equation (1.6) and Poisson sum m ation in equa

tion (1.7). We also used Facts 2, 3 and 4 from the Appendix in equations 

(1.8), (1.9), and (1.10) respectively. We note th a t the infinite lattice sum is 

now absolutely convergent due to  the presence of the damping function 4>e. To 

evaluate this inner sum, we first let

n k =  (Wfc(v),m), and zk = (wk(v), iy) .

I TOi \
Thus,

/

\ m d /

n  i \
and hence m  = A v ln  and iy =  A v tz. Similarly,

V
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(w j;(u),m ) is the kth element of Alum  =  A ^A ^n . Also, we will use Facts 4 

and 5 to  get

U m )  = w d / ( ? L  _  I ' W / M  _  i f c r h
/ R- /(®)da: f Rd f ( x ) d x  f Rd f ( x ) d x

(—27xi) - d

E
i a  vertex 

of r P
f Rd f ( x ) d x  u 

Then we have

^ l rP (Z+ r ) e - 2ir<'> ">
iezd

=  lim Z(m ) ' ^ £(m )

ex p (2 ^ (u ,e m  +  iy )) |d e tA u | _ 2™<t , em+iy)

nfc=i(w fc(u ) .€m +  *y)

=  lim

me TLd
(-27T i)~2d

/(*)<& v, u
^  | det Av 11 det Au |e2” <v+u- 2T’ *«> ■ 5,

vertices 
of r P

where S' is the infinite lattice sum

exp(27ri((v — T,  to) +  (u — T,  cm)))*==E n L i ^ w ,  m +  *y) (wfc(u), em +  iy) 

By the results of Section 1.3 below, we have 

(27ri)d
lim S  =
€—>0

J L  1 g - 2 7 n { a k + p k } z k

det Av I H (Cfe(u ,v ),A  ‘ J-A 1 -
1 g e Z d/ A v Zd k = l  N '  k $R{u,v)

o - 2 m z k

n ,27ri|Qfc|(Cfc(u,v), z ) / C hk(u,v) + 1 _  g-27rizfc
fc€fi( u,v)

where A^A"* =  [Cjj(u, v)], Cfc(u, v) is the fct/l row of [ (^ (u , v)], the a ^ s  and 

the /V s  are defined by:

/ Oil \

\ O i d /

(  P i  \
=  A“ (v — T), =  A - 1(y)

V Pd

and R(  u , v) — { k \ l < k < d ,  Cfcfc(u, v) ^  0, {q^ +  /3k} — 0 and ccfe < 0}.
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We will omit the notation (u ,v) whenever the dependance on u and v is 

clear from context. Recall th a t z =  iA^y.  Therefore, we have Zk = i (A\,y)k, 

the k th element of the vector iA \y .  Prom the definition of Av, we see th a t 

i (A \ y ) k — i(Wfc(v), y). Pu tting  this all together we have the following:

Theorem  1.2.1. Let V  be a simple rational convex polytope, T  € Md; and 

y  G Cd. Then

V  l rV{l +  T)e~2̂ 1’y> [  l rV{x +  T ) e - 2n^  Adx
le

1 ^  | det Au | e- 27r(v+u- 27’. y)
2_,  rrd At x S ( y , u , y , T ) ,

where

( - 2 7 r ) d v. S p a c e s  nL i (C k ,  A*,y )
of  r V

2ir{ak +f}k } ( w ( v ) , y )  /  1
^  - 2-K\ak \(Ck , A*,y) /Ckk

S ( y , U , y , T )  ^ _  e 27r(w(v), 1/) I T ( e  1 J  _  e 27r(w(v),
g€Zd/AvZd k<£R keR'

(1 .12)

is f/ie polyhedral Dedekind sum.

We note th a t the singular set in Theorem 1.2.1 is contained in a countably 

infinite union of hyperplanes, defined by

Q =  (J { y e C d\(AvCk( u , v ) , y } = 0 } u { y e C d\{wk( v ) , y ) e i Z } .
u ,v  vertices of r V  

k=l,...,d

1.3 Polyhedral D edekind Sums

In this section, we use Lipschitz summation formulas and some basic facts 

from Harmonic Analysis to  evaluate the limiting value, as e approaches zero, 

of our infinite lattice sum

^  y -^  e x p ( 2 7 r i ( ( v -  T , m )  +  (u  — T , e m ) ) )

n t i ( w fe(v ), m +  iy)(w fc(u), em +  iy)

This evaluation is given in the following theorem.
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T h e o re m  1.3.1.

(27ri)a
lim S  —
e—>0 e  n

g e Z d/ A v Z d k=
det /fv | _Jrrl (Ck(u ,v ) ,z )  i _ e- 2mzkn

k £ R (  u,v)

, - 2 n i { a k + p k }zk

n ,2iri\ak \{Ck (u,v) ,  z ) / C k k (u,v) +  ̂ _  e—2mzk
k £ R (  u ,v)

where A^Af,* =  [C ^ u , v)], Cfc(u, v) is i/ie AF*1 row o/ [Cy(u, v)], i/ie a k ’s and 

the (3k ’s are defined by

A - \ v - T )  =

f  a , \

\  a d

and A v 1(g) =

\ P d  J
respectively, and where

R{ u , v) =  { A ; | l < A ; < d ,  Ckk(u, v) ±  0, { a k + f3k }  = 0 and a k < 0}.

We will need the following technical lemma, which is a variation of Lipschitz 

summation, in the proof of Theorem 1.3.1.

L e m m a  1.3.1. Let t \  G H  , t2 G C\M and x  G R. Then

e2 mmx 2?r iE
m6Z (m +  Ti)(m +  r 2) t1 - t2

e ~  27Ti{x}T2 e—27Ti{x}ri
 ̂   g“ 27TiT2  ̂ _ g—27riri

Proof. We will use the following Lipschitz summation formulas: 

For Re(s) >  0, a  G M, and r e f f ,  the complex upper half plane: 

e 2 * im a  ^  ( _ 2?rq  

( t  +  m ) sm€
] T ( n  -  {a}) s —\^ 2 'K ir (n ~  {a})

( r  +  m ) s T(s)

For Re(s) >  0, a  G M, and r  G —FA, the complex lower half plane:

E p2-Kim(l-a) ('97r?'V _°°.
t   =  V V n  _  {a})— e- ^ ( - W ) .

m e I ( T  +  m ) *  r(»)

(1.14)

(1.15)

Note: Formula (1.15) is obtained by putting —r  into (1.14) and changing the 

variable m  to  — m.
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By Facts 8 and 9 and formula (1.14), we have for t i ,  t 2 €  H,  and x  € M:

E E
02"Kin(x--t)

E
„2irikt

( t 2 +  k )s 2
dt

(—2m) «l+S2 /•! /  00
/ E<n - - w 1

•̂ 0 Vn=l

— 1 g27r£ri (n—{x—t})
r(5l)r(S2)
(L e ttin g  s i  =  s 2 =  1)

oo »i
=  (27ri)2 E e27ri(rin+r2&) I  g—2iri(n{a:—t}+r2t ) ^

n, fc=l

,fc=i

=  (27rt)2
02nn 02iriT2 r 1

4 _ g27riri J _
e - 2 n i { T i { x - t } + T 2t)  ̂

a2mT± 02iriT2
=  (2ttz) y 

=  (27Tl)"

C.27TZT1   g27TZT2

/Jo

J { } e - ^ ( n « x } - t )+ r2 t ) d t +  j  e - 2m(ri({i}-t+l)+T2t ) ^

02jrin
4 _ g2iriri 4   ^2irir2

02v ir i a2-KiT2
— (2ni)2— _____ _ — _____' '  ̂   g27rin J   g27r*T2

27T* 1 1
ri — r2 e_27r*n  — 1 e-2'7r*T2 — 1

J { x }
p { x }  p i

e - 2 v i n { x }  e -27rit(r2- T i) ^  _|_ e ~ 2 m T i ( { x } + l )  / e - 2 m t ( T 2- n ) ^

Jo J { x}

e___________ ( ( l  — e“ 27riT1) e—27r*{a;}(T̂ —Tl) -4- g - 2 wiT2 _
-27ri(r2 — Ti)

^  _  e-2vin^ e~2ni{x}T2 _  ^  — e~2̂ iT2) e~2iri{x}Ti

2m  
n  -  r2

-27h!{x}t2 p —2'Ki{x}r\

  g—27riT2 J _ g—27riri

To finish the proof of the Lemma 1.3.1, we now let Ti G H,  t 2 G — H,  and 

i £ l  and use formula (1.15) to  get:

E
mgZ

Jl 'Kimx pi /  g27rin(x—t)

(ti +  m ) si (r2 +  m )S2 I  EJo E-
02txikt

nez (Tl + n )S1>/ V f e  f a  +  * ) '’ ,
dt

p i f  °°

/  ^ ( n “  -  O ) '1-1*
\ n = l

(—27n)Sl(27n')S2
r ( Sl) r ( S2) ~

(

oo
]T (£ ; -  {1 -  *»«2- l e- 2*iTa(fc-{l-t}) U .

,27riri(n—{x—t})
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Letting s i  = s 2 =  1, we obtain

Jl 'Kimx

E (to +  ri)(m  +  r2) -  S'
e-27Tir2(fc+t-l) j df

a = i

- (27rz)2 E e2vi(Tin-T̂k) / g—27ri(ri {x—t}+r2t) ̂
71=1
fc=0

=  — (27ri)^
D27riri

 ̂   g27riri j    g—27tit2
2̂7Tiri Jl'xiT'i /*!

/Jo
e-27ri(Ti{x-t}+r2t ) ^

=  (27ri) 

2717

 ̂ _ g27riri

T l -  T2

0-27ri{z}r2

„27r«r2 /■!
 _____  / e- 2jri(n{x-t}+T2t ) ^
1 -  e2™ 2 70

e-27Ti{a;}Ti
2   g —27r*T2 ^ — g —27riri

, as above.

Proof o f Theorem (1.3.1).  We first note th a t the notation (u, v) is suppressed 

throughout the proof since u  and v  remain fixed. To evaluate the sum

exp(27ri((v — T,  to) +  (u — T,  em)))s - E
m6 l n ti< w * (v )  , m  + iy) (wfc(u), em  +  iy) ’

we first diagonalize the linear forms in the denominator by letting n k —
(  m\ \  (  n\ \

(wfc(v), m) and zk =  (wfc(v ),iy ). Thus

\ m d )

and hence

\ n d J
m  =  Av*n and iy — Similarly, (w*(u),m) is the fcth element of the

vector A\.m  = At.As^n. Hence,

S ' =
exp(27ri((v — T, m) +  (u — T , em)))

^  n L i ( w fc(v )>TO +  ^ ) ( w fc(u )>em +  ^ )
E
E

mezd

E
E

exp(27ri((v — T, m) +  (u — T, em)))

n L i« w ,(v ) ,  m) + (wk( v ) , i y ) ) ( (wk(u), m ) e +  (wfc(u), iy))  

exp(27ri((v — T , m )  + (u  — T, em)))

rifc=i(«fc +  zk) ( (wk(u), m)e +  (wfe(u), iy)) 
exp(27ri((v — T,  m)  +  (u — T , em)))  

Y\dk=i{nk + z k){AtuA - t {ne + z ) ) k
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where (A ^ A ^ n e  +  z))k is the kth element of the vector A^1A ^ t (ne +  z).  Note 

th a t the coefficient of e is a rational linear combination of n 1;. . . ,  n^, and as 

m  runs through Zd, n  runs through the lattice L  :=  A^ o j / .  W ith  this change 

of variable, our lattice sum over m  E Zd is transform ed into a lattice sum over 

n  6 L. We now have

exp(27ri((v -  T,  A~%n ) +  (u -  T,  eA~%n )))

n L i f w + ^ ) ( ^ u - v ( » « + * ))*n £  L

EF(»)
n6L

I det A v I Y  Y F ^ e2™{A' l9,l}’
ge

using the orthogonality relations of characters on the finite abelian group 

Zd/A vZd (Fact 6 in the appendix), where F  is defined by the penultim ate 

equality above. Therefore

S
| det Av 

1
| det Ay 

«
1

E E
A/Avzd iezd

E E

exp(27u((v -  T,  A VH) +  (u -  T,  eAv H) +  (A /g , I))) 
U t i ( k  +  zfc)(z4uA“t(/e +  z))k 

exp(27ri((A“ 1(v — T  + g), l)  +  ( A ^ u  -  T ) , d ) ) )

det A e  En
A / A v Zd l €Z d k = 1

det Av I 2  T I Y .

U k= i ( h  +  ^ f e X - ^ u  A v t { l e  +  z ) ) k  

exp(27ri((ak +  (3k)h  + a klke))
, (h  + zk) (A t, .Ar t (le +  z))kg&Zd/ A v Zd l & d k = l  y u  v  V ) )K

1 A  exp(27ri((l +  e)ak +  (5k)lk)

g e z d/ A v z d k = i  ike  :
(lk +  zk)(A tuA ~t (le +  z) )k

I

where the a k s and the (3k s are defined by Av 1 (v — T)  —

(  Pi  \

\ P d  J

Oi\ \
and Av 1 (g) =

\ o c d J

respectively. We note th a t the order of the product and sum can
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be switched due to  the absolute convergence of the sum. To streamline the 

notation, we let =  [C'^]. Then the fcth element of A tuA ^ t (le +  z) can be

w ritten as

Ckl (ke  +  z{) +  Ck 2 (^ 2 6  +  z 2) +  • • • +  Ckd{lde +  2 d)- 

We now investigate the cases when Ckk — 0 and Ckk 7  ̂ 0 for 1 <  k < d.

Case 1: Ckk = 0.

Then

E exp(27ri((l +  e)ak +  f3k)lk)
(lk +Zk) (A tuA~t ( k  + z ) ) k

_  ^ 2  exp(27ri((l +  e)ak + (3k)lk)

he  z (h  +  Zk)(Cki(h€ + z{) +  • • • +  Ckk(lke + zk) +  • • • +  Ckd(lde +  zd))
1 s g27Ti((l +£)°‘k+Pk)h

(Ckl(ll€ +  Z \ )  +  • • • +  Ckk (Jk^ +  Zk)  +  ■ ■ • +  Ckd(ld€ +  z d ) )  h e  Z h  +  z k

where the means th a t the corresponding term  is missing. Now we can 

apply Lipschitz summation (1.14) to  write this sum as

_________________________________________ "^2  e2Kizk(n-{(l+c)ak+l3k})
(Ck\(l\£ +  Z \ )  +  • • • +  Ckk(lk6 +  zk) +  • • • +  Ckd(lde +  Z d ) )  n - 1

—27ri e~27riZfcLi+<0“fc+/3k} e2vizk

(Ckl(h€ +  z i) +  • ■ • +  Ckk(lk£ +  Zk) +  • • • +  Ckd(lde +  zd))  ̂ e 

Therefore

exp(27ri((l +  e)ak +  /3fe)Jfc)

(fc +  * * ) ( ^ « 4 r t (fc +  * ) )*
— 27r i  e ~ 27rizk{ ( l+e)ak+Pk} g27rizfc

=  lim
e~*° (Cki(li€ +  z\) +  • • • +  Ckk(lke +  zk) +  • • • +  Ckd(lde +  2^))  ̂ e
— 27Ti e“ 27rizfcf“fe+̂ fcl g27r*2fc
C*i*i +  • • • +  Ckdzd ' 1 -  e2viZk

1  27T i e ~ 2 n i^ak+)3A z k

(Ck, z) 1 — e~2wiZk
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Case 2 : Ckk 7^ 0 .

Since Ckk 7^ 0, the k th element of A ^ A ^ ( l e  +  z) can be w ritten as

C k l ( h e +  z l )  +  C f c 2 ^ 2 e  +  z l )  +  ' ' ' +  C k d { l d e  +  z d )

=  e C k ih  +  t C k i h  +  • • • +  f-Ckdld +  C k \Z \  +  C k 2Z2 +  • • • +  CkdZd

Cklh  +  Ck2̂ 2 +  • • • Ckklh +  • - +  Ckdld , CklZi +  Ck2Z2 +  ' ' ' +  Ckdzd
—  e C k k  h  +

tCkk(l k +  T),

a kk eC,kk

Ckih +  • • • +  Ckkh +  • • • +  Ckdh , +  • ■ ■ +  Ckdzdfor r  = -------------------- —------------------------ 1------- (1.16)
Ckk tCkk

where the means th a t the corresponding term  is missing. Thus we have

exp(27ri((l +  e)ak + (3k)h)E
h e  z 

1
£Ckk

(h  +  zk){A\1A v t {le +  z))k

exp(27ri((l +  e)ak + Pk)h)E (Ik +  Zk)(lk +  t )

Now we use Lemma 1.3.1 with x  = (1 +  e)ak + (3k, Ti =  zk, and t2 =  r  to

lim ■
£—>0 (-CkkKK hez

exp(27r*((l +  e)otk + (3k)h)

= lim

lim

im _ 7r~ y~\—>o eCi-i- —/eCkk

1

(Ik +  zk)(h  +  r ) 

exp(27ria;lfe)
(h + t~i )(lk + t2)

2iri

=  lim

e-+o eCkk Ti — r2 
1 27ri

-2 iri{x}T2 - 2 w i{ x } T i

o — 2niT2 ^ _ g—27TZT1

£-♦0 eCkk zk ~  T 
—2Tri

0- 2 m { ( l + e ) a k +l3k }T - 2 m { ( l + e ) a k +f3k } z k

 ̂   g—27TZT  ̂  g —27T22A:
e -2 7 T j{ (l+ e )a it+ /3 fc} r e - 2 7 r i{ a k +/3fc}2fc

CklZi + Ck 2Z2 +  • • • +  Ckdzd
lim ■
e—>0 J   g—27rir 1 _  e - 2 m z k

using definition (1.16) of r .  To finish Case 2, we must evaluate the remaining 

nontrivial limit. We may assume without loss of generality th a t r  G H.
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Then 2 m r  —> 0 as e —> 0. Thus if {a k +  A J  7  ̂ 0, we have

lim
e - 2 m { ( l + e ) a k + ^ k }T

e—*0 1 — g —27rir eL»o g2 iriT  — ^

027r«(l—{ ( l+ e ) a fc+ /3fc} ) r

=  0 .

Therefore, if Ckk 7  ̂ 0 and {a;*, +  /3k} 7  ̂ 0 , then

exp(27r i(( l +  e)ak +  Pk)h)  2-7T i e-2™{ak+f3k}zk
lim V

0 ^  (lk + zk) ( A l A ? ( l e  + z))k (Ck, z) 1 -  e " ^

We now assume th a t { a k + (3k} =  0 and hence

{(1 +  e)ak +  /3/j} — {eak + a k + (3k} —
eak if a k > 0

1 -  e\ak \ if a k < 0

We recall th a t

Ckih  +  • • • +  Ckkh +  • • • +  Ckdld (Ck, Zk)
Ckk t C kk

and for simplicity we write r  =  A  + - j, where lm (B)  >  0. Then

e - 2 m { ( l + e ) a k+)3k }T

l im   --------5-:------£_»o 1 -  e ~ 2mT

n—2ivieai.T
S 2—nm e_>o -^_p—27nr if a k >  0

e-27ri(l-€|Q!jS.|)r
lim ^o   i _ e-27riT  if a k < 0

e—2majt (eA+B) 
lime—>0 ^ g ~ 27rir if a k > 0

p—2nir
lim ^o  -2 m r  -e2̂ a^ A+B  ̂ if a k < 0

0 if a k > 0

g27ri|afc|n if af, < Q

if a k >  0

— z ) / c kk q

To summarize cases 1 and 2, we let

R  = { k | 1 <  k < d, Ckk 7  ̂ 0 , { a k +  (3k)  =  0  and a k < 0 }.
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Therefore

exp(27n((f +  e)ak +  f3k)lk) 

ike z  +  Zk) ( ^ 1A v t (.le +  z ))k
lim

=  <

2n i e_27ri{afc+̂ J*fc
( C k , z )  ' 1 - e - 2™ k  if k £ R

w ^ )  ( e 2™|afc|<Cfc’ z)/Ckk +  if k € R.

P utting  this all together, we finally obtain the following limit:

u m s  =  iim 7-r V r v  n y  eT (2” (l 1f P T * , +/3i)‘t)„ „  „ o | d et ^ v | ae^ z J i i ^  (h  + z M A i A ^ U  + z )) ,

1 ^  ( TT 2 n i e - 2n^ ak+l3^ Zk \
IdetAvl j , \  (Ck Z) 1 -  e~2%iZk J
1 1 g e Z d/ A v Z d \ H R  '  K’ 7 /

[ TT  ■ ( P2™\ak\(ck, *)/ckk _i______L —— ^  |
v  + i - e - ^ k) )

(2m ) d ^  rr_JL_ TT e~27rifafc+/3fc>Zfe
1 — e~ 2viZk

   1 •I  _  g -2 n i z k I
f e ^ i \ a k \(Ck , z ) / C kk f

fceii '

1.4 The Ehrhart Q uasi-polynom ial o f a Trans

lated Sim ple R ational P olytope

In this section, as a corollary to  Theorem 1.2.1, we find a formula for the 

Ehrhart quasi-polynomial of a translated simple rational polytope V  + T  given 

by

1 rv(l  +  T).
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Recall th a t for fixed T  G and y G Cd, the left-hand side of Theorem 1.2.1 

gives an explicit formula for the integer point transform

L P( r , T , y ) =  ^  + T)e~2̂ y\
ie z d

We would like to  set y = 0 to  get the integer point enum erator th a t we are 

seeking. Unfortunately, y =  0 is a singularity of the right hand side of Theorem 

1.2.1. Fortunately, we can find our way around this singularity, which is the 

content of this section. We are free to  choose any complex value for y  as long 

as it is not a singularity of the right-hand side of Theorem 1.2.1.

There are an infinite number of such choices since the set of these singu

larities, f2, is collected in a countably infinite union of hyperplanes. We recall 

th a t the singular set in Theorem 1.2.1 is

Q =  ( J  {y  G Cd\(Av Ck( u , v ) , y )  =  0} U {y  G C d\{wk(v) , y)  G i t ]  .
u ,v  vertices of r V  

k=l,...,d

In particular, we choose y — i v / N  for some v  =  (ui ,v2, . . .  ,Vd) G Z d such

th a t gcd(wi,t>2 , . . .  ,Vd) = 1 and N  G Z>o such th a t y $ fl. Now consider the

following set of discrete hyperplanes:

L j  :=  {I G Z d\ (l,v) = j  (m o d IV)}, j  = 0 , . . . , N  -  1.

It is clear th a t the integer lattice is stratified by these N  discrete hyperplanes; 

th a t is, Zd — (Jjl'o1 making the substitution for y = i v / N ,  we have

£ } l  M l + T ) e ~ 2*V’v) =  } ^ 1  rV( l + T ) e ^ l’v) (1.17)
le z d le z d

N - 1

= E E 1̂ +T)e^i- (L18)
j=o lehj

Making the substitutions y — i v k / N  for k =  1 , 2 , 3 , . . . ,  N  — 1 and adding up
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all the corresponding sums (1.17) we get

=  J 2 J 2 J 2 l r A i + T ) e 2̂ )  
k= i  i e  zd k= i  j = o ie L j

j = 0  iG Lj fc= l

By the orthogonality relation of the roots of unity, we have

y v * < ( # )  =  J  N ~ x if j  = 0
t l  l - l  if J V O

Therefore

E E 1^ ^ 7 ) ^ ^  =  ( i v - i ) ^ w ( / + T ) - x ! ^ i , p ( / + r )
* = i  i e  z d ie L o  j = i  i e L j

TV—1

=  i v E M ^ + ^ - E E ^ + r )
ie L o  j = 0  l € t j

= IV E  l rV( l+  T ) - ^ 2  M *  +  T).
ie L o  i e z d

Since L v (r,T,  0) =  Y^iezd +  T), we retrieve from the last equation a for

mula for the Ehrhart quasi-polynomial of a translated simple rational polytope 

V - T :

Corollary 1.4.1.
TV-1

L v (r,T ,  0 ) =  N  E  l r-p(l +  T) -  E  E  h v ( l  + T ) e ^ 1’^ .
le  L 0 k= l  i e  Zd

We note th a t the right-hand side of this formula is computable by using The

orem 1.2.1. Indeed, the double sum is just iV — 1 evaluations of theorem  1.2.1, 

where y  ranges over i v k / N  for k = 1 , 2 , 3 , . . . ,  N  — 1 . To evaluate the sum 

Z^/eLo +  T),  we note th a t Lo is a sublattice of Z d, say Lo =  M tZ d for 

some M  £ GLd{Z). Then we can use Fact 6  from the Appendix to  get

£ + T > =  i d ^ M i  £
ieiLo 1 1 g e z u/ M Z d i e z d

which can now be computed by theorem 1 .2 . 1  with the additional assumption 

th a t for all g £ Z d/ M Z d, iM ~ 1g is not in the singular set Cl.
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C H A PTER  2 

A sym ptotics of Polyhedral 

Theta Series and Solid Angles

2.1 Introduction

T heta  series are im portant tools in many areas of m athem atics, including 

elliptic functions, m odular forms, algebraic and analytic number theory, and 

discrete geometry, to  name only a few. For instance, the classical

th e ta  function, defined by 9(t) = e~ntn2; for t  >  0, (2-1)
nG Z

satisfies the following transform ation law 9(t) =  t~^9  (^) of Jacobi [29] and 

was used by Riemann [40] to  prove the functional equation for the Riemann 

zeta function by means of the integral

r (§)*-*«.)- i j f i  w - u ^ f .
In this chapter, we define polyhedral th e ta  series and investigate their 

connection with solid angles, the generalization of two-dimensional angles to  

any dimension. We will show th a t polyhedral th e ta  series are useful tools for 

studying solid angles by analyzing the asymptotics of such series. Overall, this 

chapter serves as an introduction to  the tools and m ethods used to  study solid
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angles and it represents a starting point for future study on asymptotics of 

polyhedral th e ta  series. As a warmup, in the following section we present an 

application of a one-dimensional th e ta  series, namely the Twisted Landsberg- 

Schaar Identity.

2.2 T w isted Landsberg-Schaar Identity

The Poisson summation formula states th a t if /  is sufficiently nice, then

(2-2)

One application of this formula is in the proof of Jacobi’s transform ation law 

for the classical th e ta  function. This transform ation law is in tu rn  used to  prove 

the following identity of Landsberg and Schaar [33]: For positive relatively 

prime integers p and q,

^  '  2irin2q /p  -  \ T  g —irin2p /2qE e 2 v in 2q /p  _  _____

JT q
v *■ r i= 0 v  ^  n = 0

Formula (2.2) can be “tw isted” to  include Dirichlet characters, bu t we first 

recall the definition of a D irichlet character modulo an integer N.

D efinition 2.2.1. A Dirichlet character modulo A’ is a function % : Z —> C, 

which is periodic with period N, such th a t x(nm) — x(n)x(m) and

j  1 if (n ,N )  =  1,
lx(n)l =  S n ,

( 0  otherwise.

A Dirichlet character x  mod N  is called primitive  if % is not a character mod 

M  for any divisor M  of IV.

The following is the twisted Poisson summ ation formula:

E  x(»)/(n) = (2.3)
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where % is a primitive character mod N  and g{%) is the Gauss sum defined by 

the formula

9 ( x ) =  E  x(«)e2ra/w
nm odiV

(For a proof of (2.3), see [15]). As an application of (2.3), we let % be a 

nontrivial primitive character mod N  such th a t %(—1) =  15 (so> X is even). 

Then for f{ x )  =  e " " 7rtx2, t > 0, we have

OO / \ oo

E x ( n ) e - ^ 2 =  ^  E (2.4)
n=-oo ^  n=—oo

If we let r  =  it, for t  > 0, we get

OO /  \  OO

E  X{n)e*irn2 =  ^ n j e ~ ™ 2/N2\  (2.5)
z '  ]NyJ—lTn = —oo v n = —oo

By analytic continuation, (2.5) is true for all t  E H, the upper half complex

plane. We will now use (2.5) to  prove the following result:

Theorem  2.2.1 (Twisted Landsberg-Schaar Identity). Let % be a non

trivial even prim itive Dirichlet character mod N  and let q E Z>o such that 

(q, N ) = 1, then

N — 1 / \ pz  4giV — 1

X( j) e2 - « 2/iv =  W ) e - 2nij2/4qN.
y —i r i  . jr v j=o

Proof. We sta rt with the left-hand side of equation (2.5) and r  =  ft +  2q/N:

OO JV—1

E  ^ n J e - ^ + ^ / ^ E x W e 2̂ 7"  E  (2-6)
n = —oo j= 0  n = j m od N

We used the periodicity of x(n) and e2m(in2lN as n  varies over Z. We will need 

the following claim:

Claim:

lim V t  V  e t-»o '
-7r tn 2 1

N
n = j  m od iV
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Proof of Claim.

r ° °  2
1 =  / e-7™ d x

J —OO
00

=  i ™ 0 E  A x f ( x n)
71— — 00 
OO

=  lim V  V t N e - vt{Nn+j)2*-+nt-+o
n = —oo

lim \/£jV V  
t-*o '

n = j  m od iV

e-7rin2

where we used / (x )  =  e 7rx2, x n — \J t(N n  +  j )  and hence A x =  y / t N . ■  

This claim, along with (2.6), shows th a t

OO - N — 1

Vi  x (n )e - ^ 2 ^  _  £  x(j)e2viQf/N, a s  i  -  0 . (2.7)
n = —oo j= 0

Now we play a similar game with the right-hand side of equation (2.5). Again, 

we let t  — it + 2 q /N  and get

f l ( x )  ^ , ( n ) e -7 rin 2 / N 2t - 2 iq N

^ N H - 2 i q N j ^ c

9(x)  " t  (  —Kin2 2iriqn2 \
y / N H - 2 i q N  n500X XP \ N 2t 2 +  4?2 “  ]V3f2 +  4 ^  A 2 J ( ^

p(x)

n = —oo 
oo

x (n )e -7rt"2/ 4«2e - W /4«JV+°(t4), a s f ^ O ,  (2.9)
y / N H - 2 i q N

, . 4 g iV -l

5 S  x{j)e~27rif/4qN e“wtn2/V+0(t4), a s t ^ O .  (2.10)
^  J= 0  n = j  m od AqN

In (2.8) we wrote the exponent as a + bi where a, b G R  and in (2.9) we used 

the Taylor series representations of both  a and b centered at 0. In (2.10) we 

used the periodicity of x (n) and e- 2mn2/4qN ag n  varjes over w e note th a t X 

has period N ,  and thus is also periodic with period AqN. By the above claim, 

it is easy to  see th a t

-7rira2/4 g 2 __
t AH v “ ^  " _  N '

n = j  mod 4qN

lim yft e
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This limit, along with (2.10), shows th a t as t  —* 0 

9(x)Vt ” e 2mj2/4qN
y / N H  -  2iqN N s /= iN  ,=0

(2 .11)

By equating the asymptotic equalities (2.7) and (2.11), we obtain the desired 

result. ■

2.3 Solid Angles

As we stated earlier, the m otivation for this chapter is the study of solid 

angles via appropriately defined th e ta  functions. Suppose V  C R d is a convex 

d-polytope. Then the so lid  a n g le  cu-p(x) o f  a  p o in t  x  (with respect to  V)  

equals the proportion of a small ball centered at x  th a t is contained in V. 

Thus, for all positive e sufficiently small,

vol (5 {( x ) n ? )
’ vol B e(x) ’

where B e(x) = { y  € R d : ||x — y | |2  <  e}. This definition holds for any 

polytope V  or pointed cone 1C.

Before discussing solid angles further, we first define several term s from the 

language of polyhedra. A p o in te d  cone  tC C R d is a set of the form

K- — { v  +  AjWi +  A2W2 +  • • • +  Amw m| Ai, A2, . . . ,  Am >  0},

where v, w y , . . . ,  w m G R d are such th a t there exists a hyperplane H  — {x G 

Rd| a • x  =  b} for which H  DlC — y .  The vector v is called the apex of /C, and 

the Wfc’s are the generators (or edges) of 1C. The pointed cone is rational 

if v, w i , . . . ,  w m G Qd. We say th a t H  is a supporting hyperplane of K  

if K  lies entirely on one side of H. A face of a cone K  is a set of the form 

JCf~\ H ,  w here  I I  is a, su p p o rtin g  h y p e rp lan e  of K.  If K. is of d im ension  d, th e n  

we call it a d-cone. The d-cone K  is called sim ple if 1C has exactly d linearly 

independent generators.
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W ith the language now set, we have the following alternate definition of 

the solid angle of a cone:

D efinition 2.3.1. Given a cone IC C R d with apex a t the origin,

w/c(0 ) :=  [  < 
JK

e - ^ d x .

We note th a t one can replace the integrand e~7rllxll with any radially symmetric 

function /  (||:r||) in definition 2.3.1, as long as one divides by the to ta l mass, 

f Rd f  (||x ||) dx. The benefit of using the Gaussian function in our definition is 

th a t the to ta l mass equals 1. We now define the tool th a t will help us analyze 

the solid angle of a cone.

D efinition 2.3 .2 . Given a cone K, C Rd, we define the following conic theta  

function for t  >  0 :

eK(t) := J 2  e - wt'H |2 . (2 .1 2 )
melCn Zd

The connection between 6/c(t) and ^^(0) becomes apparent when we discretize 

the integral definition 2.3.1 as a Riemann sum and obtain the asymptotic 

result:

Theorem  2.3 .1 . Given a cone /C C R d with its apex at the origin,

~  * -»• 0+-

Proof. Let f { x )  — e . Then we have th a t

w*;(0 ) := /  e ~ ^ 2dxJktCCM.d

lim . E ( A x ) df ( A x - n ) .Ax—̂0+n€/CnZd
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If we let A x  — t 1/2, it follows th a t

^ ( 0 ) =  hm Y ,  td/2f ( t ^ n )
neKnZd

= lim V  ^ / 2 e- ^ tl/2"U
t-+ o+ ^

n^Kr\Ijd
— lim V  t d/2eo+

n€zK,C\%d
= lim td/2eK(t). 

t—o+

Therefore, we have the desired result:

t o  =  i.
t->o+ ui)c(0)

2.4 A sym ptotics o f the Conic T heta Functions

We have just shown th a t the conic th e ta  function 0/c(£) as

£ —> 0+. In this section, we study finer asymptotics of 9)c(t) using Euler- 

Maclaurin summation and the transform ation law of the classical th e ta  func

tion. In particular, we will use the geometry of the positive orthant, O, to 

study the behavior of Qo(t) as t  —> 0 + .

The classical Euler-M aclaurin summation formula for a function /  having 

2m  continuous derivatives on the interval [1 , oo) can be w ritten in the form

/
U 1 R

f ( x ) d x  + C  + -  f ( n ) +  - g f / '( « )  +  4 ? / W(n ) +

+ "  ■+ -  r

(2.13)

T h e  life’s are  th e  B ernou lli n u m b ers  a n d  th e y  have th e  g e n e ra tin g  fu n c tio n

— i - r  =  y 'T r * *  ( M < 2!r)-e - - l  ^ * !
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The B k (x y s are the Bernoulli polynomials and they are defined through the 

generating function

B k(x)

k>  0

The symbol \x\ means the greatest integer <  x. The number C  is a constant 

independent of n  given by

c = j / ( i )  -  § m —

It is known th a t [26]

B 2m{ x -  [®J) =  2(2m)!(27r)~2m(—l ) m+1 ^  for m =  1 , 2 , 3 , . . . .
k = i

Therefore, we have the following:

|£ 2ro(x -  |®J)I < 2 (2 m ) ! ( 2  t t)"2™ =  |5 2m(0)| =  |S 2m|. (2.14)
k = 1

This bound is useful in estimating the last integral in (2.13).

For fixed a  > 0  and n  G Z >0, we consider the sum

N

S N( a , n ) =  e~ ak2' n-
k = —N

Using the Euler-M aclaurin summation formula (2.13) with f ( x )  =  e~ax2/ra, we 

have

rN 1 D
S N(a ,n )  = j N f ( x )dx + - ( f ( N )  + f ( - N ) )  + ^ ( f ( N ) - f ( - N ) )  + 

+  "  ' +  ( / (2m_1)( ^ )  -  f {2m- 1]( - N ) )  -  R m,

w here

/ iv

■N
R m = l N ^ dx.

(2m )!
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We now take the limit as N  —> oo to  get

S ( a ,n ) := a k 2 jn

k = — o o  

/ * c o

f ( x ) d x /(2
(2m)!

# 2m(z -  b J )  
(2m)!

(2.15)

since f ( k\ ± N )  —► 0 for k = 0 , 1 , 2 , . . . .  We denote the integral in (2.15) by R  

and notice th a t R  does not depend on m, since —R  = S ( a ,n )  — y /w n /a .  We 

can use (2.14) to estimate R:

, B2m {x [x\ )\R\ /
OO

f {2m)(x)
■00

<

<

(2m)!

f° °  [xj )
J-00 ;  ( j (2 m)!

\ f {2m\ x ) \  dx.

dx

dx

B.
(2m)!

In [20], de Bruijn uses Hermite polynomials and Stirling’s formula to  show th a t 

—R  = 0  (ne~%2n/a ĵ , as n  —► 0 0 . Alternatively, we realize th a t S ( a ,n )  = 

6(a/irn), where 0 (f) is the classical the ta  function

m= E —7r tn 2 for t  >  0 .

We know th a t 0(f) satisfies the following transform ation law

Therefore

S ( a ,n )  = 9— a k 2/n

/ c = — 0 0

ixn  ̂ ^—k27r2n/a 
k — — 0 0

e

nn  _ fn n  v— _ k2n2n/a+ 2 
a  V a E-

k = 1

(2.16)
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and hence we obtain the improved result:

- R  =  2  J ^ Y ^ e- k^ nla =  2  J ^ e - v2n/a + 0  ( ^ / n e - A*2nla ĵ , as n  -> oo.
' a  fc=i " a

Thus, we have shown th a t

Y  e~ ak2/n =  +  2  J ^ - e ~  A / a  +  O ^V ne-  4?r2”/Q)  , as n  ^  oo.
fc= —00

(2.17)

Let us express this result in term s of 6{t). By making the substitution a / n  = 

7rt, equation (2.17) becomes

9(t) ;=  V  e =  4 = -  4 =e” wA +  0  ( 4 =e_4,rA)  , as t  -> 0 + (2.18)
*=-oo v*  V* W *  /

Equation (2.18) is the key result th a t we will use to  find asymptotics of the 

conic th e ta  function 6o(t) defined over the positive orthant. B ut first, we will 

need to  define a weighted conic th e ta  function over a cone tC. The weighted  

characteristic function C/e(x) is the function on Wl th a t takes the value 0 

if x  /C, the value 1 if x  G /C°, the interior of /C, and the value l / 2 k on the 

relative interior of a face of fC of codimension k. So for example, for the cone 

[a, oo) C R, the function C[0 i00)(x) assigns the value 1 to  x  >  a, 0 to  points 

x  < a, and 1/2 to  a. Then the w eighted conic theta  function over K, 

0 /c(t), is defined as

QK(t) := for t  > 0 .
m̂ KC\ TA

The positive orthant in M.d is the set

O  =  { (x 1, x 2, . . . , x d) G R d\xi > 0, Vi}.

Clearly, O  is a pointed cone and we want to  study the asymptotics of ©q (t) as 

t  —> 0. As we shall see in the next result, the geometry of the positive orthant 

is particularly nice for studying conic the ta  functions because we can reduce 

the analysis to  the one-dimensional classical th e ta  function.
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T h e o re m  2.4 .1 . The weighted conic theta function defined over the positive 

orthant in Rd; is a product of classical theta functions, Oft). In fact,

= - p T ’ f or 1 >  ° ‘ (2 '19)

Proof.

0d{t)
2 d  ~~ 2 d

g—Trtmh ( t
\ m ——cx

i h s r i
1 OO

2  +  E e ' r t r o 2
771=1

/ o o  \  a /  7\  -1 /  00 \  ̂  1 /  _7 \  1  0 0

: e " “ 2 +  2 -
\ m = l  /  ^ ^ \ m = l  /  ^ /  m = l

0 0  OO h V-Aj -|

e - j r t(m ? + -+ m 5 )  +  ^  ± £ -7 r t(m ? + -+ m ^ _ 1) _|_________^  _ e -7 rt(™ 2 + -+ md)

mi,..., 771̂ =1 m*=l mi = l
^ i v  " ""■ l0/ iŷ d i^l

interior of O
(d—1)— dim ensional facets of O

oo ^

....■'
0—nrtm 2_________

2d~l " ' ' ^  ’r  2 d mi = 1 m̂  = 1
apex of O

1—dim ensional edges o fO  

- 7 r t | |m | |2=  ^ 2  C  o (m )e
m € O r Z d

= ®o(t)-

From equation (2.19), we get essentially for free a transform ation law for ©q .

C o ro lla ry  2 .4 .2 . The weighted conic theta function defined over the positive 

orthant in Md; Qo(t), satisfies the following transformation law:

( j )  , for t  >  0 .
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Proof. This follows from Theorem (2.4.1) and the transform ation law for 8(t) 

in equation (2 .1 ).

e -m  ( ^ ( i ) ) "  i  =  m
° ( )  2d 2d tdV  2d td/2 ° [ t ) '

We can now use the asymptotics of the classical theta  function in equation

(2.18) to  study the asymptotics of 0 O. But first we will need the following 

lemma.

L e m m a  2.4 .1 .

e~4n/t (  \  — 2e~'Klt

Vi V Vi

Proof. It suffices to  prove th a t

e -Air/t
-Arc/t

lim — ~r~!7 — lim  77 — 0-
i_>0 + l - 2 e ni t t ^ 0 +  1  — 2 e -7r/ t

Vi
By L’Hopital’s rule, we have

e -4 7 r/t _ 2 g _ 4 '/rA
lim ------------ 77 =  lim---------T— =  lim —2 e 37r//t =  0 .

t-»o+ 1 — 2 e 7r/t t^o+ e f->0+

Now we can state  the asymptotics as t  —> 0+ of the weighted conic the ta  

function defined over O, the positive orthant in Rd.

C o ro lla ry  2 .4 .3 . As t —>■ 0+,

0 o ( f ) : = £  C o ( m ) e - * I H I a =  O  U ^ / t  ( X  -  ^

m .eO nZd 2 y/i J \ Vi V Vi
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Proof. From theorem 2.4.1 and equation (2.18), as t —> 0+ , we have th a t 

^  , 9d(t) f  1 — cle~'K!t „ ( e - 47rP \ \ d
2d \  2 y/t \  V t

If we expand this expression, we get the term

' 1 - 2 6 -*/*
2y/i

plus error term s involving products of

1 -  2 e~ */* e~ 47r/ 4

E'm:=^ v r -  “ d —

By lemma (2.4.1), E\(t)  dominates E 2 (t), and hence the largest error term  is

/  e- ^ / t  /  j  _  2 e-7r/t \  d~1N

0  ' 1 88 f - °  -

The following lemma relates the asymptotics of the weighted conic th e ta  func

tion, &o(t), to  the non-weighted version, 60 (t).

L e m m a  2.4.2.

Given a  cone K .  C Rd, Q / c ( t )  ~  Q t c ( t ) ,  a s  t  —» 0+ .

Proof. We will use the same proof as in theorem 2.3.1 to  show th a t 0;e(f) ~  

u K ( 0 ) t - d/ 2 , as t  —» 0 + . Then we will have

lim =  lim e ic(t)u)K(0)t-d/2
eK {t) t-o eK ( t ) u K ( o ) t - d/* ‘

We begin with

u K ( 0 )  : =  [  e ~ * l|x |l 2 d x
JlCCRd

/  GK{x)
I K.CM.d

  2e
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since C/c(x) only affects the boundary of K, and the integral over the lower

dimensional d)C equals 0. Then we let f ( x )  = Cjc(x)e~n^ 2 and write the 

following Riemann sum

0) =  lim y  ( A x ) df ( A x - n ) .  (2 .2 0 )
Ax-+0+ ,n€.K,r\X̂

If we let A x  = t 1?2, it follows tha t

^ ( 0) =  hm y  2
nQJCC\Ld

lim E ^2CK(t̂ 2n)
n)

e  7r||t1/2n ||2

t—► 0+ neicn zd

=  lim td/2y  C ]C(n )e -lrtMa (2.21)
neKnzd

= lim
t-> o+

In (2.21), we used the fact th a t for t >  0, if n  is on a face of JC with codimension 

k  then so is t ll2n. Therefore lirrq_>o+ =  1 and the  lemma follows.

C o ro lla ry  2 .4 .4 . As t —> 0+,

(2 .22 )

Proof. This follows directly from lemma 2.4.2 and corollary 2.4.3. ■

In dimension d, there are 2d orthants and hence the solid angle of the positive 

orthant is oj0  =  l /2 fi. We point out th a t the leading term  in (2.22) is

1 wo
2dtd/2 ~  W * '

which is consistent with theorem 2.3.1.

The goal for future study will be to  use corollary 2.4.4 to  study solid angles 

of any rational simple cone 1C. where K  = M O ,  for some d x d m atrix M .  

W hen we apply the transform ation M  to  the standard orthant, it results in
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conic th e ta  functions with matrices in the exponent of the Gaussian. This 

greatly increases the difficulty of studying lok through the asymptotics of such 

th e ta  functions. In the following sections, we generalize the notion of a solid 

angle in order to  find a more computable measure of volume.

2.5 Zp-Solid Angles

The solid angles th a t we have studied thus far have measured the volume of 

the intersection of a polytope with a small ball. W ithout saying so, we assumed 

th a t the ball was defined with respect to  the Z2-norm. We now extend our 

notion of a solid angle by considering balls with respect to  /p-norm for p > 1 . 

Given x  =  (xi, X2 , . ■., Xd) G the P-novm  of x  is defined by

|| x ||p =  (| x i\p +  | x2|p H H | Xd\p)1/p , for p  >  1 .

The ball with respect to £p-norm of radius e centered a t x  is the set

B Pie(x) := {y G Md : j | x - y | | p < e } .

For any convex d-cone JC C Rd, we define the generalized Zp-so lid  a n g le  of a 

point x, denoted by wPi/c(x), to  be the proportion of a small Zp-ball centered 

at x  th a t is contained in 1C. T hat is

vol(5P)£(x) fl/C)
^ K(X) =  v „ ff i„ <(x) ’

for all positive e sufficiently small. We note th a t the Z2-norm  is the usual norm

associated with W l and hence the usual solid angle is the /2-solid angle. We

also have the following integral definition:
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D e fin itio n  2 .5 .1 . Given a cone JC C R d with apex a t the origin,

uPtK(0 ) :=  [  e - c^ d x
J K

=  /  e~c^ xl\P+\X2\P+'"+\Xd\P'idx,
Jk

where c is a constant dependent on p such th a t if K- =  Rd, then  wP)/c(0 ) =  1 . 

We will now solve for the constant c in the following lemma:

L e m m a  2.5 .1 . The following identity holds for all p  >  1:

=  (j[ ■

Thus we have reduced the identity to  the one dimensional integral:

where T(s) is the Gamma function defined for  s e C  with Re(s) >  0 by

Proof. First, we note th a t

1

{\xi\P+ -  + \xd\V ) dx

1 — [  e~c]x]Pdx
JR

Making the substitution c f ^ x  — y, we have

1

(2.24)

(2.23)
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where we made the substitution t — yp in equation (2.23) and we used the well

known relation T(s +  1) =  sT(s) in equation (2.24). Thus the identity holds

for

c i / p  =  2r  Q  +  1 ^ .

■

Now th a t we have nailed down the constant c for each p  >  1, we extend to  

all x € Rd the integral definition 2.5.1 of a solid angle:

Definition 2.5.2. Let e > 0. Then for x e R^ and p >  1, the Zp-solid angle

of x with respect to  the cone /C is given by

wP)AC(x) :=lim-̂  f e^-^dt. (2.25)
€ y ^ J  K,

This definition of uPtic(x) is more analytic in nature, as opposed to  geometric, 

and it opens the door to  Harmonic Analysis techniques th a t will be used to  

study solid angles in the next chapter. As a preview, we analyze (2.25) further.

For e >  0, p > 1, and t  € Rd we define

& ( £) :== ~ ^ e ~f W p - (2 ' 2 6 )

Notice th a t =  </>e(i), by the properties of the Zp-norm. Then equation

(2.25) becomes

^p,jc(x) =  lim /  4>e(t — x)d t  
£~*° Jk

= lim /  </>e(x —  t)dt
£̂ °  Jk

= lim /  l K(t) <j>e(x  -  t)dt  
£̂ °  J r*

= 1™  (1 /C * 4>t) (x).e—>0

The last equality follows from the definition of the convolution. This fact will 

be used a great deal in the next chapter, so we highlight it here:
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F a c t 1.

Wp,jc(x) =  lim (ljc * <f>e) (x), for all x  £

We now take a moment to  comment on the properties of 4>c, which will 

also be used later. The Schwartz space is the vector space of infinitely 

differentiable functions /  : Md —> C which are bounded, sm ooth (i.e., all partial 

derivatives exist and are continuous), and rapidly decreasing (i.e., \x\Nf ( x )  

approaches zero as \x\ —> oo for any N).  The Fourier transform  /  : M.d —* C is 

defined as

f ( y )  = [  e2̂ f ( x ) d x .

It is known [32] th a t if /  € then /  £ 5?. For example, when p  =  2, </>e € S? 

and hence <j>e £ J?  where

4>e{t) — e ~  an d  e ~ ne^ .

The fact th a t <f>€ is rapidly decreasing will be used to  show absolute convergence 

of series in the next chapter.

2.6 lp-Conic T heta Functions

In order to  study P-solid angles, we define the following Zp-conic theta  

functions for any p > 1 .

D efinition 2.6 .1 . Given a cone /C C R rf, the /p-conic th e ta  function for t  > 0 

and p >  1 is given by:

8P,ic(t) :=  ^  e~ ct|Hlf>, where c =  +  l ' j ' j  .
m e K n z J ^  '  '
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Let us pause to  examine a couple of these new objects before we sta te  and 

prove a key result on the asymptotics of F’-solid angles.

E x a m p le  2 .6 .1 . W hen p = 1, c =  2r(2) =  2 and we get the following ^-conic 

th e ta  function over /C:

For p = 2, we have c =  (2r(3 /2 ))2 =  4 (v/7r / 2 ) 2 =  n  and hence the Z2-conic 

th e ta  function over /C,

m e K .r ’Ld

is just the d-dimensional classical th e ta  function defined over /C.

■

Solid angles are constant along the relative interior of the apex of any cone 

/C. Therefore, we define the ^ -so lid  a n g le  o f a  cone  /C as U)p jc wp,/c(x )j 

for any point x  in the relative interior of the apex of /C.

T h e o re m  2.6 .1 . Given a cone JC C Rd with its apex at the origin,

(2.27)
m€lCr)Zd

(2.28)

-  ii npProof. Let f ( x )  = e c||a:||p, where c =
V

. Then we have th a t

p,K '■= tJp,x( 0 )

=  /  e~4 x t d xL
lim̂ . E ( A x ) df ( A x  ■ n).

neKnZd
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If we let A x  — t 1̂ ,  it follows th a t

^  E  t d/Pf ( t 1/Vn)
neKnzd 

lim V  td/pe~c]]tl/Pn]%
t —* 0+

n£/CflZd

=  lim V  td/Pe~ctIMIS
t—+0+ neKrSA

=  lim td/p9p K.(t).
t —>0+

Therefore, we have the desired result:

]im S i X M O  =  L
t-> 0+ WP) K

2.7 Z1-Solid Angles

Our motivation for studying generalized solid angles is the fact th a t 

Z1-solid angles are much easier to  compute than  Z2-solid angles, as the next two 

theorems illustrate.

T h e o re m  2.7 .1 . The P-solid angle of a d-dimensional simple pointed cone 

K, C Kd contained in any one orthant with its apex at the origin is given by

“' v M  = ' T f  . (2.29)
2dr U i  iiwiiii

where w i , W2 , . . . ,  are the d edges of K  and det tC is the determinant of the 

matrix whose ith column is the edge vector w ; .

Proof. W ithout loss of generality, we assume /C is contained in the positive 

orthant of We know th a t u 'i^ O )  is defined as

voi(#i, i (o) n /c)
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where 6 1 , 1 (0 ) is the unit ball with respect to  the 6 -norm, centered at the 

origin. It turns out th a t the closure of this ball, .6 1 , 1 (0 ), is a well studied 

polytope called the c ro ss -p o ly to p e , which is defined by

O  : =  { ( x i , x 2 , . . . , x d) e R d : | x i |  +  \ x 2 \ H h \ x d \ <  1 } .

Therefore

w i , / c ( 0 )  —
vol(0  n 1C) 

vol O

It is known th a t volO =  2d/dl.  Thus, it remains to  show th a t

| det/C|
vo l(0  n 1C)

dl F l t i  llw,i 1

Since 1C is simple, by definition it has exactly d edges, which we assume are 

contained in the positive orthant. Therefore, the intersection of 1C with O 

forms a d-dimensional simplex with one vertex at the origin and d vertices on 

the boundary of O, corresponding to  the d edge vectors of K.

It is known th a t the volume of a d-dimensional simplex A with vertices 

0 , v i , . . .  ,v d is given by

v o l A  "

{

d e t Vi v 2

V

: \
(2.30)

Let Vj for i = 1 , . . . ,  d, be the non-zero vertex of O n  /C in the direction of the 

edge vector w im Since v, is on the boundary of O, we m ust have ||v* || 1 =  1 for 

each i. Also, u* is a scalar multiple of w*. Hence, we m ust have vt = for 

each i, because
Wi
Wi 1

| |W j | | i

I w i 111
=  1 .
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Therefore,

(  ' '
: \

vol(o  n/C) -  - d e t V !  V 2 • • V d

\  = ' J

/ : \

d e t Wi W2

V : :

&  I L = i  K i l l

I det /Cl

2 d n t i  i k i i i '

Before we s ta rt the next theorem, we pause to  clarify what we mean by a 

“polynomial tim e algorithm.” Let C be the class of all rational polytopes in R d 

w ith d fixed. An algorithm on C is called a “polynom ial tim e algorithm  in 

fixed dim ension” if there exits a fixed polynomial /  such th a t the algorithm 

only takes f ( t \ , . . . ,  t m) time, where the f;’s are the log2 1 c*| of the coordinates 

c?; of the vertices of V, for any V  € C. The polynomial /  is known as a 

polynomial in the input size of V.

Theorem  2.7.2. Let us fix d. Given any pointed rational d-cone K  C 

there exists a polynomial time algorithm in fixed dimension which computes 

the I1-solid angle at the apex of 1C.

Proof. We can assume th a t the apex v  of K, is a t the origin, otherwise we 

can calculate the /'-solid angle of the translated  cone K, — v. Theorem 2.7.1 

gives the formula for simple cones contained in one orthant. We know th a t 

/r'-solid angles are additive, i.e. if K, — K,\ U /C2 where dim(/Ci n  /C2) <  d, 

then u>Ptic(x) =  +  u>Ptic2(x) for all x  g RL Therefore, we wish to

decompose /C efficiently into cones, the /'-solid angles of which are computable 

using theorem 2.7.1.
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As is well-known, any pointed cone can be triangulated into simple cones 

using no new generators [7], and in fact every rational cone can be triangulated 

into unimodular cones (simple cones whose edges form a basis of Z d) [24], But 

triangulations are not enough to  ensure polynomial tim e computability. We 

will use the following theorem of Barvinok [6 ] which says we can break up 1C 

as a signed decomposition of unimodular cones in polynomial time:

T h e o re m  (B a rv in o k ). For a fixed dimension d, there exists a polynomial 

time algorithm, which, given a rational polyhedral cone 1C C Md, computes 

unimodular cones /Q for  i € I  and numbers e; € {—1 , 1 } such that

1 K. =  ^ 2  e* 
ie l

where I jc is the indicator function of 1C. In particular, the number | / |  of cones 

in the decomposition is bounded by a polynomial in the input size of K.

Therefore, we assume th a t 1C has such a signed decomposition. Then by the 

additivity of P-solid angles, we have

<̂ 1 , /c(0) =  (2-31)
ie l

According to  [4], computing the edge vectors of each /Q can be done in poly

nomial time. Thus, the T-solid angle a t the vertex of 1C can be computed 

in polynomial tim e using theorem 2.7.1 and equation (2.31), as long as the 

unimodular cones in the decomposition are all contained in one orthant.

Alternatively, we can use the fact th a t K  fl O is a polytope. Polytopes are 

simply the bounded intersection of a finite number of half-spaces of the form 

{x £  I ' 1 : a\X\ +  a^X2 +  • • • +  adx d < b}. The boundaries of these half-spaces 

are called hyperplanes. A hyperplane is called r a t io n a l  if it is of the form 

{x G : aiXi  +  a2x 2 +  • • • +  adx d — b} for some ai, a2, . . . ,  ad, b € Z. A 

polytope is called ra t io n a l  if all of its defining hyperplanes are rational.

Since O is a rational polytope and we assume th a t 1C is a rational cone, 

all of the defining hyperplanes of their intersection K. n O  will be rational.
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Thus, K. f~i O is a rational polytope. In [4], Barvinok gives an algorithm th a t

implies polynomial computability of the Ehrhart quasi-polynomial of a rational

polytope when the dimension is fixed. The Ehrhart quasi-polynomial of V  is

an expression of the form Lp(r) = Cd(r)rd-\ h c i( r ) r+ c 0(r), where q ,  . . . ,  Co

are periodic functions in r  and Lp(r) = # { r V  D Z d}, the discrete volume of

the rth dilate of V . It is known th a t the leading coefficient, q ,  equals the

continuous volume of V . Therefore, the volume of 1C fi O is computable in 
_ . , . , . . . vol(/cnO)

polynomial tim e and so is ^ — .
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CHAPTER 3 

Generalized Solid Angle Theory 
for Real Polytopes

3.1 Introduction

We have seen in the previous chapter th a t solid angles are a generalize 

tion of two-dimensional angles to  higher dimensions. I. G. Macdonald initiated 

the system atic study of solid-angle sums in integral polytopes. Recently, there 

has been a resurgence of activity on solid angles and we now have a theory 

of solid angles th a t parallels the theory of integer-point enumeration known 

as E hrhart theory. This solid-angle theory for rational polytopes, including 

results from the 1971 paper [34] of Macdonald, can be found in Chapter 11 of

[7]-
In this chapter, we extend many theorems of solid-angle theory for rational 

polytopes from [7] to  results involving generalized solid angles and real poly

topes. The proofs we give here rely on Harmonic Analysis and therefore do 

not resemble the proofs in [7], which are combinatorial in nature. Further

more, it is the power of Harmonic Analysis th a t allows us to  use generalized 

so lid  angles a n d  to  e x te n d  ou r re su lts  to  re a l p o ly to p es. We also  n o te  th a t  

solid-angle theory for real polytopes is still in its infancy, prim arily due to  the 

considerable increase in difficulty associated with the study of polyhedra with
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irrational vertices. Theorems for irrational polytopes are hard to  come by, 

even in Ehrhart theory, and thus the significant contribution of this chapter 

to  solid-angle theory is the extension of several fundam ental theorems to  real 

polytopes. We also note th a t in this chapter the word cone always refers to  a 

pointed cone.

3.2 Generalized Solid-A ngle G enerating Func

tions

The in te g e r-p o in t  t ra n s fo rm  of a polytope V  E Kd, given by

°> (z) == Y 1  zm> (3 1 )
m e v  n l d

is a m ultivariate generating function th a t lists all integer points in V  as a 

formal sum of monomials. This special format encodes information about 

the integer points in a way th a t allows us to use both algebraic and analytic 

techniques to  study the discrete geometry of polyhedra. By analogy, we form 

the so lid -an g le  g e n e ra tin g  fu n c tio n  for a polytope V

a-p(z) :=  io-p{rn)zm. (3-2)
me r n z d

In order to  employ the methods of Harmonic Analysis, we often need to  

consider functions of a complex variable. For this reason, we redefine a-p using 

the substitution =  e2mSk for each k  =  1 , . . .  ,d , so zm =  e27rds>TO) and we 

obtain

a P (s):=  a>'p(m)e2™l's’rn\  for s €  Cd. (3.3)
m e  VC\ z d

This substitution will prove essential when we use the Poisson summation 

formula in our proofs. Using this technique will introduce sums of Fourier- 

Laplace transforms defined over polyhedra and the complex variable will ensure 

convergence of such sums. We note th a t while defined similarly, the Fourier- 

Laplace transform  is defined for the complex variable s 6  Cd, while the Fourier 

transform  is only defined on M.d.
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We wish to  point out th a t a P (s) is a finite sum for any polytope V  C and

for all s e  C d because the u r (m ) =  0 for all rn ^  V . Therefore, convergence

is not an issue when dealing with polytopes. However, when we consider

the solid-angle generating function for a pointed cone /C, this is not the case. 

To discuss the convergence of cpc(s), we need to  define K * , the polar cone 

associated with K . The polar cone K* is defined by

K* = { x e  R d : (x , y) < 0 ,V y e /C } .

Thus, ottc{s) converges if s £ Cd such th a t —Im(s) £ 1C*, because

—Im(s) £ K,*

=$■ (—Im( s), m) < 0, V m  £ 1C n  

<=> |e2,r<-Im(5)-m>| <  1 , V to € /c n Zd 

|e2"<s’m>| <  1, V T O € /C n Z d.

We now further extend our definition of a-p, by allowing uj-p(rn) to  be the 

generalized /p-solid angle measure defined in (2.25) and which we restate  here:

c T ( K ) : = - S m ~ j ^ > ‘- e dt .  (3,4)

We will use Fact 1 from the previous chapter which states that:

ujp(m) =  lim (1 p * </>£) (to), (3.5)e—>0

for an appropriate choice of <f>€ with <fie(—x) =  <f>e(x). In fact, we will use 

4>e(s )  =  e ~ * e ~ ( s' s\  since we will need to  be rapidly decreasing. We 

could use (j>€(t)  =  for any p > 1 and c =  ^2T ^  +  l j j  as long

as (f)e decreases rapidly enough to  ensure absolute convergence in the series 

th a t will follow.

W e w ill now  show  th a t  th e  so lid-angle  g en e ra tin g  fu n c tio n  o:/c(s) obeys th e  

following reciprocity relation:
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T h e o re m  3 .2 .1 . Suppose 1C is a simple d-cone in M.d with vertex at the origin 

and s € Cd. Then

otic(-s) =  ( - l )% c ( s ) -  (3.6)

Proof. For j  =  1 , . . . ,  d, let w j be a generator of the simple cone 1C. By abuse 

of notation, we denote the determ inant of the m atrix whose j th column is the 

edge vector Wj by det/C. Then

c p c ( - s )  =  lim V  (1/c * <f>e) (m )e2m{ s'm) 
€—>0 J

m^Ld

= lim ^2 ~ s)
m€.lA

= lim "*22 i/c(m  — s)<f>€(m  — s )

m

(3.7)

(3.8)

(3.9)

(3.10)

The last equality uses the formula for 1/c, which is exercise 10.4 in [7], We 

used Poisson summation in the second equality, which is valid because the 

convolution of 1/c with (f>e is an integrable and continuous function whenever 

<j)e is integrable and continuous.

Now we will use the fact th a t the lattice sum is invariant under the substi

tu tion  m  =  —n. Thus, we have

(—2 'Ki)~d\ det K,\
otK( - s )  =  lim ^ 2

E U K ,  - n  -  s)
(—n  — s)

(—27ri) d|det/C | 1
- 1) E  ' I + s )~°„1^ n j=iK ,n  + s)
- l ) d lim y ^  lic(n +  s ) f e(n + s)e—»n * ^

- l ) d lim y r  ( ! / c *  &e){n + s)
e—>0

n£Zd

- l ) dlim V  ( l / c * ^ )  (n)e2̂ a’">€—*0 Z *
nezd

- l ) d a j c ( s ) .

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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In (3.12), we used the fact tha t, for all complex vectors z  € Cd, <j>£(—z) = <fe(z). 

This last remark holds because

M - z )  = [  e2^ ~ z^ ^ { x ) d x
Jmd

= [  4>t {x)dx
J Ed

=  [  e2̂ z^4> ,{-u)du
j R d

= [  e2wî ( f ) t (u)du
JRd

= <t>e(z).

■

We now generalize the previous theorem  to  any real d-cone.

T h e o re m  3.2 .2 . Suppose 1C is a d-cone with its vertex at the origin, v  € M.d, 

and s €  C d. Then the solid-angle generating function  a v+^;(s) of the d-cone 

v  +  /C satisfies

av+K.(-s) = ( - 1  )da_v+K(s). (3.17)

Proof. Since solid angles are additive, it suffices to prove this theorem  for 

simple cones. Therefore, let Wj for j  = be the  generators of the

simple cone JC. Then the cone v  +  JC has generators v  +  w j and we have

av+ jc(-s) =  I™ V  ( lv+/c * <t>e) (m )e2ni{- s’m)
€—>0 Z J

mE hd

=  lim ( lv+/c * — s) (3.18)
€—>0 L J  

mElA
= lim V '  1 v+ic(m -  s)(pe(m  -  s).

e—>0 • J
mEljd

We used Poisson summation in the (3.18) above and we note th a t the formula 

for the Fourier-Laplace transform  of the shifted cone v  +  K. is obtained from 

th a t of JC, since i v+/c =  ijc • e27r̂ v,'i. Thus
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, , _ ( -2 7 r i) -d|det/C | e2,ri<v-m- s> T .
a v+ic(-s) =  lim 2 ^  ---------- g — -------------------  <pe(m  -  s)

e- 0^  n ,= i  ( w j .m - s )

, (—27r7)-rf| det/Cl e2^<v,-«-*>
=  lim >   —r-1-------- 1-----------------( p A - n - s )

^  l C = i ( w j , - n — )
, lW l. ^ ( - 2 ir i ) -d\d e tK \  e2-<-v,-+*>

=  ( - 1) — w ~, — L— ^ m n + s )n j= i K , n + 5)

=  ( - l ) d lim l-v+/c(« +  s ) 4 ( n +  s )e—>0 z—̂
neZd

=  (—l-^H m  2 ^  (i-v+ ic * <A0(n  +  s )
€—>0 Z J

n£Zd

=  ( - l ) d lim V  (1—v+x; * </>,) (n)e2™<^>e—>0 '
n€Zd

=  ( - l ) dQ!_v+/c('S)-

We again used the fact th a t the lattice sum is invariant under the substitution

m  — — n  and th a t pe(—z ) = <j>e(z), for all 2  G Cd. ■

We now state  and prove the analogue of Brion’s theorem  in term s of gen

eralized solid angles.

T h e o re m  3.2 .3 . Suppose V  is any convex d-polytope. Then we have the

following identity of meromorphic functions fo r  s G Cd:

a -p(s) = E  “ KvO5), (3- l9)
v  a vertex 

o f V

where K v := {v +  A(y — v) : y  G P , A G M>o} is the vertex cone o fV  at the 

vertex v .

Proof. We begin with the Brianchon-Gram identity [7]:

l P ( x ) =  E ( - l ) dim^ ( x ) ,  (3.20)

where the sum is taken over all nonempty faces T  of V  and tC? is the tangent 

cone attached to  T  defined by K j=• := {x +  A(y — x) : x  G T , y  £ V , A G M>o}-
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Then we take the convolution of both sides with <pc, m ultiply by z m, and finally 

sum over all m  € Z d to  obtain

E  ( lp  * A )( jn )z m =  E  E  * <Pe)(m)zm. (3.21)

We wish to  take the limit as e —>■ 0 of both  sides of equation (3.21), bu t we 

first note th a t the infinite lattice sums are absolutely convergent due to  the 

presence of the damping function <fic and hence we can take the limit inside 

the sum. Thus, we obtain

E  M m ) z m =  E  E ( - 1)dim^ ( m )^m
m£%d m£Zd PCP

=  E  E ^ h k + E  ( - i ) d,my E
v a  vertex m e Z d FCV m £ Z dof V

dim JF> 0

W ith the substitution z m = e2m(s<m)̂  we have shown th a t

a p { s )=  E  a ^v(s ) +  E  (_ 1 )dim'5rQ!̂ ( s )- (3-22)
v  a vertex FC.VoiV

dim 0

Therefore, it remains to  show th a t o l^A s ) — 0 for every face T  of V  with 

dim J 7 > 0. To this end, consider such a a ^ A s\  Since Kjr is also a cone, we 

can write /Cjr as the disjoint union of its relative open faces Q° and obtain

a Kr {s) =  e  ^ ic A 171) ^  =  E  E  ^ k-A 171)2”1- (3-23)
m£Zd GG=̂  m&dr\Q°

Since uijcr  (m) is constant on the relative interior of each face Q of T . we denote

by wg when m  e  Q°. Then we have

aKr{s)= E ^ S  E  ^  (3 ‘2 4 )
GQP m£Zdr\G°

Recall th a t dim T  >  0, and so dim Q >  0 for every face Q of T . Therefore, 

Q° contains a line and by theorem 3.1 in [6]

E  z m = 0. (3.25)
me z dng°

Thus, by equation (3.24), a/c:F(s) =  0 for every face T  of V  with dim J 7 > 0 . ■
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3.3 Solid A ngle R eciprocity

We now introduce a measure of discrete volume:

A r{t)  ■= w^ ( m ) (3.26)
me Zd

where cjtp(m ) is the generalized solid angle measure a t m  €  Tfi n  tV  defined 

in (3.4). Our next theorem is a generalization of the solid angle analogue of 

M acdonald’s reciprocity, which states th a t

for rational convex polytopes [7], First, we define a generalized function for 

s 6 Cd by

We will show th a t A p (t,s )  is an entire function of t  which satisfies the reci

procity relation A v {—t,s )  = (—l ) AimV A v (t, — s). Furthermore, the  following 

proof extends M acdonald’s reciprocity to  real convex polytopes via A-p(t) — 

lim5_*0 A v (t,s).

T h e o re m  3.3 .1  (G e n e ra liz e d  M a c d o n a ld ’s R e c ip ro c ity ) . Suppose V  is

a real convex d-polytope in  Md. Then

(1) For t  € R and s 6 A-p(t, s ) satisfies

(2) Furthermore, i f  V  is a simple d-polytope, f e  1  and s € C d, then the 

analytic continuation o f A-p(t,s) to an entire function o f t  is given hy

A v (t) =  ( - 1  )dimVA v ( - t ) . (3.27)

(3.28)
m̂ .7A

A-p(—t , s ) — (—1 )dA-p(t, —s). (3.29)

A P (t,s )  = lim J ]
k v . . , m  ™  i j , _j_

v  a  vertex 
o f V

(3.30)
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Proof. Since solid angles are additive and we can assume a triangulation of a 

polytope, it suffices to prove this theorem for a real simplex V . We will use 

the fact th a t

Lutp(m ) =  lim (l tv  * f t ) (m), (3.31)
e—»0

for an appropriate choice of <pc with <pc(—x) — f e(x). Then we have

A v (t,s )  :=  u tv(m )e27ri<m’^  (3.32)

=  lim V  (1 tv  * 4>c) (m )e2™<m’s> (3.33)
€—*0 J

=  lim (1 tv  * 4>e)(m + s) (3.34)e—>0
m£z%d

— lim ifp (m  + s)4>e(m  + s). (3.35)f— ^

We used Poisson summation in the (3.34). Next, we use an extension of Brion’s 

theorem  for real polytopes due to  Barvinok [2] to  obtain

■ M M )  =  l i m £  J ]  itv+ > c(v )(m  +  s) 4>e(m  + s ). (3.36)
m e Z d I V a^vertex J

Brion’s theorem allows us to  write l tv  as the sum of Fourier-Laplace transforms 

over the tangent cones at the vertices of tV . Therefore, if v  +  /C(v) is the 

tangent cone at the vertex v  of V , where /C(v) is a simple cone with apex at 

the origin, then t(v  +  /C(v)) =  tv  +  lC(v) is the tangent cone a t the vertex tv  

of tV , since a cone whose apex is the origin does not change under dilation. 

Using the formula for the Fourier-Laplace transform  of a simple cone

( \
A P(t,s )  = l im j^

e—>0

^  | det/C(v)| exp(27rt(tv, m +  s )) 
va ( - 27Tt)dn i l ( w i (v),TO + s)

i vertex ,
\  of V  /

4>e{m + s ) (3.37)

:]im y '  |det/C (v)| V -  exp(27rtt( v, m  +  s))<j>e(m  +  s) 
va d n l i ( w j ( v ) , m  +  s)

vertex
o f V
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We note th a t the only place a t  appears in this last equation is in the exponent 

of an exponential. Hence, A-p(t,s) is an entire function of t, because we can 

differentiate inside the ^  sign due to  the “fast enough” convergence provided 

by <j>e. This proves part (2).

Now for the proof of part (1), we evaluate the analytic continuation of 

A p{t, s) a t —t  to  obtain

1 ( t  A -  lim V  l d e t / C ( v ) l  V  &2™{~t){v' m+s)M ™  + s) ,3 o9)
<-“ >J h, Ik,<w,<v),m + .) <3'39)

=  lim V  e7 IV' ,” >A ( - " + s) (3.40)
^ v a T ^ t e x  ( ~ 2 m ) “ £■ n j = l ( W i ( v ) , - n  +  s )

=  ( — l ) d lim W  | t o K ( v ) i ^

v t - 2 m )d ^  r r  ,/w ffv l n - s )v  a  vertex '  ' n€-rL d =  Jv  / ’ /ofP
-  ( - 1  )dA v { t - s ) .  (3.42)

We again used the fact th a t the lattice sum is invariant under the substitution

m  = —n  and th a t 4>e(—z) = <j)e(z), for all z  G Cd. ■

C o ro lla ry  3 .3 .2 . Suppose V  is a real convex d-polytope in with d odd. 

Then

A v ( 0,0) =  0.

Proof. By Theorem 3.3.1, we have

^> (0 ,0 ) =  (—l ) dA p(0 ,0) =  - ^ ( 0 , 0 ) .

■

We pause for a moment to  discuss the subtlety involved in computing 

A p (t)  using the previous theorem. We know th a t A-p(t) is an entire function 

of t  and in fact is a quasi-polynomial in t  when V  is a rational polytope
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[34]. The introduction of the complex param eter s  in A p (t, s ) prevents the 

denominators of i v+jc(v) from being zero. So one might wonder if A-p(t) = 

lims_>o^4p(^) s) even exists. It is Brion’s theorem th a t tells us th a t when we 

add up i v+ic(v)(m  +  s) a t every vertex v , magically all of the singularities in 

s € C d cancel.

To compute A-p(t) from (3.30), we write all of the rational functions on the 

right-hand side over one denominator and use L’Hopital’s rule to  compute the 

limit as s —* 0. The following example will illustrate this procedure.

E x a m p le  3 .3 .1 . Let V  be the triangle in M2 with vertices Vi =  (0,0), v 2 =  

(0,1) and v 3 =  (\/3 ,0 ).

v i =  (0,0)

Figure 3.1: The triangle V.

To calculate A-p(t), we use equation (3.30) in Theorem 3.3.1 and we begin by

evaluating the determ inant of the tangent cone at each vertex. We have

(  1 0 \| det/C (vi)| =  det [ 1 = 1 ,
\ 0  l )

| det /C(v2)| =  det ^  ^  ^  =  \/3 ,

and |de t/C (v3)| =  det f  J =  1.
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We also need to  evaluate

f)2'Rit(y) m + s)

i-t2 <3 « )

for each of the vertex cones JCVl,fCV2, and /CV3. Then (3.43) equals

\  _ e27rit(m2+S2)

(mi +  s i ) (m 2 + s2) ’ (m2 +  s2)(V ^ (m i  +  si) — m 2 — s2) ’
and

(mi +  s i) (y /3(m 1 +  s i) -  m 2 -  s2)

Thus

, for Vi, v 2, and v 3 respectively.

v  a  vertex F I? = 1  K  (V ) . m  +  S )
of V

~ °  ~ 4w2 ( m ^ e z *  V K  +  S l ) K  +  s2)
^ 2 e 27rit(m2+S2) g 27ritv/3 (m i+ s i)

+
(m 2 +  s2)(V 3 (m 1 +  si) -  m 2 -  s2) (m i +  s 1) ( \ /3 (m 1 +  si)  -  m 2 -  s2),

=  lim —(j-— V ]  <̂6(m +  s) • ^7 7 —7 ,
£—>0 —47T ^  J  Q(t,s)(mi,m2)eZ2

where

/ ( f ,  s) \/3 (m i +  Si) — rn2 — S 2  — \/3 (m i +  Si)e2mt m̂2+S2̂  q_ (m 2  q_ S2)e2jritv/3(mi+si)

<?(*>5) (mi +  Si)(m 2 +  52)(v/3(m i +  si) — m 2 — s2)

All th a t remains is to  use L’Hopital’s rule to  calculate

lim f M
*-*0 g (t,s )

In order to  take the derivative with respect to  s, we first let s = a ( x i ,x 2) for 

some fixed (aq, x 2) ^  0 and then take the derivative with respect to  cr. Since t 

appears in an exponential in the num erator, each iteration of L’H opital’s rule 

will produce a factor of t in the numerator. It is known th a t for a rational 

d-polytope, A-p(t) is a quasi-polynomial in t  of degree d. Therefore, in general, 

one must apply L ’Hopital’s rule d times for a d-polytope. Thus
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s ^ o g (t,s )  g (t,a )

=  Mm 4 ^ 4^ 0  g'(t, a) 
f" (t,c r )

=  lim
* -♦ 0  g"(t, a)

f" ( t ,  0) 
g " ( m

—6 'K2m 2x \ t 2e2mt'^ ‘mi +  27riy/3xiX2t(e2mt^ mi — e2mtm2) +  27r2\/3m i^2^2 

- x 2(27n2£i +  m i£ 2) +  \f2>xi(m2x 1 +  2m i£2)

where we used M athem atica in these last steps. We can now choose (£ 1 , 2:2 ) 

to  be any non-zero vector as long as the denominator is never zero. Therefore, 

we let (£1 , 2:2 ) =  (1,1) and we have

Ap(f) =  lim A p(t, s)

=  lim _ J _  V  ^ ( m ) - ^ M
e—>0 - 4 t t2 ^  g"(t, 0 )

(m p  ,7712)6^

=  E  « " * > '
( m i , m 2 ) 6 Z 2

-67T2rn2t2e2,ritv/5mi +  2 m V 3 t(e27rit̂ mi -  e2nitm2) +  27r2y/2>mxt2e2™tm2 
—2 m 2 — m i +  \^3(m 2 + 2 m 1)

W hen

& (s) =  e_ 5 exp 5 )^ =  e_1 exp (s2 +  s2)^  , (3.44)

it follows th a t

4 ( m l ) m 2) =  W 2 exp (— 7T6 (m 2 +  7772))  . (3.45)

Since 4>e(m i ,m 2) provides absolute convergence, we can break up the  series for 

A-p(t) and use equation (3.45) to  obtain the following:

g27TZtm2
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A v (t) — t2
,27T«tm2

(mi,m2)GZ2

27r*\/3(e2?ritv/5mi — g27r*im2)g-7re(mi+m2)

—2rri2 — mi + 1/3(1712 +  2mi)

In the previous example, we note th a t Ap(0) =  0 and the dimension, d =  2, 

is even. This leads to  the following conjecture:

C o n je c tu re  1. Suppose V  is a real convex d-polytope for any dimension d.

3.4 The G enerating Function of Ap{t)

We conclude this final chapter with an extension of an identity for the solid- 

angle series of a d-polytope V , defined by

solid-p(^) :=  A pfyz* .
t> 0

This series encodes the solid-angle sum over all dilates of V  simultaneously 

and the identity we wish to  extend is the following [7]:

T h e o re m  3 .4 .1 . Suppose V  is an integral d-polytope. Then

To extend this theorem to real simple polytopes, we first generalize our defi

nition of solid-p with the param eter s =  (s 1 , . . . ,  s,*, s^+i) G C d+1:

Then

A v (0,0) -  0.

S o lidus) :=  5 i , . . . ,  S d ) e 2vitSd+1.
t> 0
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By theorem 3.3.1, if V  is a simple polytope, then 

Solid v {s) = Y , M t , s i , - - - , S d ) e 2*its^
t >  0

-  ( - 1  - S i , , - s d)e2*its^
t> o

(-^Ess E E| det/C(v)| ^  e2™( *)<v,m s")> 4>e(m  -  5) ^ itSd+1

t >  o 'e^ ° v a ^ t e x ( “ 2 7 r i ) d I l J = l ( W j ( V ) > m - S )
of V

where s = ( s i , . . . ,  sd) G C d. The presence of <f>t in the inner-most sum ensures 

uniform convergence and allows us to  bring the sum over t  inside. The resulting 

equation is

Solidp(s) =  ^  l ( ™  -  D

of V

Theorem 9.2 in [7] gives us the identity “Y ^ te z ^  ~  ^ ie rational function

level. We use this identity to  rewrite the inner sum Y t <o m~s)+2m(~t)sd+ 1

as —1 times the same sum over t  > 1 to  obtain

E l d p f - r V v l l  „__ . W  e 27Tit(v, m - s ) + 2 K i ( - t ) s i+1 A  ( m  -  s \|deUC(v)| y .  2 ^ i f  ---------------------- < P ^n _ fL

~ “ v a vertex (~ 2%*) meZd IIj= l (Wi C'O, Tfl s)
o f V

( - l ^ T K m  V  |d e t/c (v )l V
t>l e_>0 v a vertex (~ 2™ ^ meZd IlJ=l (Wi(V)i m  ~  S)

of V

= ( - l ) <i+1Solid7o ( -s )  +  ( - 1 ) % ,( 0 ,  - s ) .

We have just shown the following:

T h e o re m  3.4 .2 . Suppose V  is a simple d-polytope. Then Solidp satisfies the 

identity

SolidP ( s i , . . . ,  sd+1) = (—l) d+1Solidp(—s i , . . . ,  - s d+i ) + ( - l ) d^ ( 0 ,  - s 1;. . . ,  - s d).
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APPENDIX A

We recall here some well known, and some not-so-well known facts about 

Harmonic Analysis.

F a c t 1.

^ P,yc(x) =  lim (1^ * f f )  (x), fo r  all x  € Md.

F a c t 2. ( /  * g){x)  =  f (x)g(x) .

F a c t 3. I f  f ( l )  = 1 rV{l +  x)e~2n«’ »>, ihen / (m )  =  +  iy)e~27rî  m+iyK

Proof.

/ ( to )  -  [  l rV(u + x)e~2<u' ^ e 2̂ u' mU u
J «.d

= [  l rV{u + x )e 2̂ u' m+iyUu
JRd

=  e~2™{x' m+iy) [  1 r-p(w)e2™{w' m+iy)dw
J  Rd

=  e - 2™{x' m+iy)i rV{m + iy).

■
F a c t 4. (Continuous Brion Theorem)

Suppose V  is a simple rational convex d-polytope. For a vertex cone K y o f V ,  

fix  a set o f generators w / v ) ,  . . . , wj(v) S rL d. Then

[  exp(x - z)rfx =  (—l)rf TA n L , ( w * ( v ) . z )
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F a c t 5. Let g{x) =  / ( f ) .  Then g(x)  =  \e\df (ex) .

F a c t 6. Given a sublattice L o f X d, say L =  M T7Ld,

S F (n ) =  i d i o ? i  Z  E  •
n £  L 1 1 g e Z d/ M Z d l e Z d

Proof. The lemma is equivalent to  the statem ent th a t the “delta function” for 

the sublattice M T7Ld of 7Ld is:

1 1 g e Z d/ M Z d

since zd ^ ( n ) =  Y^ieV  T \0 1 l(0 -  This statem ent follows from the 
orthogonality relations for the character g i-> e2m{bM-1g) on ^ g  abelian 

group Z d/ M Z d. T hat is, in one direction, if I E L =  M TZ d, then  M ~ Tl € Zd 
and so ( l , M ~ xg) = (M ~ Tl ,g ) € Z, so th a t e2m(bM~1g) _   ̂ ancj we ]jave

^MTZd(0  =  1—i 5TT7 ^  f  ^  TU 7TT ' I d e t if f  I =  1.M & w  I det M I ^  |d e tM | 1

In the other direction, if M Tl ^  Z d, then  g i—> e2m(bM~1g) gjves a non-trivial

character, and hence Ylg£Zd/MZd =  0, by the orthogonality of char

acters on the finite abelian group Z d/ M Z d. ■

F a c t 7. For Re{s) >  0, a  G M, and r  £ H , the complex upper half plane:

i f p r  + m y  r (s )

F a c t 8.

Suppose that F(x)  — ane27tmx and G(x)  = bne2mnx converge absolutely
n£Z n6Z

fo r  all i e R .  Then ^ a n6„e“ =  [  F (x  — t)G (t)dt.
J  0
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Proof.

J  F (x  — t)G (t)d t = J  j  |  ^ b me2iximt J dt
^ ^ \ n £  Z  /  \m G Z  /

^  an6me2̂ [n^ “t)+m£]dt
nGZ 
mGZ

= J2anbme27rinX f  e2™t(m~n)dt
ne z
raGZ

=  V a  i) „2 r i nx  e/  y um c  un m
?l€Z 
m €Z

^   ̂Q'nbn

fh

Jl'n in x
T c

Fact 9.

For x e  R and 0 <  i <  1, {x -  f} =  {  ^  4 ^  * ~  ^  .
[ {x} — t  +  1 */ t >  {x}

Proof. We note th a t 0 <  {x} <  1 for all x 6  M. The key to  this proof is the 

following identity:

|_xj =  x — {x}, for all x e R ,  (A .l)

where |_xj is the greatest integer <  x. l i t  < {x}, then j_xj =  |_ x - t) . Thus, by 

(A .l), we have x — {x} =  x — t  — {x — t}, which implies th a t {x — t}  =  {x} — t. 

Now if t > {x}, it follows th a t |x j =  [x -  t\ +  1. Then (A .l) gives us 

x -  {x} =  x — t  — {x — t}  +  1, which implies th a t {x — t}  =  {x} — t  +  1. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


