Complex Analysis Ph.D. Qualifying Exam

Temple University January, 2014

- Justify your answers thoroughly.
- Notation: \mathbb{C} denotes the set of complex numbers. For each $z_o \in \mathbb{C}$ and r > 0 the open ball in \mathbb{C} with center z_o and radius r is denoted by $B(z_o, r)$. If $E \subseteq \mathbb{C}$ then \overline{E} stands for the closure of the set E in \mathbb{C} .
- For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part I. (Do 3 problems):

I.1. Consider the curve γ given by $\gamma(t) := 1 + e^{it}$, for $0 \le t \le 2\pi$. For each positive integer n evaluate

$$\int_{\gamma} \left(\frac{z}{z-1}\right)^n dz.$$

I.2. Let $f : \mathbb{C} \setminus \{0, 1, 2\} \longrightarrow \mathbb{C}$ be given by $f(z) := \frac{1}{z(z-1)(z-2)}$. Give the Laurent expansion of f in each of the following annuli:

- (a) $A = \{z \in \mathbb{C} : 0 < |z| < 1\}$ (b) $B = \{z \in \mathbb{C} : 1 < |z| < 2\}$ (c) $C = \{z \in \mathbb{C} : 2 < |z|\}.$
- **I.3.** Let $f: B(0,2) \longrightarrow \mathbb{C}$ be an analytic function. Show that

$$\max_{|z|=1} \left| \frac{1}{z} - f(z) \right| \ge 1.$$

I.4. Suppose that the function $u : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is harmonic and that there exist $a, b \in \mathbb{R}$, a < b with $u(x, y) \notin (a, b)$ for each $(x, y) \in \mathbb{R}^2$. Show that u is constant.

Part II. (Do 2 problems):

II.1. Let $\Omega := \{z \in \mathbb{C} : |\operatorname{Re} z| < 1 \text{ and } |\operatorname{Im} z| < 1\}$ and consider the function $f : \overline{\Omega} \to \mathbb{C}$ continuous on $\overline{\Omega}$, analytic in Ω , and with the property that f(z) = 0 when $\operatorname{Re} z = 1$. Prove that f is identically zero in Ω .

II.2. Let G be an open and connected set in the complex plane and suppose that $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of analytic functions defined on G which converges uniformly on G to a function $f: G \to \mathbb{C}$. Show that f is an analytic function.

II.3. Let r > 0 and consider an analytic function $f : B(0, r) \longrightarrow \mathbb{C}$ such that f(0) = 0 and there exists $A \in \mathbb{R}$, A > 0, with the property that $\operatorname{Re} f(z) < A$ for each $z \in B(0, r)$. Show that

$$|f(z)| \le \frac{2A|z|}{r-|z|} \qquad \forall z \in B(0,r).$$