Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

January, 2007

Part I: Do three of the following problems

1. Show that the function $u(x, y) = \log(x^2 + y^2)$ is harmonic in $\mathbb{C} \setminus \{0\}$ but that it has no harmonic conjugate in $\mathbb{C} \setminus \{0\}$.

2. Let f(z) be an entire function that satisfies $\int_0^{2\pi} |f(re^{i\theta})| d\theta \le r^{17/3}$ for all $r \ge 0$. Prove that $f(z) \equiv 0$.

3. Let f(t) be a continuous real-valued function on the interval [0,1]. Set $h(z) = \int_0^1 f(t) \cos(zt) dt$.

- (a) Prove that h(z) is an entire function.
- (b) Prove that if $h(z) \equiv 0$, then $f(t) \equiv 0$.
- 4. Evaluate $\int_0^\infty \frac{x \sin x}{x^3} dx$.

Part II: Do two of the following problems

1. Let U and V be two open connected subsets of \mathbb{C} and let $f: U \to V$ be an analytic function on U. Suppose that for any $K \subset V$ compact $f^{-1}(K)$ is compact. Show that f(U) = V.

2. Suppose f(z) is analytic on the right half-plane $H = \{z : \operatorname{Re}(z) > 0\}$ and satisfies $|f(z)| \leq 1$ for all $z \in H$, f(1) = 0. Find the largest possible value of |f'(1)| and determine all functions f(z) for which |f'(1)| is the largest possible.

3. Let $a \in \mathbb{C}$ and let $\epsilon > 0$. Show that $f(z) = \sin z + \frac{1}{z-a}$ has infinitely many zeros in the strip $|\text{Im}(z)| < \epsilon$.