PH.D. COMPREHENSIVE EXAMINATION COMPLEX ANALYSIS SECTION

January, 2006

Part I. Do three (3) of these problems.

I.1. Find a conformal one-to-one map of the half disc $\{z : |z| < 2, \text{Re } z < 0\}$ onto the unit disc $U = \{z : |z| < 1\}$.

I.2. Let f(z) = u(z) + iv(z) be analytic in the unit disc $U = \{z : |z| < 1\}$, u and v real. Show that if $u(0)^2 = v(0)^2$, then

$$\int_{0}^{2\pi} u (r e^{i\theta})^2 \, d\theta = \int_{0}^{2\pi} v (r e^{i\theta})^2 \, d\theta \quad \text{for} \quad 0 < r < 1.$$

I.3. Let $f : [a, b] \longrightarrow \mathbb{C}$ be continuous (a < b). Let g be defined by

$$g(z) = \int_a^b \frac{f(t)}{z-t} \, dt.$$

Prove that g is analytic in $\mathbb{C} \swarrow [a, b]$.

I.4. Suppose f is meromorphic on \mathbb{C} and there exist K, k, R > 0 such that $|f(z)| < K|z|^k$ if |z| > R. Prove that f is a rational function.

JANUARY, 2006

Part II. Do two (2) of these problems.

II.1.

 $\mathbf{2}$

100

- (a) Let U = the unit disc. Suppose f(z) is analytic in U, continuous on \overline{U} and real-valued on ∂U . Prove that f is constant.
- (b) If f(z) is as in (a), except that f(z) is assumed real-valued only on the arc $\gamma = \{e^{i\theta}: 0 < \theta < \frac{\pi}{10}\}$, what can we conclude? Explain.

II.2. Let f be analytic in the region |z| > 1. Prove that if f is real-valued on $(1, \infty)$, then it is also real-valued on $(-\infty, -1)$.

II.3. Let $\{f_n\}$ be a sequence of analytic functions on a region G that converges uniformly on G. If K is a compact subset of G, prove that the sequence of derivatives $\{f'_n\}$ converges uniformly on K.