Ph.D. Comprehensive Examination Complex Analysis Section January 2002

Part I. Do three (3) of these problems.

I.1. Let

$$D = \{z = x + iy: x^2 + y^2 < 1 \text{ and } x^2 - x + y^2 > 0\}$$

Find a conformal mapping from D to the open unit disc. Hint: start with a Möbius transformation that takes 1 to ∞ .

I.2. Show that for any 0 < a < 1

$$\int_0^\infty \frac{x^a}{x(1+x)} dx = \frac{\pi}{\sin(\pi a)}.$$

Be sure to justify your answer carefully.

I.3. Suppose f is meromorphic on \mathbb{C} and there are positive numbers C, k and R such that $|f(z)| < C|z|^k$ if |z| > R. Show that f is rational.

I.4. Let $D = \{z : 0 < \arg z < \pi/2\}$. Find a function u which is continuous on $\overline{D} \setminus \{0\}$, harmonic in D, and satisfies u(x, 0) = 1 for x > 0 and u(0, y) = 0 for y > 0.

Part II. Do two (2) of these problems.

II.1. Suppose f(z) is analytic on the punctured unit disc $\{z : 0 < |z| < 1\}$ except for a sequence of poles z_n that converges to 0. Show that for any $\varepsilon > 0$, $f(\{z : 0 < |z| < \varepsilon\})$ is everywhere dense in \mathbb{C} .

II.2. Let f(z) be an entire function. Suppose there exist M > 0 and a sequence $\{R_n\}$ of positive numbers tending to ∞ with $f(z) \neq 0$ on $|z| = R_n$, such that

$$\oint_{|z|=R_n} \left| \frac{f'(z)}{f(z)} \right| |dz| < M \quad \text{for all } n.$$

Show that f(z) is a polynomial.

II.3. Suppose f is holomorphic in the unit disk D and continuous on \overline{D} and thus

$$f(z) = \sum_{n=0}^{\infty} c_n z^n, \quad z \in D.$$

Show that if f has exactly m zeroes counted with multiplicity in D, then

$$\min\{|f(z)|: |z|=1\} \le |c_0| + |c_1| + \dots + |c_m|.$$