Ph.D. Comprehensive Examination Complex Analysis August 2015

Part I. Do three of these problems.

I.1 Let $D \subset \mathbb{C}$ be an open nonempty connected set and consider $h : D \longrightarrow \mathbb{C}$ a holomorphic function satisfying

$$(h(z))^2 = \overline{h(z)} \quad \forall z \in D.$$

- (a) Show that the function h is constant on D.
- (b) Find all possible values for the function h satisfying the above property.

I.2 Consider the function $u : \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$ given by $u(x,y) := \ln(x^2 + y^2)$ for each $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$

- (a) Show that u is harmonic in $\mathbb{R}^2 \setminus \{(0,0)\}$.
- (b) Show that there is no holomorphic function $f : \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$ such that

$$u(x,y) = \operatorname{Re} f(x+iy) \text{ for all } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

I.3 Consider the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ given by $f(z) := e^{z^2} - 4z^2$ for each $z \in \mathbb{C}$. Determine the number of zeroes (counted with multiplicities) of f in the unit disk.

I.4 Let f be an entire function such that $|f(z)| \ge |z|^k$ with $k \ge 1$ when |z| is large enough. Show that f is a polynomial of degree at least k.

Part II. Do two of these problems.

II.1 Let $D = \{z \in \mathbb{C} : |z| < 1\}$ and $K \subset D$ a compact subset. Suppose that $f : D \setminus K \to \mathbb{C}$ is holomorphic and that there is a sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that $p_n \to f$ as $n \to \infty$ uniformly on compact subsets of $D \setminus K$. Show that there exists a holomorphic function $g : D \to \mathbb{C}$ such that f = g on $D \setminus K$.

II.2 Let $G \subset \mathbb{C}$ be an open set, let $\{h_n\}_{n=1}^{\infty}$ be a uniformly bounded sequence of harmonic functions $h_n : G \to \mathbb{R}$, for each $n \in \mathbb{N}$, which is pointwise increasing.

- a) Show that the pointwise defined limit function $h: G \to \mathbb{R}$ given by $h(z) = \lim_{n \to \infty} h_n(z)$ for each $z \in G$ is continuous.
- b) Show that in fact h is harmonic in G.

Hint. The mean value theorem for harmonic functions and Harnack's inequality (if $u \ge 0$ is harmonic in a neighborhood of the closure of the disc B(a, R), then $(R - r)u(a)/(R + r) \le u(a + re^{i\theta}) \le (R + r)u(a)/(R - r)$ for $0 \le r < R$ and $\theta \in \mathbb{R}$) may be of use.

II.3 Let $D = \{z \in \mathbb{C} : |z| < 1\}$ and suppose that the function f is defined and continuous in $A = D \cap \{z : \operatorname{Im}(z) \ge 0\}$, holomorphic in $D \cap \{z : \operatorname{Im}(z) > 0\}$, real-valued on I = (-1, 1). Suppose there is a sequence $\{x_n\}_{n=1}^{\infty} \subset I$ of distinct points tending to 0 with $f(x_n) - x_n^2 = 0$. Show that $f(z) = z^2$ in A.

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem. For each $z_o \in \mathbb{C}$ and r > 0, the open ball in \mathbb{C} with center z_o and radius r is denoted by $B(z_o, r)$.