Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

August, 2008

Part I: Do three of the following problems

1. Let U(x, y) be a harmonic function on \mathbb{C} . Suppose u(x, y) is harmonic on \mathbb{C} , and let v(x, y) be its harmonic conjugate. Show that U(u(x, y), v(x, y)) is harmonic.

2. Find a bijective holomorphic mapping that maps the set $\{z \in \mathbb{C} : |z| < 1, Im(z) > 0\}$ onto the open unit disk.

3. Let C be a simple closed contour (C has counterclockwise orientation) enclosing the points 0, 1, ..., k in the complex plane, where k is a positive integer. Let

$$I_{k} = \int_{C} \frac{1}{z(z-1)\dots(z-k)} dz \text{ and } J_{k} = \int_{C} \frac{(z-1)\dots(z-k)}{z} dz$$

Show that $J_k = 2\pi i (-1)^k k!$ and that $I_k = 0$. Hint: to show that $I_k = 0$ replace C by a circle |z| = R for R sufficiently large (be sure to explain why this does not affect the value of the integral) and let R go to ∞ .

4. Let f(z) be an analytic function from the open unit disk to itself. Suppose that f(1/2) = 0. Use Schwarz's lemma to prove that $|f(0)| \le 1/2$ and $|f'(1/2)| \le 4/3$.

Part II: Do two of the following problems

1. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose f maps every unbounded sequence to an unbounded sequence. Prove that f is a polynomial.

2. (a) Let $\{f_n(z)\}, f_n(z) = \sum_{k=0}^{\infty} a_{kn} z^k$, be a sequence of analytic functions on the open unit disk D. Suppose $\{f_n(z)\}$ converges to a function f(z) in D; moreover, suppose that the convergence is uniform on every set $\{z \in D : |z| \le r\}$, where r < 1. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$. Show that for every $k \ge 0$, $\lim_{n \to \infty} a_{kn} = a_k$.

(b) Conversely, suppose $\{f_n(z)\}$, $f_n(z) = \sum_{k=0}^{\infty} a_{kn} z^k$ is a sequence of analytic functions on the open unit disk D. Suppose that for every $k \ge 0 \lim_{n \to \infty} a_{kn}$ exists and equals a_k . Suppose further that there exists M > 0 such that $|f_n(z)| \le M$ for every $n \ge 1$ and every $z \in D$. Show that $\{f_n(z)\}$ converges to $f(z) = \sum_{k=0}^{\infty} a_k z^k$ in D and that the convergence is uniform on every set $\{z \in D : |z| \le r\}$, where r < 1.

3. Compute

$$S(L)(\omega,\xi,h) = \int_0^\infty L(\omega,u+ih)\sin(u\xi)du,$$

where h > 0, $\omega > 0$, $\xi > 0$ and

$$L(\omega,q) = \frac{1}{\omega+q} + \frac{1}{\overline{q}-\omega}$$