Ph.D. Comprehensive Examination in Complex Analysis Department of Mathematics, Temple University

August, 2007

Part I: Do three of the following problems

1. Show that the function $u(x, y) = \log(x^2 + y^2)$ is harmonic in $\mathbb{C} \setminus \{0\}$ but that it has no harmonic conjugate in $\mathbb{C} \setminus \{0\}$.

2. Let f(z) be an entire function.

(a) Suppose $\int_{0}^{2\pi} |f(re^{i\theta})| d\theta \leq r^{17/3}$ for all r sufficiently large. Prove that f(z) is a polynomial of degree at most 5.

(b) Suppose that $\int_0^{2\pi} |f(re^{i\theta})| d\theta \le r^{17/3}$ for all $r \ge 0$. Prove that $f(z) \equiv 0$.

3. Let f(t) be a continuous real-valued function on the interval [0,1]. Set $h(z) = \int_0^1 f(t)e^{zt} dt$.

(a) Prove that h(z) is an entire function.

(b) Let
$$h(z) = \sum_{n=0}^{\infty} a_n z^n$$
. Show that $a_n = \frac{1}{n!} \int_0^1 f(t) t^n dt$.

- (c) Prove that if $h(z) \equiv 0$, then $f(t) \equiv 0$.
- 4. Evaluate $\int_0^\infty \frac{x \sin x}{x^3} dx$.

Part II: Do two of the following problems

1. Let U and V be two open connected subsets of \mathbb{C} and let $f : U \to V$ be an analytic nonconstant function on U. Suppose that for any $K \subset V$ compact $f^{-1}(K)$ is compact. Show that f(U) = V.

2. Suppose f(z) is analytic on the right half-plane $H = \{z : \operatorname{Re}(z) > 0\}$ and satisfies $|f(z)| \leq 1$ for all $z \in H$, f(1) = 0. Find the largest possible value of |f'(1)| and determine all functions f(z) for which |f'(1)| is the largest possible.

3. (a) Let f(z) be analytic in a region G that contains the closed ball $\overline{B}(0, R)$. Let $f_n(z)$ be a sequence of analytic functions on G that converges uniformly to f(z). Suppose further that $f(z) \neq 0$ for any z with |z| = R. Show that for all n sufficiently large $f_n(z)$ has the same number of zeros in the open ball B(0, R) as f(z).

(b) Determine with proof the number of zeros of $\sum_{n=0}^{N} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$ in the open ball $B(0, 5\pi/2)$ for all N sufficiently large.