PH.D. COMPREHENSIVE EXAMINATION COMPLEX ANALYSIS SECTION

Fall 1995

Part I. Do three (3) of these problems.

I.1. Show that if u(x, y) + iv(x, y) is an analytic function with non-vanishing derivative in a region R, then, for any constants c_1 and c_2 , the curves $u(x, y) = c_1$ and $v(x, y) = c_2$ are orthogonal in R (at the points of their intersection).

I.2. If -1 < a < 1, compute

$$\int_0^\infty \frac{x^a}{1+x^2} dx$$

using residues.

I.3. Give a conformal (i.e., biholomorphic) map of $\mathbb{C} \setminus [1, \infty)$ onto the open unit disc.

I.4. Suppose f(z) is holomorphic in $\mathbb{C} \setminus \{0\}$ and satisfies

$$|f(z)| \le |z|^2 + \frac{1}{|z|^2}$$
 for $z \ne 0$.

If f(z) is an odd function, what form must it have?

Part II. Do two (2) of these problems.

II.1. Suppose f(z) is meromorphic in all of \mathbb{C} and bounded on $\{z : |z| > R\}$ for some R > 0. Prove that f(z) is rational.

II.2. Suppose f is analytic on a neighborhood of the closed unit disc \overline{D} and one-to-one on the unit circle ∂D . Show that f is one-to-one on \overline{D} .

II.3. Show that there is no one-to-one analytic function which maps $A = \{z : 0 < |z| < 1\}$ onto $B = \{z : 1 < |z| < 2\}$.