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A B S T R A C T

PROBABILITY AND MATHEMATICAL FINANCE

PART I: LONG RANGE SELF-AVOIDING WALKS ABOVE 
CRITICAL DIMENSION 

PART II: FIN ITE HORIZON OPTIMAL INVESTMENT AND 
CONSUMPTION WITH TRANSACTION COST

Yun Cheng 
DOCTOR OF PHILOSOPHY

Temple University, August, 2000

Professor Wei-Shih Yang, Chair

The subject of this thesis work consists of two parts. Part I is in the area 
of probability, where I obtained the limiting distribution of long range self- 
avoiding random walks above critical dimension. Part II is in the area of m ath
ematical finance, where regularity and free boundary results were obtained on 
the finite horizon optim al investment and consumption with transaction cost.
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C H A PTER  1 

INTRO DUCTIO N

A self-avoiding walk is a path on Z d lattice th a t does not visit the same 
site more than once. The model originated in chemistry several decades ago 

as a model for long-chain polymer molecules. Since then it has become an 
important model in statistical physics, as it exhibits critical behavior analogous 
to that occurring in the Ising model and related systems as percolation.

In spite of its simple definition, many of the questions about the self- 
avoiding walks are difficult to resolve as it does not respond well to standard 
probabilistic methods. Computer simulations have played an important role 
in the development of the theory by providing computational conjectures. The 
lace expansion is by far the only theoretical method th a t has led to rigorous 
results such as existence of critical exponents and mean field behavior.

The lace expansion was first introduced by Brydges and Spencer [1], who 
used it to study weakly self-avoiding walk when the dimension is above the 
critical dimension. I t was then developed (among others) by Slade [29], Hara 
and Slade [15], [16]to study the strictly self-avoiding walks, also under the 
assumption tha t the  dimension is above the critical dimension.

At the heart of the  lace expansion method are two components. One is a 
convolution equation in which the two point function involves with the per
turbation function. The other is the Feynman diagram scheme which provides 
estimates on the perturbation function. To apply the lace expansion method,
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one needs the help of some assumptions on the model so that the two point 
functions could be shown to converge to their simple random walk counter
parts.

My thesis concerns the limiting distributions of long range self-avoiding 
random walks. We call a random walk long range if each step of the walk 
has infinite range. In this situation, Yang and Klein [30] has shown that if 
the one-step walk follows the discrete Cauchy distribution, the weakly self- 
avoiding walk will follow the standard Cauchy distribution, when the lattice 

dimension is above the critical dimension 2. The difference between my work 
and [30] is tha t I consider the strictly self-avoiding walks, while [30] considers 

weakly self-avoiding walks.
In chapter 2, I will give a self-contained formulation of the lace expansion 

theory, with enough detail for our long range random walk study.
In chapter 3, I consider the self-avoiding long range random walk in high 

dimension. We show th a t if the one-step distribution follows the discrete 

Cauchy distribution, the limiting distribution will follow the classical Cauchy 
distribution.

In chapter 4, I consider the case in which the dimension d  =  3, and assume 
the random walk follows the spread-out discrete Cauchy distribution. We show 

that in this case the limiting distribution is still the Cauchy distribution.
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CH APTER 2

THE LACE EXPANSIO N

2.1 The Brydges-Spencer Theorem

Let X i,  X 2 , ... be independent identically distributed random  variables on 
lattice Z d, and W (T ) =  AT, be its finite sum. We define

where Ust(v) =  —1 if ^ (s)  =  w(t) and Ust{ui) =  0  otherwise.
Clearly K T[a, 6](a;) =  1 if the random walk (w(s) : a < s < b) is self- 

avoiding within memory r ;  K r [a,b]{u>) =  0 if the random  walk is not self- 
avoiding. Also, r  =  0 corresponds to simple random walk, as in this situation 
the set B[a, 6] =  0 .

We call the elements of B[a, 6] edges, and subsets of B[a, 6] graphs.
A graph G C BT[a, 6] is called a connected graph if  it satisfies the following:

1 . For each integer m  €  (a, b), there exists st G G  such th a t m  €  (s, t).

2. There exist bonds in G that connect to a and b respectively.

By convention, a  single point tha t does not connect to  any other points is also 
a connected graph.

Br [a, b] = {st : s < t, |s — t\ < r , s , t £  [a, 6]}, 

K r[a,b](cj) =  (1 -f- Ust(u)), K T[a, a] =  1,

(2 .1)

(2 .2)
s t e S r [a,6]
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A lace graph is by definition a minimally connected graph. We will use 
C¥[a, 6] to denote those laces on [a, 6] tha t have exactly N  edges and that 
each of the edges has its length no larger than r .

Given a connected graph G  on [a, 6], the following is a  standard procedure 
to find the representative lace C{G) corresponding to  G:

1 . Find the first edge s iti: set si = a and let 11 =  max(f : Sit € G).

2. Assume we have already found edges Si£i, s2£2, We choose edge 
sn+itn+i by setting £n+i =  max(£ : st  G G ,s  < tn), and sn+i =  min(s : 
stn G G).

3. Continue the process in 2 until £n+1 =  b.

Figure 2.1 is the illustration of the lace N  =  3. We note tha t Si < s2 <

t\ < S3 < £2 <  t3 and it is possible that ti =  s3.

Si s2 £1 S3 £2 £3

Figure 2.1: Lace Structure for N  — 3

Two connected graphs G\, G2 C BT[a, 6] are said to be compatible with each 
other iff C{G\) =  £ (G 2). Clearly, the compatible relation among connected 
graphs in BT[a, 6] is an equivalent relation.

The lace graphs acts as the ’skeleton’ in their equivalent classes. This fact 
will help us categorize the terms in K r[a,b], as is seen in the following.

For a fixed lace graph L  C BT[a, 6], let

G(L)  =  U{G : G  C Br [a, 6], C{G) = L}.

It is easy to verify th a t G(L) is still a connected graph on BT[a, b] and is
compatible with L. Let us denote C{L) =  G (L ) \  L, then

y i n ^ . = n u« n  (!+u«)- ^
{G-.C{G)=L} s t e G  i t€ L  steC(L)
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We now introduce the following’’perturbation” term JT:

J " M ]  =  Y .  I l 17"  I I  <1 + £ /«), (2.4)
LeC?[ayb]steL 3teC(L) 

oc

J r [a, 6] =  J?[a, 6], (2.5)
N =  1

then clearly we have

Jr[a,b}= Y .  (2-6)
G connected on [a,b] steG 

P rop osition  2.1 F o rT  > 1 , we have
T

K t[0,T] =  K r[l,T\ + Y  M 0 J ] K tU,T). (2.7)
3=1

Proof:

From the definition of K t[0,T], we know

A-r [o ,r] =  (2-8)
G st£G

where the summation index G runs through all the graphs of BT[a,b\.
Given a graph G (which is not necessarily connected), we denote its first 

connected component by G\. Then

kt[o,t \ = v  n  n  u«'
Gi st£Gi G s££Cj\C7i

where Gi runs through all connected graphs starting at 0, and G runs through 
all graphs tha t has G i as its first component.

Now we can categorize G\ according to its lace representative and use 
(2.3)-(2.6) to get

Kr[0,T] =  £ { £  £  Y [ U , t n  (1 +  U,t)}Kr y ,T ]
j=o v=i Lec?[oj] steL iteec(L)

T

= ^ ,Jr[0 ,3 \K r\3 ,T }
3=  0

T

=  JV,[1, T] + Y ,  M 0,i)K rU , T ).
3 = 1
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Q.E.D.

The following definitions will be of fundamental importance.
For x  <E Z d, we denote

N t (x, T)  =  E (K T[0, T}I{Wt=x)) Nt (x, 0) =  50,* (2.9)

N - { k ,T ) =  exp{t'A: • x }N T(x . T ), k 6  [—7r, 7r]d. (2.10)
x € Z d

For 2 6  C, the so called two point function is defined by
OO

N t {x,z) = J 2 E ( K r [0 ,T]I{Wt=x))zt  . (2.11)
T = 0

The Fourier-Laplace transformation of N t ( x , T ) is given by

N T(k , z) =  exp{iA: • x}-/VT(x, z)zT, k  6  [—tt, 7r]d. (2-12)
x € Z d

For r  =  0, No(k, z) can be computed explicitly.
OO

N0(k, z) =  E E  exp{ik ■ x } E { I (w(t)=x)}zt  
t = 0 X£ Z d

r=o
1 (2.13)

1 -  zD(k)

where D(k) = ^Zy€Z<texp{ik ■ y }E {I{wl=zy)) for k € [-7r,7r]d.
We denote the convergence radius of N T(k,z)  by rT(k). It is easy to see 

rT(k) > rT(0 ) >  r 0 (0 ) =  1 .
Note tha t from (2.9) to (2.12), we use the same N  to denote different 

functions. They are distinguished from each other by their arguments. We 
will also denote the Fourier transform of a function N  by N .

Similar to the above definitions, let us define the Laplace and Fourier- 
Laplace transformation on JT:

n ? (* ,* )  =  < - i) 'v f ; s ( . / rw[ o , : r ] w )=I))z1', (2 .1 4 )
T= 1

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



7

OO

nr(*,z) = (2.15)

flT(k, z) ~  y  exp{ik  - i}FTr (x, z). (2.16)
i  ezd

From (2.7), we have J r [0,T] <  K t[0,T]. Thus the convergence radius of 
n r (A; =  0,z)  is no less than  r T(0). We will see in our application problems 
that the former is actually strictly bigger than the latter.

T h e o re m  2.1 (Brydges and Spencer)
For any z such that I lT(fc =  0 ,2 ) and NT{x,z) converges absolutely, we

have

iVT(x, 2 ) =  J0,1 +  ^ J Z  Nt(x ~  y’ z )E (h^i=y))
yezd

(2.17)

1 — zD(k) — ilT(k, 2 )
(2.18)
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Proof: For T  > 1 , by (2.7) we have

OO

N T(x,z)  =  6ojX + ' 5 2 E ( K t[0,T]I{Wt=x))zt
T =  1

oo T

=  5o,x +  Y ,  E i i K r[^ T } + Y 1  M 0 J \K r [ j ,  T]}I(Wt=x)}z7
T = 1  j  =  l

oo

—  £ o , x  +  2  W l = y , W T = x ) ) z T  1

y € Z d T =  1 

oo T

+  £  ' E E {J2 J[0 .3V (» j= »)K \j 'T )ro>rT~)}zT
v e z d t = i  j = i

=  So,x + z ^ 2  N t (x  ~~ y ' z )E (hwi= y)) 
ye zd

- E E E
„€ZdT=l J = I

=  ^o,x "f* z  ^   ̂ N t {x y, z)E[I(\vl=y)) 
y e z d

4- ^ 2  n r ( v ,  z ) N t ( x  -  V , z ) .  (2.19)
v € Z d

In the above reasoning, the penultimate equality came from the independent 
increment property of the random walk.

Taking Fourier transform on both sides of (2.18), we have

Nr (k, z) = l  + N r (k , z)D (k)z  + flT(k t z )N r {k, z). (2.20)

This leads to (2.18).
Q.E.D.

By comparing (2.18) and (2.13) we observe tha t !%-(&, z) characterizes how 
self-avoiding walk deviates from the simple random walk. If the self-avoiding 
walk is very close to the simple random walk, then we expect t l r {k,z)  to be 
very small.
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2.2 The Feynman Diagram

In order to estim ate t iT{k,z),  we need an efficient way of computing the 
Jr[a, 6] as defined in (2.4). Feynman diagram provides us the right tool in 

this aspect.
We observe th a t for a fixed L € Cjf[a, 6], in order tha t a random walk u  

contribute to the summation in the definition of J^v [a, 6], it must satisfy the 
following:

cj(s) =  cu(£), for all st 6  L\ u(s) ^  u/(t), for all st £  C(L). (2.21)

A careful examination of the lace structure as in Figure 2 .1  will convince 

us that ui must follow a path as shown in Figure 2.2.
Figure 2.2 illustrates the Feynman diagrams up to N  = 6 . The edges 

in the graph represents sub-walks, which are numbered according to their 
occurring precedence. The solid edges represent those sub-walks that have 
distinct terminal points; the dashed edges represent sub-walks that might have 

same starting and term inating points. For a diagram of order N, the points 
are numbered by Xi , . . . ,  x2n - i - For a given sub-walk i, its terminal points are 
denoted by n(i  — 1 ) and n(i) which are chosen from x i , . . . ,  x2n -\-

P ro p o s itio n  2.2 Let N  > 1 be fixed, f i ,  / 2, . . . ,  / 2/V-1  be nonnegative even 
functions defined on Z d. Define

F f f { x )  =  f i  * 7 2 /3  * fA. 1 • • • I * /2 A r-2 /2 A A -l0 c)j x  €  ^ i  

where * represents discrete convolution operator on Z d. Then we have:

"IN—l
Y ,  I I  / ‘W O  -  "(• -  1 )) =  F*(0). (2 .2 2 )

t= l

Proof: For the case N  — 2, we have

^ 2 f i ( x i ) M x i ) f 3 ( x i )  =  f i *  / z / 3 ( 0 ) .
xi
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( I )

o
N = l

, ( J >
0
N=2 N=3

(5)

(I)/

x l (5) x3

'(.2) (<K

(3) x2 O)

N=5

\(9)

(9)

CIO]

x4

N=6

Figure 2.2: Feynman Diagrams

P rop osition  2 .2  Let N  >  1 be fixed, f i ,  f 2, ■ ■ ■, /z/v-i be nonnegative even 

functions defined on Z d. Define

Fy(x)  =  / i  * h h  * /•», • • -, x  €  Z d,

where * represents discrete convolution operator on Z d. Then we have:

2A'-l
51 II / i ( n (*‘)  “  n (* _  L) )  =  M O ) -

H ,x j —r /v - i  i = l
(2.22)

Proof: For the case Af =  2, we have

=  /«  * / a / a ( 0 ) .
*1

Suppose we know (2.22) holds true for 2V — 1, we consider the case N:

T  f l  (x  l ) • • • /2tV_4 (X2Af-2 — * 2 JV-3 )
XL-X^-l

f i S —Z i ^ N  — I — Z S - z ) f 2 X - 2 ( x N - 1  ~  x A '- 2 ) / 2 A '- l ( * A '- l  “  * « V -2 )
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Clearly, for any fixed /  on Z d,

l l / l l o o  <  l i / l b  <  l l / i l l -  ( 2 . 2 3 )

P rop osition  2.3 Let f ,  g be functions defined on Z d, we have the following 

inequalities hold true:

| | / * $ l l o o < l l / l | i | | * I U  ( 2 . 2 4 )

1 1 / Hoc < 1 1 / 1 1 * 1 1 *  ( 2 - 2 5 )

\ \ f  * g h  <  l l / i l i l k l b -  ( 2 . 2 6 )

Proof: We only prove (2.26).

II/*s ib  < £  £ ( l / ( s ) l ls ( * - s ) l )2
I€Zd y€Zd

< £  £ ( l / ( s ) l h 2 £ ( l / ( y ) l ’ sOr-</))2
xeZdy€Zd yeZd

= { £  l/(s ) l}2 £  s(*)2
yezd z € Z d

= W f W l M l

Q.E.D.

P rop osition  2.4 For fixed N  > 1, let / i ,  / 2 , • • -, / 2 /v-i and F& be defined as 
in Proposition 2.2, we have

2 N - 1

wo) < H/.iu n  iwii*' (2-27>
1=1,t^a

where a  could be any integer between 1 and 2N  — 1 .
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Proof: For the case a  being odd, we have

*V(0) <  \ \ f M \ f 2f» * f< ■. ■ f w - i h  (by (2.25))

<  II / 1 II2 H / 2 II2 II/ 3  *  / a ■ • • / 2JV-1 II00 

5; I I / 1 II2 II /2 II2 I I /3 II2 II/4 / 5  - - - / 2 /V-III2

< ............
Q-l

<  H  | | / i | | 2 | | / a  *  f a + l  ■ ■ - / 2 ^ - l | | o o  
i= l

a - 1

< n  ll/«llall/-llool|y«+i/o+2 - - -/ajv-illi (by (2.24))
i= 1 
a —i

<  H  | | / « | | 2 | | / a | | o o | | / a + l | | 2 | | / a + 2  * f a + 3 - • • ^ 2 ^ —1 [I2
i= l

a+1
<  n  H / i l l 2 l l / . l l ~ l l / « + 2 l l 2 l l / . + 3 . . . / 2 A r - i | | i  ( b y  ( 2 . 2 6 ) )

a+2

<  X I  l|/t||2 ||/o ||oo||/a+3||2 ||/a+4 * • - • / 2JV—1 H2
i= l,t# a

< ............
2AT-1

< n  IIAIbll/.IU-
i = l # a  

If a  is even, we have
a—1

f N( o) =  n  ll/tlb ll/a /a+ i • • • / 2JV-1II2 (sam e as a  odd  case)
1

a—1
5: IX  ll/t'lhll/allooll/a+l * /a+2 • • -/2AT-l[|2

1
<  ............

2 N - 1

<  H  ll/.lhll/alloo- (same as a  odd  case)

Q.E.D.
Let us denote

T - l

G * { x ,  z )  =  ^ 2  N r ( x ,  T ) z T , a  =  0 , 1 .  ( 2 . 2 8 )
T = a
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The following proposition provides estimates on t lT{k.z)  using the norms 

of G%(x,z).

P ro p o s itio n  2.5

| f t r ( f c , 2 ) |  <  | | G i ( * f z ) | | 00 M  +  | | G i ( * , z ) | | o o

• f ;  || GUx, 2 ) ||?  ||G?(x, 2 )! |? -2 (2.29)
(V=2

|a.-nr (fc,2)| < | | ^ ( 2G J(i,2))|u
oo

+  Y ,  C N \ \ d , G l ( x ,  2)|U ||G ;(i, 2)||?
N = 2

• ||G ;(2 ,2 ) ||? -2 (2.30)

|^ tn r (*,2)| <  ^ /V llx G jfe z J IU IIG jta ;^ )! !?
N = 2

• ||G ;( i ,2 ) ||? -2 (2.31)
OO

\d-Anr(k,z)\ < ^C ^ IIiG jfe z J IIc c llG ifi.z J II? -1
N = 2

■ | |G j( i ,2 ) | |? - J | |a .G i( i ,  z)lb (2.32)

Proof: We first prove (2.29).
By definition,

, ^ V K r  l“ , 2 1 |2(IV t = i ) I - - T  
N=lT=1 i

For the case N  =  1, we observe that there is only one lace graph in the set
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£i[0, T\, and moreover, to make t/0T =  —1, we must have T  > 2 .  Thus
OO

R K k , z )  <  e  i i * -  n  ( 1  +  U s't < ) I ( W T = 0 ) } z T \
T - 2 £ .€ £ i[0 ,r ]  s t € L  s ' l ‘eC (L)

T

< n  + ^*,£, )A^T=o)}i2:i'r
T = 2 s’t 'eC (L )

=  E E
X #0  T = 2  s ' t 'e C (L )

T —  1

<  W E  ^{/(VV^X) ^ 2  T]I(Wt=z) k |T}
x ^ O  T = 1

<  | * | | | G j ( * , z ) | | o o -

For iV >  2, we have:

| r t ? ( M ) l <  E  E  E  n  (1 +  Ust)IA(XttftT)}zT, (2.33)
x i , . . . ,x jv _ i€.Zd T = 3  T \  ,-..,T2.v -  i st£C(L)

where 0 <  7\ <  T2 < - • - < T2k - \  =  T  are possible terminal times for lace 
graphs having x i , . . .  ,£Ar-i as its terminal locations; L  is the particular lace 

that has 7 \ <  T2 <  • • • <  T2n - i = T  as its time terminals; and A { x , iV, T) =  
{cu : cj passes n ( l ) , . . . ,  n(Af — 1) at time Ti < T2 < ■ • ■ < T ^ - i  =  T}.

The expectation in (2.33) can be estimated by:

27V -1

E i  n  (1 +  U3t)lA(x,N,T)} ^  E { 1^1 ^i'Ka,}
s te C (L )  t = l

2 7 V -1

=  n
1=1 

27V -1

= f j  WT(n(i) -  «(* -  l ) ,^ i  -  7 i- i) ,
t=i

where A{ =  {a; : a;(Ti — 7i_i) =  n(i) — n(i — 1)}.
For fixed x x, . . . ,  x ^ - i  €  Z d, let us denote

oo 2 7 V -1

HN{xu . . . , x N^ )  =  ^ 2  E  Y l  N r ( n ( i ) - n ( i - l ) , T i - T i - . i ) z Ti- Ti- 1.
T = 3 T i , . . . , T t f f - i  t= l
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Taking into consideration the Feynman diagram, we observe th a t each of 
the terms in the summation of H ^ { x i , . . .  , x s - 1) belongs to the expansion of 
the product

N+1 N-l
n  Gr W )  -  n(i -  1 ) ,z )  G°T(n(j) -  n( j  -  1), z),
i = i  j

where the N  + 1 G\.'s correspond to the N  + 1 solid edges in the Feynman 
diagram and the N  — 2 G>’s correspond to the N  — 2 dashed edges in the 
Feynman diagram. Thus by Proposition 2.4 we have

| n ? ( * , z ) l  <  Y i  H » ( x i , . . . , x s - l )
i i , —.i/V - i  € Z d

N+l N-2
< Y  n  G r ( n (*‘) -  *(*' -  !)> z ) II G°{n(j)  -  n{ j  -  1), z)

x i , . . . ,x jv - i  1=1 j = 1

< ||C?i(or, ^)|[„||Gi(x, a:)||̂ r- 2.

Taking summation over N on (k1 z)\ we obtain (2.29).
We can modify the above procedure to prove (2.30). The modification that 

has to be made is to multiply T  in the zT~l terms. We can estim ate this T by 

taking T  =  ~ 1'i-x) an<i  assign each Ti — T i  — 1 to the corresponding
sub-walks. Notice that G°(x, z) =  6qx +  G\(x ,z ) ,  we can conclude that the 
sub-walk appended by Ti — Ti-i  is bounded by the term \\dz z)\\oo.

To prove (2.31), we have to multiply the kth coordinate of X2N- 1  in each 

of the terms. We can estimate this by taking |x2a/-_i| < H i l l 1 lx* — x»'-i| 
and assign each of the |x, — xt-_i|’s into the corresponding solid edge related 
sub-walks.

Finally, we combine the previous methods to prove (2.32). Notice that 
XiG°{x,z)  =  XiG°(x, z), we can always choose a sub-walk different from the 
one th a t is appended with T, — Ti_x and append it with Xi — xt-_i.

Q.E.D.
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CH APTER 3 

HIGH DIM ENSIONAL  
LIMITING DISTRIBUTIO N

In this chapter, we assume the i.i.d. random sequence X i, X 2 , -. -, X n, . . .  
satisfy the simple discrete Cauchy distribution:

P { X ,  = ± n e j } = for n € N  \  {0}, (3.1)

where {ej : 1 < j  < d} are unit vectors in Z d.
(The appendix contains detailed computation results on discrete Cauchy 

distribution. )
The probability tha t concentrates on those T-step self-avoiding walks with 

memory r  is given by

<  '  > T , r =  Y ,  -N ^ X ’ T ) / ] L  N ^ X ' 7 ">' ( 3 ' 2 >
X X

Our goal is to show th a t there exists a  sufficiently large dimension do, such 

that for d > do,

T  <i
^lirn <  exp{iA: • ^  X j / T }  > t ,t =  e x p { - ^  | * , | } ,  k  €  [ x ,  i t ] - . (3.3)

->oc 3 = 1  T 3 =1

That is, the scaled random sum X j / T  converges weakly to the clas
sical Cauchy distribution.
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3.1 Simple Long Range Random Walks

For d > T,  a 2T-step walk tha t returns to the origin must stay in a T  

dimensional subspace in Z d. Thus the following is true:

2t  j xrr
JVo(0,2T)< | “  | ( ^ )  < ^ .  (3.4)

For arbitrary x  €  Z d and n  € N ,  we have

N0(x ,2T + n) = J  D(fc)2r+ne,fc l dfc <  J  D i k ^ d k  = N 0(0,2T).  (3.5)

(Note: Unless otherwise stated, the integration domain is [—tt, 7r]d.)

We will also use the following lower bound of 1 — D (k ):

1 -  D(k) > k €  H r ,  jrl". (3.6)

P ro p o s itio n  3.1 For any integer m  > 0, we have
OO

E  T 3iVo(0 ,2T) <  0{d~ l), d -► oo.
T =  1

Proof: From (3.4) (3.5), we have

3

^ T 3iV0(0,2T) <  0 ( d ~ l),
T =  1 
d- 1

^ T 3Afo(0,2T) <  (d — 5)(d — l )3Af0(0 ,8) <  0 ( d ~ l).
T = 4

For \p\ < 1, we will need the following estimation:

oo oo

^ 2 T ( 2 T -  1)(2T -  2)p2T“3 < ^  i(z -  l) ( i  -  2)|p |i" 3
i= 2d

-  ( E - ‘)<3)U :
i=2<

<  Cd3

T=d i=2d
oo

=lpli=2d
IPI2" -3

( i  -  Ip !)4*
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Now we compute the case T  > d, 

j P  T 3N o(0, 2 T )  =  f  j r T 3D ( .k f r dk
T = d   ̂ J  T = d

<  ( S y  /  £ ( 2T)<2T -  1^ 2T -  2) t > ^ f - aD(k)Sdk

<  c ^ .  f l£Kk)f  i ^ r - - dk
-  (2jt)“ J '  K "  ( i _  |r>(*)|)<

Crf3 /* r 1  ̂3 [ A;,- [
2tt2

t = l
d

)(M)}

1 =  1

Crf7 /-00 r -3 p 2 , _g *_! .
“ w  /  e x P { — — >P P d p ^ r f - i  
TTj 7 o 7r

(2

-  (2
C cf7 d - d/ 2 d  

-  ( 2 7 r ) d  2 ° '

<  o(<*-1)-

T = 1

Proof:

T = 1  T = 1

Q.E.D.

P ro p o s itio n  3 .2  For \z\ < 1. u =  0,1
OO

l l d r ^ A r 0( i , i > 7' i u < o ( < r I). (3.7)
T =  1 

oo

||8? N„(x, T ) zt \\\ < 0 ( d ~ l). (3.8)

|ai ^ A r „ ( x ,T ) z r | <  ^ r W o ( l . T )
T= 1

oo

<  AT0(x, 1) +  5 ^ ( 2n +  2n -f 1)
71=0

OO

+  y^(2n)./Vo(j,2n).
n = l
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Clearly N 0(x, 1) <  0 ( d  l ) , N q(x , 2 n  4- 1) <  i V o ( 0 , 2 n )  and N 0(x, 2 n )  <  

No(0,2n). The previous proposition leads us to (3.8).

i«.E N 0(x, T ) zt \\1 < \ \ Y ^ t n 0{x . t )\\1 = Y , 1 1 S T N o ^ s ^n ^ x ^
T =  1 T =  1 S ,T =  1 x

= 1 2 Y .  (S T )N o(0,n) < £ > 3i V o ( 0 , n )
n= 2 S+ T=

<  0 ( d ~ l ) .

n= 2 S + T = n  n = 2

Q . E . D .

P ro p o s it io n  3.3 For \z\ < 1

1 <  ^)!ll <  1 H- 0 (d “ l ) (3.9)

Proof:

||ATr ( i, z)||! < | | ^  + 23Afo(i,T)||i
OO

I!
T = l

oo

= E +2S° *  E N °<-x ' r> + (E N ° ( x ' r>i2>
x e z d T =  1 T =  1

=  l  +  2 ^ A r „ (0 ,T )  +  | | f ; / V 0(I , r ) | | l  
r =i r= i

An application of Proposition (3.1), (3.2) completes the proof.
Q . E . D .

P ro p o s it io n  3.4 For fixed integer m  > 1

sup^7oTw f  (l ~  k)) "*<**} <  °°- (3-10)
d>i (27r ) a J

Proof:

= I\  +  Ii-
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1 _  * r ^ _
* r n d- ? )  I  1

h  < C ~ -  f  (J*  r d * <  0 (1 ),
(2t t ) J[-TZ'7r\d-{k:\k\<'/d} 1̂ 1

Q.E.D.

P ro p o s it io n  3.5 For \z\ <  1. u =  0,1

|||x |a^o (x ,2 )||oo  < 0 ( d ~ l) (3.11)

Proof: It suffices to prove the case u = 1. Let 0 < p <  1, dzNo(x,p) is 
summable w.r.t. x and thus has its Fourier transform:

d.N0(k.p) = ------------ .
{ l - PD{k)Y

Although dzN 0(k , p) is not differentiable at the origin, it is Lipschitz continuous 
w.r.t. each k. It has a.s. derivative w.r.t. ki

d i A N {k, p) = - A £ l*2 _  +  f r f l W f t O W .
(1 -p D { k )*  (1 - p D ( k ) Y

We can apply the integration by part formulae in the following calculation.

i x ldzN 0{x, p) = d I  ix i exp (—ik ■ x)dzN 0(k, p)dk

=  \d f  exP (—̂  ' x)dk f  ixie~tklXldzN 0(k , p)dk[
(27TJ V [—Tr.Trĵ - 1 J —ir

=  f  e x p ( - i k - x ) { - i e - iklXldzN0(k,p)\"_
( ^  /  J  [ - K  ,Tr]<i~ 1

+  f  e~iklXldkldzN 0(k, p)dkl }dk 
J  - ir

=  J * * v { - i k  ■ x)dkldzN0(k,p)dk

Applying Proposition (3.4) and using the fact d^Dik)  < 0 ( d ~ l ) we arrive 
at the result.

Q . E . D .
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3.2 The Convergence of Lace Expansion

P ro p o s it io n  3.6 For fixed r  <  oo, the norms \\G\.{x._ p ) \ \ 2 , \\dzG\(x ,  p)||2, 
\\\x\ud"Gi{x,  /9)||oo ( v  =  0,1, |u | < l j  are continuous w.r.t p i f  p  < r T(0).

Proof: For the two L 2 norms, we only prove the second one. By definition 

Y ,{ d ,G l ( x ,p ) } '1 =  2 2  T1T2N . ( x ,T 1) K ( x , T 2)pt ' +t=-2
xezd x€Z<*TuT2 = l

00 n

< + i )NA x , j ) p 7)
n = 0  j —Q x

( ^ ( n  -  j  +  1 )Nr (x, n -  j ) p n~3)
X

OO
^  { T i n  + 1 )Nr (k =  0, n)pnY

n = 0

Thus for p < r T(0), \\dzG\(x ,  p ) H2 is finite and continuous w.r.t. p. More
over, notice that the coefficients of the above series are nonnegative, the norm 
\\dzG\.(x, p)[|2 is actually left continuous at r r (0).

For the infinite norm |||x |u3jrC7.J.(x, p)||oo, we only prove the case u =  1.

Hxid.GyCx,?)!!,*, =  sup \xi\dzG\{x, p)
x  £ Z d

=  sup |x 1| V r . V T(x!T)p1’- 1 (3.12)
x £ Z d T = 1

Since T N t (x,T)  > 0 and pT~l are convex functions w.r.t. p for 0 <  p < 
r T(0), 5Zr=i T N t (x, T)pT~l are also convex functions(for each fixed x ) .  Thus 
(3.12) is also a convex function w.r.t. p. We suffice to show (3.12) is finite for 

P < tv(0).
t r

SUP \x i \ ' ^ T N t (x , T ) p t - 1 < T  sup I x i \ T N t (x , T)pT~l
x £ Z d T = l  T = l

r
<  V s u p  \x 1\ T N 0 (x , T ) p t - 1

T —l x£Zd

^  t T r S  1 f  T \ b m T- ' \ a k M k ) \ d k
<  OO
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Notice that in the above derivation, the assumption r  <  oo is necessary.
Q . E . D .

L em m a 3.1 For a sequence of nonnegative numbers (an) ^ rl satisfying 

Q-n+m < a-nOm for  all n , m  > 0, we have

lim dr," =  inf On" (3.13)
n-*oo n> 1

Proof: W ithout lose of generality, we assume > 0 for all n > 1. So we can 
denote bn =  loga„, then bn+m < b n +bm for all n , m  > 1.

For any e > 0, choose N  such that bs  <  infn>i bn/ n  +  e. Let n  =  k N  -+- r  
with 0 < r  < Ar — 1. Then

bn kb*? -F br k N  6at br bpj— < —:--------= ------- —-H--------> — . as n —> oo.
n n n N  n N

Q . E . D .

P ro p o s it io n  3.7 Let Xr(-z) =  Y1t =o E { K t[0, T \} zT . Then for  0 <  p < rT(0), 

X(p) < oo, and x (rr (0)) =  oo.

Proof: We verify that the sequence { E { K T{0, T]}}t?=1 possess property (3.13):

E { K t[Q:T 1 + T2]} < E { K t[0:T1]Kt[T1, T 1+ T 2]}

-  E E { E WW ( K T[ 0, T2]) k t [ 0, r 1]/(^(Tl)=x)}
x£Zd

= E K t[0,Tx]E{K t[Q,T2]}.

It follows limn_>00 E K t [0, T]« =  p  exists and 0 <  /z <  oo, x(p) < 00 f°r 
0 < p < rT(0). Moreover from Lemma 3.1 we know E { K T[0, T]} >  p T for all 

T, which implies x(r r(0)) =  oo.
Q.E.D.

T h e o re m  3.1 There exists a universal dimension do such that for  all d > do,
p €  [0, r T(0)] and r  >  0,

statement P4 =► statement P2.
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Here Pa(a =  2,4) is the following assertion:

f  W zGl{x,p)\\i 
' 1 |||x“ | ^ ( x , ,

pa , , , - * - ^ - ,^ ,1  l < a k Qd \  u =  0,1, 4
  p ) | |o o  < ak0d~l , |u | <  1 ,1 /=  0 , 1,

where kQ is a universal constant that does not depend on r  or d.

Proof: From Proposition 3.2, 3.5 and the fact G>(x, p) <  Gq(x , p), we know it 
suffices to consider the case p 6 [ l , rT(0)J. Let us define

FT(k,z)  = I - z D ( k ) - t l r (k ,z) ,  (3.15)

then for 1 <  p < r T(0) we have

FT(k, p) =  1 -  pD(0) -  n r (0, p) +  p{ 1 -  D(k))  +  n r (0, p) -  nr (A:, p) (3.16)

By (2.18) and Lemma (4.2), we know FT(0,p) =  1 — pD{0) — nr (0,p) > 0 
for p £ [ l , r T(0)] and the equality holds iff p = r r (0).

|n r (0,p) -  UAk,p)\  < \VfL40k,p)\ \k\ 0 <  9 < 1 (3.17)

Our assumption P4 and (2.31) imply that p)\ < 0(d~2). (In this
proof, the constant C  will refer to a quantity th a t does not depend on the k0,
r  or d, while the quantity O(-) my depend on ko.)

From the fact that

< 1 -  D(k) < - ^ J =  (3.18)
2 n d -  ~  2 n V d  ’

we conclude

Fr (k, p) > p( 1 -  D(k)) -  0 (d ~ 2) • |* | >  C(  1 -  D{k)) (3.19)

Notice that we may require a bigger do to guarantee the inequality (3.19) 
holds true, with the constant C irrelevant to  ko, r  and d. However, this 
increasing of do is done in a  deterministic manner, and it depends only on k0. 
Our future deductions will be correct as long as they do not depend on the
choosing of A:0.
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We now show that \\&CG\.(x, /s)||§ <  2k0d L, with u = 0,1. 
For v  =  1 we have

l|3--G‘(*.P)lll < m N r (x,p)\\l

= -^ \\3 'N A k ,p )\\\

i r  ( b (k )  +  dzn r { k , P) x2f  f D(k) + dzHT{k, p) 2
-  (2 ^ 7 { f a k p y — ] d k

1 f  D{k)2 +  2D(k)dzn T(k, p) +  dzIlT{k, p f
(2 n ) d J

dkFr(k,p)4
We will estimate the terms in the right side integral separately. The first 

term is estimated by:

1 f £(*0 2 „ .  r  1 f  D(.k)2
(2 -xyJ  FT(k,p)4 -  C (2tty j  (1 - D ( k ) y

= \\dzNQ{x,p  =  1)111 

< Cd~l .

To estimate the second term, we notice that by (2.31) and our assumption P4 , 

\dzn T{k,p)\ < 0 (d~ l). p < rT( 0 ) , k e  [-tt.tt]*.

Thus we have

1 / •26 (<:)aIn T(fc,p)J, „  , 1 r b(k)
<2nyJ F,(k,py dk -  0{d >(2W J  w ^ dk

< 0 (<Tl ){ f  — dk}i ~ K 'V  (1 -D(k)y J
■ { [ ------ *-------dk}*V  (1 -D(k)y

< 0 ( d - §).

The th ird  term is estimated similarly:

1 f  dzY{T{k,py o(d~2\
(2W l  FAk,r)< dk ~  ° <d >'
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Now we show \\\xu\d%G\.(x, p)||oo 5: 2k^d l . For simplicity, we only consider 
the case u =  1 and u  =  (1 ,0 ,. . .  ,0).

\xxdzG lr (x, p)\ < \xidzN r (x, p)\

=  I J  X l  e x P  ' x ) d z N T( k ,  p ) d k \  

-  ( S r  I  ̂ 9’N-(k-f)\dk
(The integration by parts calculation is legal since dzN T{k,p) is absolutely 

continuous w.r.t. k\.)

dklD ( k ) +  dkldzt lT(k, p)dkldzNr(k,p) =

+

+

{ l - p D { k ) - n r ( k , p ) ) *
2 pD(k) dklD{k) + P(k)dkin T(k, p) 

(1-  pD(k) - f l T(k,p))3 
pdznT(k, p) dklD(k) + dzIlT(k, p) dk$lT(k, p)

( i - p D ( f t ) - n r (fc,p))3
=  I\ +  I2 +  Iz +  I4. -̂ 5 +  Iq- (3.20)

Since dklD{k)  <  C (d-1), we easily have I\ , I3 < C d~ l and I 5 < 0 ( d ~ 2).
By (2.31) (2.32) and assumption P4, we know

afcln T(*,p) < o (d -2), 

dkldzn T{k ,P) < o ( d - 2).

Thus I2, h J e < 0(d ~ 2).
Combining the above estimates and put them  in (3.20) we finished the 

proof.
Q.E.D.

C o ro lla ry  3.1 There exists a universal constant kQ (which does not depend 

on r )  such that for  p € [0, rT(0)]), the following inequalities hold:

K G t ( i ,  M l  <  2 M ~ ‘ V = 0 ,1  (3.21)

| | |* r a r c i ( * .  P)IU <  2 M " ‘ M  <  1, V =  0 ,1 (3.22)
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Proof: Proposition 3.2, 3.5 mandates tha t there exists a  Ar0, such th a t inequal
ities (3.21) and (3.22) hold for p < 1. By Proposition 3.6, \\d^G).{x, p)\\2 and 
\\\x\ud”G\.{x, p^ao are continuous function of p for p < r T(0). Theorem 3.1 
further states that that if we choose k0 sufficiently large, then (3.21) and (3.22) 
hold for p <  r r (0 ).

w.r.t. z for  z < r r (0). Moreover, the following inequalities hold for  \A <  r r(0)

This corollary is a direct consequence of Proposition 2.5 and Corollary 3.1. 

L em m a  3.2 For e G (0,1], we have

Q.E.D.

C o ro lla ry  3.2 n(A;, z) is continuously differentiable w.r.t. k and analytic

\SrzTLr{k,z)\ <0(d-1), i/ = 0,1,

\dtnT(k,z)\<o{d-2), M = i,

\d^dzUT( k , z ) \ < 0 ( d ~ 2), \u\ = l.

(3.24)

(3.25)

(3.23)

(3.26)

Proof: Let us consider for fixed e and T G [1,t], the function

Sr(T) =  log f ( T )  = - €  log T  + T log(l +

gT (T) attains its minimum a t

T  ■1 mu
e

min — log(l +  e lo g r /2 -r)

Thus,

sup gr (T) =  max{0 T( r ) ,0 T(l)}
l<T<r

=  9 r (  1 ) < 2 .

Q.E.D.
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L em m a 3.3
s u p r r ( 0 )  <  o o .
T>1

Proof: Let us denote

A = {u> : X i{u )  =  ^ 2(0 ;) =  . . .  =  (1, 0 , . . . ,  0)}.

Then
E{/cT[o,T]> > B{*'T[o,r)//l(w)} > ( j A - f .

(d7r)
Thus iim supT_>oo{£'(/;C'T[0,T])}^ > 3/(d7r)2.

T h eo re m  3.2 For sufficiently large do, IIT(k,z)  is analytic in

B (D a \ ) )  = {z ■■ M <  Dt ( \ )  = » (0 )(1  +  lo g r/2 r)} . 

Moreover, in B (D T(\)) ,  the inequalities (3.23)-(3.25) still hold. 

Proof: We have for \z\ < £>r ( |) ,

\Gl(x,z )\  < |G j ( ^ D r ( i ) ) l < i i w ; f e r ) { £ > T( i ) } T
r =  1

r —1

<  r r J ] r j v T(I , r ) r J ' - 1{ i ( i  +
T =  1

<  rT sup {^(1  +  ^ ^ ) T}|52C?^(x,rr )|
l < T < r  J- Z-T

<  0{d~ l).

Similarly, we can prove for z €  B(DT(\)),

| d 0 U * , z ) \ < C d / 2 U x , r r )\ ,

\xG\(x ,z)\  < \xG\(x ,rT)\. 

Inequalities (3.23)-(3.25) follows from Proposition 2.5.

27

(3.27)

Q.E.D.

Q.E.D.
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3.3 The Limiting Distribution

P ro p o s itio n  3.8 Suppose the dimension d and memory r  are sufficiently 
large, and |/:| <  dirlo g r/1 2 r, then N r ( k , z ) has a simple pole at rT(k) 6 
(0, and is otherwise analytic in M < Dt ( |) .  The pole rT(k) is contin
uously differentiable w.r.t. k.

Proof: Since FT(k, z) has a Taylor series whose coefficients are all real numbers, 
the zeroes of FT(k, z) must occur in conjugate pairs.

Suppose zi, z2 be zero points of FT( k , z ), we have

(z2 -  z i )D(k)  = IIT(k, zx) -  IIT{k, z2) = (zi -  z2) f  dztlT(k, z2 + t{zx -  z2))dt
Jo

If \k\ is small, D(k)  ~  1, then (z2 — zi)D(k)  ~  z2 — z x. On the other hand, by 
theorem 3.2, dzflT(k, z x +t{z2 — 2 i)) ~  0 ( d ~ l). We conclude that for small |fc| 
and large d, FT(k, z) has at most one zero, and the only zero must lie on the 

real axis.
Next we show FT(k, z) does have a zero. We notice tha t for (k , z) €  

{(k, z) : |A:| < e, \z\ < DT( |)} , Fr ( k , z ) is a continuous function w.r.t. k ,z ,  
and dzFr (k, z) is also continuous w.r.t. k, z. Moreover for large d,

dzFT(k = 0, z) =  — 1 — dr ri-.(/: =  0, z) ^  0,

FT(k — 0 ,z  = r T(0)) =  0.

Apply the implicit function theorem we can find a unique continuous rT{k) 
defined on a  sufficiently small ball k 6  £ e(0), such that FT(k ,rT(k)) =  0.

Since D (k ) contains the form [A:|, rT(k) is probably not differentiable at 
k =  0. However, rT(k) is continuously differentiable for k € Be(0) — {0}. Thus 
for k 0 and |fc| small

_ d*<FAk,rr (k)) 
9 t M h )  ~  -  d,F A k , r A k j )

rA k ) { £ s g n (k j )  -  -  dkiflT(k ,rT(k))
D[k) +  dztlT(k , rT(k))

(3.28)
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(3.28) is valid as long as |rT(A:)| <  £)r ( |) .
Next we show if |A;| < d7rlogr/12r, then

rT( k ) e ( 0 , D T{±)). (3.29)

Under our assumption on |fc|, we observe from (3.28) tha t d/t,rr (fc) ~  

j ^ rT(k)sgn(ki). Thus

j  d  3  ^
jjTri tk)  =  J ~^dkirT(tk) ~  — rT( tk )^2 s g n (k i )k i (>  0). (3.30)

1=1 i =  1

rT(k) = r r (0) +  f  rT(tk)dt  ss r r (0) +  -^-rr (A:)|A:| (3.31)
J q a t  CL7T

Thus for k ^  0, rr (k) > r r (0), and 

r r ( k )  < rT(0)(l -  ^ -l/c l)-1 <  rT(0)(l +  ^- \k \ )  < rT{0)(1 +  lo g r /4 r) . (3.32)
uTZ CL7T

Finally, we show FT{k,z) has a  simple zero a t rT(k).
This could be seen from the following:

Fr (k,z) = FT{k,z) — FT(k ,rT(k))

= - ( z  -  rT(k))D(k)  -  (nr (A:, z) -  tiT{k, rT(k))

«  ~{z -  r r (A:)){l 4- J  dztlT(k ,rT(k) + t(z  -  rT(k))dt}

=  - ( z - r T( 0 ) ) ( l+ O ( d - 1)).

Q . E . D .

P ro p o s it io n  3.9 For sufficiently large d

^ {W }“ =  exp{S F ^ W } ' (3'33)i = l
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Proof: for n sufficiently large, \k/n\ < dnlogn/\2n,  so the results in the pre

vious proposition hold.

•l d
J-n A  =  r n(0) +  f  ^ -{ rn{t^-)}dt 

71 J q a t  72

=  r n(0) +  [  T  -^-rn( t—)sgn(kj)—dtJo dn n  n

=  ’v ( 0 ) + 5 S ^ r „ ( 0 ) M + o A ] .z '  an n  n
i=  1

The above estimation leads to the desired result in this proposition.
Q . E . D .

T h e o re m  3.3 There exists a dimension do > 0, such that for d > do, we have

NT (k/T . T) f 3 A , ,  „  /0 0 ,.
lim —---------- :------=  exp{——  > A:,}. (3.34)

t ->~ NT{k = 0,T)

Proof: We assume T  be sufficiently large so that \k /T \  <  dnlogT/12T.

V ( h T)  - 1 f  Vt W T ' Z )
N T iT ' T)  -  S r i / . M  z r * — i z

_  i  r  '  r  M t / r . z ) dM
27TZ J \ z \= D r^ )  J \ z - r T (k/T)\=t(T) 2

=  II +  7*2 ■

Where e(T) < logT/AT,  thus {z : |z — rT(fc)| =  e(T)} C {z : |z| <  DT( |)} .
For \z\ < Dr {\), We have FT(k ,z ) = (z — rT(k))HT(k, z) where HT( k , z ) is 

an analytic function in this domain with

HT(k,rT( k ) ) = d zFT(k,rT(k)) = - D T(k) -  dzt lT(k, z).

Notice th a t dzflT{k =  0, z) =  0, we have for sufficiently large T

HT{k/T, z ) ------1.

Thus

f  | NT (k/T, z)\dz < C  f  | - — -7TO\\dz  ^  I lo6 r l-
J \z \= D r a )  J \ z\=d t ( \ )  2  -
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We can estim ate / 1 by

A < C { £ £ f g - } T* ' r T( k / T ) - T- '  f  \NT (k/T ,z ) \d 2
Ut { 1/^J y|z|=Dr(|)

<  0 { T - l*)rT{ k /T ) -T~l 

/ 2 could be estimated using the residue theorem

,  =  _  j _  r  _____________i____________
2 2ttz' y |,_rT(*/Di«(D (2 ~  rr ( k /T ) )H T (k/T, z)zT+l

= rT (k /T )~T~l .

Thus

lim (exp (ik • x))T = lim ^ ( f c / r .T )  
T-+<x> FV , ,T T—toc NT (0:T)

i- f  rr (0) , r + l

T̂ *oo rT( k / T ) }

=  exP < - ^ E  !*<!?■X=1

Q.E.
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CH APTER 4 

THE 3-DIM ENSIONAL  
SPREAD-O UT MODEL

4.1 The Spread-Out Simple Random Walk

In this chapter, we will assume the i.i.d. random variables X x, . . . ,  X t, . . .  
satisfy the following spread-out discrete Cauchy distribution:

P { X l = m ei } =  i ; i j ,  (4.1)

where { e j , j  = 1,2,3d} are the unit vectors on Z 3; L  is a  sufficiently large
positive integer; and m  is an integer satisfying (n — 1 )L < |m | <  n L  for some

integer n  > 0.
We call L  the diffusion parameter. It will act as the driving force for our 

lace expansion.
We now compute the characteristic function of X i  with diffusion param eter

L:

D ^ k )  — £exp{i'A: • X}

j = l  n = l  r= 0

=  (4.2)
3=1
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where for j  =  1,2,3,

6 cos{nLkj) 
7r2 ^  n2

Tl= 1

( 4 .3 )

y '$ 2 c o s ( k j r), ( 4 .4 )
r=0

6 sin {nLkj)
IT2 722 

n= 1

( 4 .5 )

i  [
- J ^ s i n C V ) .

r=0
( 4 .6 )

From Appendix .2 we know

/,(*,-) ----1 -  -  2 if Lki e  I - * . *!• (4-7)

B}' Fourier analysis, it can be shown that

-Lkj6 f  j t
h { k j )  =  - j { - ( lo g 2 )Lkj  -  /  log(sin —)dt}, if Lkj  G [--,*}■

7T J  0 Z

We also have the following fundamental identities:

L em m a 4.1 f i ( k j )  has the following fundamental properties:

1. For kj  G [—7r,7r], /i(fcj) =  / i ( —Ar,)/ f i (k j )  has period 2-k/L .

2. For kj G [0,7t/L], f i ( k j )  is convex, strictly decreasing, with /i(0 ) =  1,

A ((l - # ) * ) =  0, / .(> r /2 i)  =  -1 /8 ,  / . ( tt/L )  =  - i .

3. For kj € [n/L, (1 +  ^ ) ir /L \ , we have f \  (k3) be strictly increasing, with 

/ , ( ( l + | ) i / l ) = 0 .

(4.8)
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4■ For \kj\ <  (1 -  & ) i t/L ,

AT\ 7r

L em m a 4.2 f 2(kj) has the following fundamental properties:

1. For kj G [-7T,7r], /zCAry) =  f 2( -k j ) ,  \f2{kj)\ < 1-

2. / /  [A:j-1 <  (1 — ŷ ')tt/L ,  then

0 <  f 2(k3) < 1 -  ^ L 2kj2. (4.11)
07r

3. For sufficiently large L, i f  (I — ^ ) j _  ^  l ĵ'i ^  7r/2L , then | / 2(fc;)| <  0.76; 
if\kj\  > 7r/2L, i/ien | / 2 (hj)| < 0.64; t/lfcjl > Z-k/ 2L, then \f2(kj)\ < 0.22.

Proof: To prove (4.11), we have for \kj\ < -k j L,

1 x~* l f'- *
1 -  y  c o s ( k J r ) =  T  “  c o s ( fci r ) }

r= 0  r= 0

=  I g 2 ( s i n ^
r= 0

*  5 ^ *

To prove item 3, we start with (4.9).
We have for any e >  0, there exists Lt , such th a t for L > Le, if \kj\ >

(1 -  * r ) l ’ then

5  i { ^ %  +  5 } -  °'76'

The last step is by letting e —*■ 0, L —> oo.
Similarly, we have the results for |^ |  >  n /2 L  and \kj\ > 3ir/2L.

Q . E . D .

L em m a 4.3  fz(k j)  has the following fundamental properties:

1. For kj €  [—7r, 7r], h {k j )  =  —fz{—kj); fz{kj) has period 2ir/L.
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2. For kj €  [0, 7t/3L\, fz(kj) is increasing, with

A ( ^ )  < 0.67. (4.12)

For kj € [ir/3L, tt/L\ ,  fz(kj) is decreasing, with

/ s ( £ )  > -0-27. (4.13)

3. For 0 <  kj < tc/L ,  we have

4 L k j{ - log(Lkj) + 1} <  M k j )  < % L k j { - log(Lkj) +  2}. (4.14)7TZ 7T

Proof: We first prove item 2. It is easy to see for kj €  [0,7t/L],  fz(kj)  is
increasing on [0, ir/3L] and decreasing on [tt/ZL,  7t/L]. Using the fact tha t
sin(£/2) > 3Z/2tt whenever t €  [0, tt/3], we get (4.12). Similarly, using the fact 

that sin(f/2) < t f 2 we get (4.13).
(4.14) is achieved by estimating fz(kj) on kj € [0,7r/L].

Q.E.D.

L em m a 4.4 / 4 (kj) has the following fundamental properties:

1. For kj € [—7r,7r], / 4(fcj) =  - M - k j ) ;  \Mkj) \  <  1.

2. For 0 <  kj < tt/ 2L, we have

0 < ^ - < M k , ) < ^ .  (4.15)

Let us denote for k €  [—7r, 7r]3, ||A:||oo =  max{|A:j| : j  =  1, 2,3}. 

P ro p o s itio n  4.1 For Ĥ Uoo <  (1 — ^ ) t r/L, we have

1 3
0 <  D L(k) < 1 -  -  J 2  0.05L[fcy| (4.16)

3=1

For ||A:||oo >  (1 — ^ ) ^ / L ,  we have D l (k) < a =  0.99.
In particular, there exists C  > 0, such that for k <E [—ir, n]d,

1 -  D L(k) > C\k\. (4.17)
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Proof: By Lemma 4.1 - Lemma 4.4, we have for Ĥ Hoo <  (1 —

iw -^ >
j'= i

+(±L\kj\(-  l°g(£M ) +  2))(^JM)}n £
, »

< I - 5 5 > 0 5 £ |* , | .
j =i

The estimates in Lemma 4.1 - Lemma 4.4 also render us the upper bound

D L{k) < 0.99, if P I U  > (1 -  ^ ) t t / L .  (4.18)

Q.E.D.

For a function /  defined on [—'n,iz]d, we denote | | / | | i  =

P ro p o s it io n  4.2 There exists a C  > 0, L0 > 0, such that for any n > 1,
L > Lq. the following inequality holds:

|Pr.(A:)n||i < a n + Cn~zL~3. (4.19)

Proof: For ||A:||oo < ( 1  — with- L  sufficiently large, we have

i 3
-  ^ 2  O.OfiLlfcjl <  0.1 < 1.
3 3=1

Thus

j ^ r ;  [  \ b L(k)\ndk < ^ { f  \DL(k)\ndk
(27t) (27r) yllfciloo <(1—̂

+ f  r  I Dc(k)\ndk}

=  I \  + 1-2..
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From the previous proposition, we know / 2 <  an.
3

/ , <  75^ 7 3 /  ^  ( l - i ^ O . O S t f t i r r f t
(2?r) J\\k\U<V-^)*/L 3 j=i

1 /* 1 .  ̂^
<  J2 ^ 3  J ^ e x p { - n - ^ 2 o . 0 5 L \ k j \ } d k

1 C  ro°
“  (2tt)3 £ 3
<  C L ~ 3n~3.

poo
I exp { —Cnp}p2dp

Jo

Q.E.D.

P ro p o s itio n  4.3 For i  =  1,2,3,

||d * A (* ) lli  < C (lo g L )2. (4.20)

Proof: From (4.2), we have

I 3 I .—1 _ n(ri-i-l)iz/L

l l ^ A ( * ) l l i  <  { l/K *i)ll/2(*i)l +  l / i ( * i ) l l /A ) l
3 7=? n=0 •'«»/*■

+  l/a te J I I / i te ) !  +  | / 3(A:t)||/'(A^)|} (4.21)

For kj e  [tvk/ L , (n +  1)tt/L], ti > 1, (4.7), (4.9) and (4.10) imply that

|/i(fc;)| <  1, \ m j ) \ < C L t (4.22)

\M*j) \  <  f .  \ m j ) \ < C ( ±  +  £ ) ,  (4.23)n n n*

<  f ,  l/J(*j)l <  C (^  +  £ ) .  (4.24)n n  n z

Using (4.8), we can also compute:

'(n+ l)ir/£  p-K/L g

I rnr /L

r{n+l)ir/L r^r/L g  r  u .
/  l/3 (fcj)ld*i =  /  “ 2 1 “  ( lo g 2 )L -£ lo g (s in (— i ))|dA:J

<  C  log L. (4.25)
r{n+l)iz/L

/  I/j(*/)I«»j <  r -  <426>

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



38

Combing (4.23) - (4.26) and using the fact

£ i < Iog i ,
n=l

we arrive at the result.
Q.E.D.

P rop osition  4.4
l | £ L ( * ) l | i < C X - l ( l o g L ) 2 . ( 4 . 2 7 )

Proof: We know D L(k) =  thus lt suffices
to show

h  /  1 +  ^  C L ~' '°ZL -

This result could be obtained easily using (4.23) - (4.26).
Q.E.D.

L em m a 4.5 Let 0 < a <  1 and C  > 0 be fixed. Then fo r  each A > —3 / log a, 

there exists Lq > 0, such that for L > Lq,

aAlogl <  (7(log L)~3L~3.

P ro p o s itio n  4.5

HAtfOr,* =  1)||| <  C L - l ( l o g l ) \  (4.28)

Proof:

||Ar0‘(*,* =  1)||| =  |[£ r> r(A :)r l l  (4-29)
T =  1
A log L  oo

< { 5 2  iiDt (*)r ii2 +  5 2  i i ^ m 2
T =  1 T = \  log L + l

=  (A +  h f -  (4.30)

For 1 < T  < log L, we have

\ \ b d k ) Th  <  I|0 l(*)IIj = {Na(0 ,T  =  2)}* <  C L - i .  (4.31)
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Thus h  < C L - 1' 2 (log L)1.
To estimate I2 , we apply (4.19) and the previous lemma to get

OO

h  <  ^ 2  CT~*L~* < C L - §. (4.32)
T=A log L + l

Thus ( /1  + / 2)2 <  CL-1(logL)2.
Q.E.D.

P ro p o s itio n  4.6 For v  =  0,1, we have

1 1 ^ ( 1 , r  =  1)|U  <  C L - ' (logLY+'.  (4.33)

For i =  1, 2, 3,

I ls ^ O r ,  2  =  l)||oc <  C { \o g L Y +A. (4.34)

Proof:
A log L 00

II^A T01( * .*  =  1 ) I U  S  Y. r m ' ^ . r j i u  +  ll r-A T 0‘ ( i , r ) i u
r = l  A log L + l

A log L 00

< £  r - w b d k f h
T =  1 A log L + l

< C{(logL)-+,i  +  i }

< CL~l (log L)u+l.

A log L

\\xiN l { x , z  =  1 ) 1 1 0 0  < \\XiN0( x ,T  = l ) | | o o  T\\dkiD L( m i
T = 2

+ f ;  T\ \dk, b L( k ) ( b L(k) )T- %
T =A  log L

< C (l + (log  L ^ d - i T 2)

< C(log L)v+A

Q.E.D.
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4.2 The Convergence of Lace Expansion

Similar to Proposition 3.6, we know for r  < oo, v  =  0,1 the norms 
||<9t'Gi.(x, p )||2, ||x,-G*(x, p ) ^  are continuous w.r.t.p for p < rT(0). Also, cor
responding result to that of Proposition 3.7 also holds.

Let us denote N*(x, z) = N T(x, z ) — 60x.

P ro p o s it io n  4 .7  For any p 6 (0, r r (0)] and integer m  >  0,

d ? N T{x, p) < m\p~m * . . .  * N} *Nr (x, p). (4.35)

Proof:

<9™iVr (x,p) = J 2 T . . . { T - m  + l ) N T{x,T)pT~m
T=m

m ' P " " 1 2  ( T  } N r ( x , T ) p 1
T=m '  171

oo
= 1 2  H A * ,T )p T

T=m 0<Ti < —<Tm <T

< m ' - p - n j r  y ,  1 2
T— m  0 < T i  < - < T m < T  y i

m
{ I I  N *(yi -  Ti ~  Ti-l)PT'~T'~l }N t(x - V m . T -  Tm) 

1 = 1

=  m\p~m N l  * . . .  * N* *Nt(x , p).

Q.E.D.

T h e o re m  4.1 There exist an universal integer Lq > 0, such that for all L > 

Lq, t > 0 and p 6 [0, r T(0)], statement P4 implies statement P 2.
Here statement Pa(a =  2,4) denotes the following assertion:

W Q fa  P)\\l ^ afcoL_1(log£)4,
||^G U x,p)||oo <  a k o L - \ \ o g L Y +\  u =  0,1, (4-36)
llx.G^x.pJIloo <  afco(logL)2, 

where ko is a universal constant that does not depend on t  or L.

Pa :
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Proof: Let us assume th a t statement P4 holds. We first consider the L 2 norm. 

\\Gl(x,p)\\l <  HAT,!(* .,,) II! =  ||.V .(i,p )||! -  1 =  | |^ —i — - 1 1 1  -  1. (4.37)
F r ( k , p )

Since PT(0, r r (0)) =  0, and r T(0) > 1, we have

FT(k , r T(0)) =  Fr (fc,rr (0)) - P r (0 ,rT(0))

>  (1 -  DL{k)) +  nT(0, rT(0)) -  i lT{k, r T(0)). (4.38)

We try to estim ate n r (0 ,rT(0)) — f[r (A:, r-(0)j.
Observe the definition of (k, z ), we see

n^(0,rr(0)) =  ni(fc,rT(0)), 

n*(0,rT(0)) > t l l ( F r T(0)).

Thus
OC

n T(0,rr(0)) -  n r( i , r r(0)) >  ^ { f t f ( 0 , r r(0)) -  n f ( i , » ( 0 ) ) } .
Ar= 3

Using Proposition 4.5, 4.6 and assumption P4. we have for N  > 3,

i n ^ o . r y t o j j - n f f w o ) ) !  <  l v * n ? ( f l * ,

< CAr||xGj(*,z)|U|Gj(*,z)||!' 

l|G?(i, z)||f~2|«:|
<  O V d o g L j 'fL - 'O o g i)4)^ !* ! .

which implies

n T(0 ,rT( 0 ) ) - f i r (A:,rr (0)) > - C L ~ \ (logL)10|fc|

>  - C L ~ 3H lo gL )10( l - D L(k)). (4.39)

The second inequality is by (4.17).
Substitute this estimate into (4.38) and then (4.37) we get

Fr (k, r T(0)) >  (1 -  C X -i(logL )10) ( l  -  D L(k)). (4.40)
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| | c | ( * , r i l l i < ( i - C £ - § ( i o g L)‘°)2| | - — 5^-7 7^ 111- 1- (■*•«)
(1 -  D L(k))2

By Proposition 4.2, 4.4,
A log L .  00 .

I I -  -111 <  1 +  E  T ( D U k ) ) d k +  £  T (D L( k ) f - ' d k
(1  - D L(k)Y T = 2  Alog L J

< 1 + C L ~l (log L)4 + CL~2

Thus for sufficiently large L, \\G\(x, p ) ^  < C L ~ l {\ogL)4.
Now we consider the norm \\xiGKx, p) ||.
From the representation

N ' ( h  p) = P ^ ( k )  + flr(k,p)
A  ,P) l - PDL{ k ) - t Y T{k,Py

we have,

\\x iG).(x, /?)||oo <  H ^ C x .p J I U

< C  J  \dkiNl(k ,  p)\dk

<  c  f  +  dk'
"  J  l - p D L( k ) - f l T(k ,p )

t (?DL(k)dkiD L{k) +  pDL(k)dkA ( k , p )
(l - p D L( k ) - t l T(k,p))2 

| +  n T(fc ,p )^ ,n T(A:,/j)
( l - p b L( k ) - f l T(k,p))2 

= Ii  +  I 2 +  ^3 + +  I5 -+- h -

To estimate the above terms, we first derive some lower bounds for Fr (k, p). 
Similar to (4.40), we have for p € [ l , rT(0)J,

FT( k , p ) > C ( l - D L(k)). (4.42)

Thus for v =  1, 2
AIogL

 =-------------------   <  C { 1 +  V  T v~l \DL(k)\T
{ I -  pDL( k ) - U T(k ,p )Y

+ j r  T ‘' - i \DL(k)\T}.
r= A io g L + x
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Now by Proposition 4.3, 4.4, we have

h  < C (logL)2 +  C(logL)3L “ l + C L~2.

By assumption P4 and (2.31), we know dkiflT(k, p) <  0 ( L ~ l (logL)10). so

h  < 0 ( L ~ l (log L )10).

Similar to the above, we can obtain:

h  <  CL~l (log L)z + C L ~ 2, 

h  < 0 ( L - \ \ o g L T ) + C L - \  

h  < 0 ( L ~ l (log L)n). 

h  < 0 (L~ 2 (log L)n) + C ,

where n is some positive integer.
We thus finished the case of \\xiG\.(x, p)\\.
Next, we consider \\G\(x, p ) | | o o  and \\dzG\.(x, r r (0))[|oo. We have 

||G i(* ,r r (0))||oo <  \\Glr (x ,p  = 1)11* +  (rT(0) -  l)) ||a « G i(* ,rr (0))||oo.

We know from Proposition 4.6 that \\G\(x,p  =  l ) | | o o  <  C L ~ l logL.
From the identity 1 — rr (0) — n r (0, r T(0)) =  0 and assumption P4 we have 

that
t-t(O) -  1 <  |n T(0 ,rT(0))| < 0 ( L ~ l logL).

On the other hand, by Proposition 5.1 and assumption P4, we have

dzG lT( x , r T(Q)) < dzG°T(x,rT( 0))

1 -{G j.G }(x ,r r(0 ))+ G j(0 ,r ,.(0 ))}
**r(0)

<  C\\N}(k,rT(0))\\l +  || G K x ^ m i U

< C ( L - l (logL)2) + 0 ( L ~ l (logL)2). (4.43)
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Thus under our assumption P4 , we must have

H^forvfOJJIloe <  C ( L - l(logL)2) + 0 ( L - 2(logL)3) < C ( L ' l ( logL)2).
(4.44)

Once we have proved the above result on \\G\{x, r r (0))||oo, we can repeat 

the com putation on (4.43) and in turn obtain the result for \\dzG\(x, r T(0))||oo-
Q.E.D.

C o ro lla ry  4.1 For \z\ < rT(0),

\ i l r ( k , z ) \  <  C L - 1 (log L ) 2 , (4.45)

\dzflT(k, z)\ < C L ~ \ \ o g L ) \  (4.46)

\dkifiT(k ,z )  | <  C L ~ \ \ o g L ) G. (4.47)

4.3 Fractional Derivatives, Limiting Distribu

tion

We will need the following lemma on fractional derivatives, its proof is 
contained in the Appendix.

L em m a 4.6  Let f ( z )  =  have radius of convergence R. We denote
for any \z\ < R, e > 0,

OO
K f i z )  =  ^ n eaBz". (4.48)

n = 0

Then
Slf(z)  =  C x_e f ' ( z e ~ xl/l~' )e~xin~tdX, (4.49)

Jo
where C i_£ =  [er(e)]-1 .

Moreover, if  a^ > 0 for all n, then the above equality holds for  z  =  R .

Let us denote for A >  0,

Pa =  r T(0)e-Al/l \
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P ro p o s itio n  4.8 For sufficiently large L, there exists c > 0 such that for any
k € [—7r, 7r]3 and A > 0,

Fr(k,px ) >  C[ 1 -  e - xWl- XD L(k)]. (4.50)

Proof:

FT(k,px) = [FT(k ,Px) -  FT(0,px)] + [FT(0,px) -  FT(0,rT(0))}

= pA[l -  D L(k)] +- [nr (0,pA) -  n r (A:,pA)]
rrr(0)

+  /  [ - d zFr(0,p)]dp.
J p x

By (4.39), we have flT(0,pA) -  flT(A:,pA) >  1 -  D L(k)).
By Corollary 4.1, we have — d; Fr (0,p) >  C > 0 if L is large. Thus

r r r (0)f
J  Pi

[ - d -  zF r(0, p))dp > C(rT(0) -  pA).
' Px

We can conclude that for A <  A0 <  oo, (4.50) holds for some c > 0.

For A >  A0, by 0 <  N T(k,px) < N T(Q,P\o), we conclude FT(k,px) is
bounded from below, and thus (4.50) still holds for some c > 0.

Q.E.D.

T h eo re m  4.2 For sufficiently large L, \z\ < rT(0) and e €  (0,1), there exists 

C > 0, satisfying

K d , G l̂ x , z ) U  < C l - \ l o g L ) 3, (4.51)

\\6lGlT(x,z) \h  < C £ - ! ( lo g £ )3, (4.52)

M G i ( i , * ) |U  <  C ( lo g i)4. (4.53)

Proof: We first prove (4.51).

S ia lT(x, r.(0)) =  rT(0) f °  ^ G ' A x . p ^ ' ^ ' d X
JO

< C i_£r r (0) f ° °  2px- 2G lT * G\  * G?(x, px)e~x m - €dX
Jo

< c f  p r 2e -x'n -  J  \G'r(k,Px)\2\G°(k,Px)\dkdX.

(4.54)
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From the fact th a t |IIt(A:,pa)| <  \dzt lT{k, 9px)\px <  C L  HlogL)3px, we 
have

p S ' 6 H k . P x ) = p r ' ^ U l ) + A * k ' rx) < C F r(k,px)~1.
Fr(k,px)

Thus the right side of (4.54) is bounded by

C  e~Xl/l € J ( \ D L(k)\2 + \d:n T(k,dpx)\2){FT(k,px)]-3dkd\

< c  J  (I D L(k)\2 +  \dzUT{k,ePx)\2)

■ [  e~xl/ lc  (1 — e~x l / l t  L>L(k))~3dXdk
J  o

=  C / ( |£ > t (*)l2 +  |0JIT( M p A)|2)

• g j —  f j [ ( l  -  zD L( k ) ) - % =ldk

< c  f  Y ^ t ( t  -  iy \bL(k)\Tdk
•* T = 2

+C ||nr(A:, rr(0))||oo f  f ^ T ( T  -  l ) e\DL(k) \T  -  2dk
J  T  OT = 2

< C L ' 1 (log L)3.
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To prove (4.52), we have

|ISGi(*.>v(0))||2 =  ||C i-erT(0) ( ° °  dzG l ( x ,P>) e - ^ ' - d X h
Jo

< ||C , . t rT(0) / '° °P a~i G* * G^(x,pA)e-A' /1-<<iA||2
Jo

= ||C ,.,rT(0) r p > - 'G lT(k,Px)G°Ak,Px)e-x ' ' ' " d \ h  
Jo

<  \\C(\DjL{k)\ +  \dsn T(k,6px)\)

r  e - x i n ~‘ F T( k , p x ) - 2dX\\2 
Jo

< \\C(\DL{k)\ + \dzIlr<,k,OpX)\)

• f ° °  e-,xl/1_t (1 — e~xl/l t D [ , ( k ) )~ 2dX\\2 
Jo

=  \\c(\DL(k)\ + \d=n T( k , e p M

OO

<  c Y . ' n \ i > L . { k ) T \\2
T =  1

+ c | | n r ( t ,  « p A) | U  £ T ' l l 6 t ( * ) T - , lb
T =  1

< CL~  a (log L)z

Finally, we prove (4.53). We have

Xi5czG lT(x,TT(Q)) =  C i - erT(0) f  x idzG\{x,px)e~x}n~rd \  (4.55)
Jo

Repeat the computations as in (3.20) we know for A >  Ao >  0,

\xiG\(x ,px)\ <  C.
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For A <  A0, the right side of (4.55) is bounded by
-Ao

°  L  I d* & lT(k ,Px)&iT(k ,px)}dke-xl/' - ' d \

1_____

P a ) ] 2
< c  [ {Ipa9*A (*)I +  |& A (* ,p a )I}  P l T z T T

J Jo [ r T(/:.

+ 2 lp> 6t(*)l +  |ft.(* ,p > )l ] e - ^ - ix d k  
I PV(<:,Pa)]3

<  C  J  \dt.D L( k ) \ [  e - x'" ~ '[F J k ,p i )\~1d>,dk

< C  j  \dtiDUk)\  P  -  px6M)]-3d \d k

< C  j  \di tb L( k ) \ ^ — SH{l -  z D U k ) ) - % ^ d k

, A log L< c  [ \dkib L{k)\dh+ f  Y ,  T { T - i y \ d k b L{k)\DL{k)T- 2dk
•* J  T = 3

+ J  Y .  n r  -  i r \a k, b L{k)\bL(k)'‘
r=3

)T~2dk
T =A log £.+ 1

<  C (logL)4.

Q.E.D.

C o ro lla ry  4 .2  For L sufficiently large, e 6  (0,1) and \z\ < r T(0), there exists 
C  > 0 such that

\6ezdztlT(k, z)\ < C L ~ l (log L)3, (4.56)

\Sezdkii lT(k, z)\ < C L ~ l (logL)7. (4.57)

Proof: The fractional derivatives induce an extra T £ term. We can modify the 
proof of Proposition 2.5 by using the following inequalities:

(a! +  a, +  . . .  +  On)1+e <  n c(a\ + +  - -. +  a*),

(ax +  a i +  . . .  +  On)e < ne(a\ 4- a | +  . . .  +  a£).

Q.E.D.
The proof of the following theorem is similar to Theorem 3.2 and is omitted.
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T h e o re m  4.3 For sufficiently large L, flT(k,z) is analytic in the set

{z : \z\ < DT{e) -  r T(0)(l + e lo g r /2 r )} .

Moreover, in this set, the inequalities of the Corollary 4-6 still hold with the 
powers of logL increased by 1.

T h e o re m  4.4 There exists a sufficiently large Lq > 0, such that for L > L0,

Nt W L T . T )  =  ( _ l y ^  |} ( J
r-oo  Nt (0,T)

Thus W ( T ) / L T  converges weakly to the classical Cauchy distribution.

The proof of this theorem can be obtained by a  detailed but straightforward 
modification of the results in section 3.3.
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Part II

FINITE HORIZON OPTIM AL  
INVESTM ENT A N D  

CO NSUM PTIO N W IT H  
TRANSACTIO N COSTS
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C H A PT E R  5 

IN TR O D U C TIO N

In 1969, Merton initiated the study on optimal investment and consump
tion in [27]. His paper is also widely acknowledged as the landmark work th a t 

initiated the study of financial markets via continuous-time, stochastic models. 
The motivation of his study was to understand the interaction among many 
agents whose individual investment/consumption actions lead to the market 
price formulation. Merton chose to study this issue by first understanding the 
behavior of a single agent acting as a price-taker and seeking to maximize ex
pected utility consumption. In the setting of frictionless market, he was able 
to obtain a close-form solution to the stochastic control problem.

Merton’s model has been generalized in several directions. The utility func
tion has been generalized from power functions to  concave increasing functions 
by [22]. Market coefficients depending in an adapted way on an underlying 
Brownian motion were treated by [2] and [19]. The existence and uniqueness of 
equilibrium price was proved in the complete market setting by [7] [9] [10] [18] 
[20] and [21]. Considerable amount of effort has been exerted on the incom
plete market situation, where the investor’s portfolio is restricted to a convex 
subset. Most of the works in this direction use the convex dual martingale 
method, which was first proposed by [31] and developed among others by [17] 
[23] and most noticeably [5]. See also [14] [32] for partial differential equation 
method. The study of equilibrium problem in incomplete markets depends
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on the ability to  characterize individual utility optimization with random en
dowment streams. Here the convex dual method expires because the value 
function of the dual problem is no longer convex. Cucuo [4] was able to  show 
the existence of the optimal policy by using the martingale method, (see also 
[11] for recent advances) Duffie et al. [8] used viscosity solution techniques 

to show the value function of the Hamilton-Jacobi-Bellman (HJB)equation is 
smooth and provided a feedback form optimal policy.

The introduction of proportional transaction costs to Merton’s model was 
first accomplished by Magill and Constantinides in [26]. Though this paper 
shows clear insight into the nature of the optimal policy, some of the m athe
matical tools needed were not available to the authors a t the time. It is un
derstood by now that this problem is one of a  singular stochastic control, that 

is, the optimal transaction occur only when the investor’s bond/stock ratio is 
on the boundary of the no-transaction region. In the parlance of stochastic 
analysis, the singular transaction processes are the local time associated with 
the boundary of no-transaction region. This boundary of the no-transaction 
region, which is a free boundary, is not a priori known to the investor and 
must be solved as part of the problem. Davis and Norman [6] were the first to 
realize the above problem formulation. Also they were the first to provide a 
rigorous analysis of the underlying HJB equation. More recently, Shreve and 
Soner [28] employed the newly developed viscosity solution concept to analyze 
the HJB equation. Their analysis much clarified the vague points of previous 
results and provided a framework in which the liquidity premium estimation 
can be accomplished. Perhaps the most valuable point of their work is tha t 
they demonstrated in a clear as a bell fashion, the power of viscosity solution 
approach in mathem atical finance. My thesis work was deeply influenced by 

their stimulating method. In particular, the viscosity solution method stands 
as the fundamental base of my analysis.

The fundamental work of viscosity solution theory is due to P.L. Lions, 
M.G. Crandall, L.C. Evans, R. Jensen and H. Ishii. The survey article by 
Crandall, Ishii and Lions [3] provides a good account of the viscosity theory.
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The application to stochastic control is reported in the book by Fleming and 
Soner [13]. The classical approach to stochastic control is to construct a  clas
sical solution to the HJB equation and use this solution to find the optimal 
policy. Because of the high nonlinearity of the HJB equations, it is usually 
very difficult to find such classical solutions directly. By contrast, the viscosity 
solution approach is to start with a candidate solution - the value function of 
the control problem, and use the dynamical programming principle to show 
that it solves the HJB equation in the viscosity sense. Although this viscosity 
solution is usually too weak to suffice a verification theorem, it still provides 
us the invaluable connection between stochastic control and partial differential 
equation theory. The regularity of the value function can often be upgraded 

when the two theories can fertilize each other fruitfully.
In my knowledge, all of the previous works on inter-temporal utility op

timization with transaction costs are restricted to the infinite horizon case. 
This case has the advantage tha t the value function can be reduced to one di
mension, thanks to the homothetic property. Thus the HJB equation becomes 
a nonlinear ODE, and the boundaries of the no-transaction region are fixed 
with respect to time. These facts simplify the analysis significantly. In the 
finite horizon case being considered here, I have to face the essential difficul
ties of dealing with nonlinear parabolic PDE and the possibility th a t the free 

boundaries are moving with time.
The main results of my work are: the value function is shown to be C°° 

in the non-degenerate no-transaction region, thus solve the optimization prob
lem in that region; also, it is shown that the two transaction free boundaries 
exist on all time horizon, and moreover we provide one upper bound and two 
lower bounds for their locations. This is achieved by solving the Skorohod 
problem locally and using this local solution to provide e— optim al consump
tion / transaction strategies.

The main tools I use are viscosity solution method, Cam panato space 
method from partial differential equations and martingale technique. In par
ticular, I develop a ” bootstrap” technique to upgrade the regularity of viscosity
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solution. I hope this technique will also be useful in other problems of similar 

characteristic.

5.1 The Financial Market

We consider a market in which two securities are traded continuously in a 
finite time horizon [0,T]. One security is the risk free bond whose price P0(t) 
evolves according to the equation

dP0(t) =  rP0(t)dt, P0(0) =  p0; t €  [0, T).

Another security is the risky stock whose price P\{t) follows the equation

dPx(t) =  a P x{t)dt + <rPx{t)dWu P x(0) =  p x, t 6 [0,T].

Where the process W  =  {W t, P £, 0 <  t < T }  is a standard Brownian motion 
on a probability space ( f i .P ,  P ), and the filtration {.P£} satisfies the usual 
condition. It is assumed the interest rate r, mean rates of return a  and the 
volatility a  are positive constants and a  > r.

An agent, with an initial position (x , y) in the bond and stock markets at 
time t, has to make decisions on his control processes (c(s), L(s), M (s); s > t) 
in order to maximize his expected utility function V ( t , x , y ) .

We assume th a t consumption can only take place a t bond market. The 
consumption rate  process will be denoted by c =  {c(s),.P4, s 6 [t,T]}. It is 
nonnegative and satisfies

T
c(s)ds < oo, a.s., t  €  [0, T].

Transactions between bond and stock markets incur proportional transac
tion cost. The transaction rate  from bond (stock) market to stock (bond) mar
ket is A (p,). 0 <  A, p  < 1. In the following we will denote {L(s), P ,, s £  [t, T]} 
( (M (s ) ,P , , t  €  [i,T]}) to  be the cumulative transaction value from bond 
(stock) market to  stock (bond) market. They are increasing, a.s. finite RCLL 
processes.
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We denote the agent’s position a t time s (t <  s < T)  in bond and stock
market by (XT(s), ^ (s )) . Then if the control processes (c(s), L(s), M(s); s > t)
are given, (X,Y) will evolve according to the following equations:

d X ( s ) =  (r X { s ) — c(s))ds — dL(s)  +  (1 — p)dM(s) ,  (5-1)

dY(s)  =  a Y (s )d s  + oY(s )dW (s)  + ( l - \ ) d L ( s ) - d M ( s ) ,  (5.2)

with X ( t —) =  x, Y ( t —) =  y.
To ensure there is no arbitrage opportunity in the market, we require 

(X (t), Y(t))  be in the following solvency region

S  =  {(x, y) : (1  -  A)x +  y > 0, x +  (1  -  p)y > 0}.

This solvency region S  has two boundaries:

dxS  = {(x, y) : y < 0 , x +  =  0 },

8 2S  =  {(x,y) : y > 0 ,x  +  (1  -  /j)y = 0 }.

We will denote Q  =  [0, T)  x «S. The parabolic boundary of domain Q will 
be denoted by d*Q.

An admissible control for (t,x , y) € Q is an investment/consumption s tra t
egy tha t keeps the investor’s balance in bond and stock markets within the 
solvency region.

^ l(t,x ,y ) =  {(c(s),L(s), M (s)) : ( X ( s ) ,r ( s ) )  €  «S, V se[£ ,T ]} . (5.3)

Our utility function has the form U(c) =  c f /p  for c >  0, where 0 <  p < 1.
Its convex dual is given by

U (c) =  sup {17(c) — cc} =  -— - ( c ) _T̂ p. 
c>0 V

A small investor, with an initial position (x, y) in the bond and stock m ar
kets a t time t, has to make decisions on his control processes (c(s), L(s), M (s); 
s > t) in order to maximize his expected utility function.

V (t, x, y) =  sup E  [  ds , V(t, x,  y) €  Q, (5.4)

under the state processes constraint (5.1) and (5.2).
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5.2 The Dynamical Programming Principle

The following proposition states the dynamical programming principle. 
This is the starting point of the dynamical programming method. We refer 

the reader to [13] for its proof.

P ro p o s it io n  5.1 Let (t , x , y ) €  Q and r  be any ( ^ , ,5  >  t) - stopping time. 
Then

/*TV\r

V ( t , x , y ) =  sup E {  U{c{s))ds +  I (t<T)V(t , X ( t ) , Y ( t ))}.
( c ( s ) ,L ( s ) M ( s ) ) £ A ( t ,x ,y )  J t

(5.5)

From the dynamical programming principle, we observe th a t if position 

(t, x2, 2/2 ) could be reached from (t , y x) by a direct transaction, then V (t , x2,

2/2) <  V ( t , x  1, 2/1)- So intuitively, we have
d V  d V  d V  d V

Let us now formally derive the Hamilton-Jacobi-Bellman (HJB) equation 
for our problem.

For ip €  C 1,2(Q), we will denote

/. ,,  > dp 1 2 2&2(P d<P f. \
») =  -  W  "  v w  _  (*’* 'y) s  Q '

Let us assume tentatively tha t V 6 C l,2(Q), and apply Ito ’s formulae for 
RCLL semimartingales to V. We have for any (lFs, s > t) - stopping time 
T > t ,

V( t, X ( t ) , Y{ t)) =  V ( t , x , y ) +  £ l - C V  -  c { s ) ^ ) d s

d V  +  (1 -  X ) ^ - } d L c{s)dx  dy
r  d V  d V

+  J ,  +  * > * « • < • )

+ Y . {*'(».*(*).*'(*)) - v(«-,
0<5<r

r  d v
+ J | a y — d\V(s), (5.6)
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where L c and M c are the continuous part of L  and M  respectively.
Let us further assume that the domain Q could be divided into three regions 

S S ,  S M M  and N T ,  such tha t if the investor is in region S S ,  it is optimal to 
make instant transactions from stock market to bond market; if the investor 
is in S M M ,  it is optimal to make instant transactions from bond market to 
stock market; while if the investor is in N T ,  the optim al strategy is to make 
no transactions, just make appropriate consumptions.

From Proposition 5.1 and (5.6) we would expect V  satisfy the following:

0, V(t,x ,y)  € S M M ,

We obtain the Hamilton-Jacobi-Bellman equation

d V

(5.7)

The following boundary condition for V  can be derived from the oscillation 
property of Brownian martingale, (e.g., Remark 2.1 of [28])

P ro p o s itio n  5.2 For (t , x , y ) €  d*Q, we have

V{t, x, y) = 0. (5.8)
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C H A PTER  6 

VISCOSITY SOLUTION OF 
THE HJB EQUATION

6.1 Existence Result

We first derive some fundamental properties of the value function V. 

P ro p o s it io n  6.1 For ( t ,x ,y )  6 Q, we have the following lower bounds for V :

V(t,  , , „ ) > (  +  (1 -  M )v r ’ y  S  ° ’ (6.1)
I  +  » / ( ! - A ))', y < 0 ,

where

f ( t )  =  -  1). (6.2)rp

Proof: For any ( t ,x ,y )  € Q, the investor can always choose to transfer all 
his money from stock to bond and then try  to  optimize his expected utility  
function only within the bond market. This optim ization problem could be 
stated as

f T c(s)p
sup E  I  ds ,
c € A t J t  P

dX(s)  =  (r X ( s ) — c(s))ds, X ( t )  =  x,
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where the admissible control set A t =  (c(s) >  0 : such th a t X (s )  > 0, for all
s > t}.

The dynamical programming equation of this problem is 

d V  d V  d V  c?
—  +  s u p { rx -  c—  +  — } = 0 ,  (s,x ) G [t,T) x (0, oo), (6.3)
O S  c >  0 ox  ox p

V (s ,x )  = 0 , V(s,x) € d*[t,T) x (0, oo). (6.4)

We try the form V(s, x) =  ^ / ( s ) l-pxp and substitute it in (6.3) (6.4). It is 
easy to see / ( s )  has to satisfy the following equation:

f ' ( s )  +  ^ - S ( s )  +  1 =  0, / (T )  =  0.
1 ~ P

So

f ( s )  = ]— V(e ^ {T- s) -  1). 
rp

We have obtained a smooth solution of the HJB equation (6.3) (6.4). By 

verification theorem (e.g., [13] 1.5.1), we have

P

If y  > 0, the initial transaction to bond market will result in a  balance 
x +  (1 — p)y; while if y < 0, the balance will be x  +  y / ( l  -  A). The proof is 
completed by replacing x with these two terms in respective situations.

Q.E.D.

P ro p o s itio n  6 .2  For (t , x, y) €  Q, we have the following upper bound for V ,

V ( t , x , y ) < - M t ) ' - - ( x + y r ,  (6.5)
V

where
M t )  =  _  1)f „  „  r  +  J Z 0 L .  (6.6)

Proof: Suppose we place the investor in a Merton’s ffictionless market -  a 
market with the same market coefficients as in Section 5.1 but free of transac
tion cost, then the value function of Merton’s model must be an upper bound
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for our value function V. (To make this statement rigorous, we can check 
that our admissible control set A ( t , x, y ) as defined in (5.3) is a  subset of the 

admissible control set of Merton’s model.)
The calculation of the value function V (6.5) and (6.6) is standard, it could 

be found in [12] pl60-161.
Q.E.D.

P ro p o s it io n  6.3 The value function V  has the following properties.

1. (Concave property) For each fixed t €  [0, T], V ( t , •, •) are concave func
tions on S .  In particular, V{t , -, •) are continuous on S .

2. (Homothetic property) For ( t ,x ,y )  €  Q, 7  > 0, V ( t , ' y x , jy )  =  7 pV(t, 

x ,y ) .

3. (Monotone property) For fixed (x,y)  €  S ,  V (- ,x ,y )  are decreasing func
tions.

The proof of the first two statements in the above proposition are essentially 
similar to tha t of [28], the third statement could be verified directly.

In M erton’s model, if we change the underlying probability P  to the so 
called neutral probability P , then we can obtain a super-martingale property 
for the sum of the discounted wealth and consumption processes. This prop

erty still holds in our model.
Let k  =  a -1 (a  — r), and for t  e  [0, T] define

0‘ =  exp{-K{W{s)  -  W{t)) -  ^k2(s -  <)}, s > t, (6.7)

P(A)  =  E(0lr IA), A  e  T t . (6.8)

By Gisanov’s theorem, P  is a probability measure on (f2, T t ) and under this 
measure the process

W(s)  =  W(s) -  W(t)  +  k (s -  t), T s, s > t ,

is a Brownian motion(e.g., [24] III.5).
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If we denote Z(s)  = X ( s )  +  Y(s)  , then it will evolve according to the 
following equation:

dZ(s) =  (r Z ( s ) — c(s))ds 4- crY(s)dW(s) — XdL(s) — fidM(s) ,  s > t.

Thus, if the control processes (c(s), T(s), M (s)) E A ( t ,  x , y),  then the pro
cess

er(s~£)Z(s) +  J *  e"r(u" £)c(u)du +  j T  e- r(“- £)(AdL(u)  -I- f idM (u))

= zt + J t e - r{u- l)aY{u)dW {u ), (6.9)

is a nonnegative super-martingale with respect to the probability measure P.

P ro p o s itio n  6 .4  The value function V  is continuous on Q.

Proof: From Proposition 6.3 we know for fixed t E [0,T], V{t,  •) are continu
ous functions; and for fixed (x, y) E S,  V(- ,x ,y)  are decreasing functions. By 
Dini’s theorem, we only have to show for each fixed (x, y) E S ,  V (- ,x ,y )  is 

continuous with respect to t.
First, we show for any t0 E [0, T), limtni<0 V ( t , x , y )  = V ( t0, x , y ) .
For an arbitrary e >  0, we choose (c(s), L(s), M(s))  E -4(£o> x, V) such that

rT cfs)p
V(t0, x , y ) < E   ds + e.

Jtc P

Then (c(s), L(s), Af(s); t0 < s < T  -  (tn -  t0)} € A ( tn , x , y ) ,  thus

E  r T <?Y_d s < v{:bn X y)
Jt* p

By monotone theorem,

lim E [ T CY l d s  =  E  f T c- ^ - d s .  
tnU0 J u  P Jto P

The right continuity of V ( - , x ,  y )  follows immediately.
Next we show for any t 0 €  (0,T], limtntto V ( t , x , y )  =  V ( t Q, x , y ) .
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We choose for each index n, (c„(s),L„(s), Afn(s); s  > tn) €  A (tn,x ,y )  
such that

V (tn,x ,y )  < E  f  
Ju

' r S s W ! *  +  I .
fu P n

We observe th a t {c„(s), L n(s), Mn(s); tn < s < T  — (t0 — tn)} E A(to, x ,y ) .  
Thus

r T - t o - t n )

7 -ds < V (t0,x ,y ) .
V

For 1 < 8 < let 8' = 8/{8 — 1 ). We have

E  [ T < - { t o - t n ) * E { [ T Cn { s Y Sd s } 1*
J T -( t0- t n) P P JT-to+U

< -{to  -  tn)irE{ [  c„(s)p*ds}s
p Ju

< - ( t o - t n ) * e rV'- t'» { E [{ 0 !? ) -1 
p

T*
■ f  (e-'<>- ‘->c„(S))*<fa]}* (by (6 .8 ))
Ju

T
<  j ( t o - t n)*er<r-t* » { E [ £  ( e - ' l - ^ C n i s ^ d s j b y

■ { E ( 0 ) l~p4}il^ ( b y  Holder inequality)

<  - { t o - t n ) * e rCr - t' » ( T - t n) l-=?&
P

{ E  [  e- r(s- t")cri(s)ds}pe '‘"‘̂ i ( ^ +1)
Jtn

(by Holder inequality and (6.7))

<  C (t0 -  tn)? (x  +  y)p, (by (6.9))

where C is a positive constant tha t does not depend on n.
Combine the above estimates we have

V (t^ , y )  < E r ^ &  + E f T ^ d s + I  
J u  p  J T - ( to - tn) P Ti

< V ( t0,x ,y )  +C(to -  tn)7 {x  + y)p 4- - .
n

The proof is completed by letting n —► oo.
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Q.E.D.
The following lower bound of *j£(t, x, y) will be an im portant a priori esti

mate for the development of this paper. It allows us to deal with the nonlinear 
term 1-p in the equation (5.7).

P roposition  6.5  Let (t , x , y ) G Q, <p(x,y) G C 2(S). If <p > V(t,- ,-)  or 
<p < V(t, •, •) tn a neighborhood of (x, y) and <p(t,x, y) = V(t, x, y). Then

p V ( t ,x ,y )  d<pu  , ^  p V ( t , x , y )
<  - ^ - { t ,x ,y )<  — —y ------ T-, y0 >  0 ,

x  + y / (  1 — A) dx ' ' x  + (1 — p ) y ’ 

p V ( t , z ,y )  ^  » g ( t, I i y ) <  p n t ' x ' v \ s yQ< 0.
x  + ( l - p ) y  ~  dx  ~ x  + y f (I -  A)

The above lower bounds could be derived from the homothetic property 
and a direct transaction argument. We refer the reader to [28] Corollary 3.7 

for the details.

D efin ition  6.1 A function V  G C(Q) is said to be a viscosity solution of the 
Hamilton-Jacobi-Bellman equation (5.7) (5.8) i f  the following are satisfied,

1. V  is a viscosity sub-solution of (5.7). That is, for any <p G C l,2(Q) and 
any (£0, x Q, yo) €  Q such that ( t o , x 0 , y o )  is a local maximum point of
V  — we have

m i n { O p - V < ^ ) ,  | £ - ( 1 - „ ) | £ ,  g - ( l - A ) ^ } ( t o , l o , » o ) < 0 .

2. V  is a viscosity super-solution of (5.7). That is, fo r  any cp €  C 1,2(Q) 
and any (to, xq, yo) G Q such that (to, x q , yo) is a local minimum point of
V  — <p, we have

m in{C V - U ( ^ ) ,  g - ( l - A ) ^ } ( ( 0 ,x 0 ,j,0 ) > 0 .

The proof of the following theorem is similar to [28] theorem 7.7 and we 
refer the readers to  that paper for the details.

T h eo re m  6.1 The value function V  defined by (5.4) is a viscosity solution of  
the Hamilton-Jacobi-Bellman equation (5.7) with boundary condition (5.8).
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R e m a rk  6.1 An examination on the proof of the theorem shows that the value 
function possesses viscosity property in a stronger sense. That is, in Definition 
6.1, the test function <p can be relaxed to be a local maximum (minimum) only 
in the half ball B r(t0, x 0, y0) D {t : t > to}- This fact will be used in our proof 
of regularity results.

6.2 Comparison Result

In order to prove that the equation (5.7) (5.8) has a unique viscosity solu
tion, we have to make some restrictions on the solution space.

D efin ition  6.2 A function V on Q is said to be in class Dq i f  it satisfies the
following:

1. V  is a nonnegative continuous function on Q. V  = 0 on the d'Q .

2. V possesses the homothetic property, concave property and monotone 
property as prescribed in Proposition 6.3.

3. For (t , x ,y )  e Q

V { t,x ,y )  >  - / ( £ ) l_p(x +  (1 -  p)y)p, y >  0,
V

V ( t , x t y) > —f ( t ) l~p(x +  y / ( l  — A))p, y < 0,
P

where f{ t)  is given by (6.2).

4. For (£, x, y) €  Q
Q Y ±

- ^ - ( t * , y )  >  p V { t,x ,y ){x  + V ^  °>

d V ±
- f o - t t ' X’y) ^ pV’(f,x,y)(x +  ( l - / i ) y )  > y < 0 .

The homothetic property allows us to  transform the Hamilton-Jacobi- 
Bellman equation (5.7) into an equivalent equation th a t has only one space 
variable and is defined on a bounded domain.
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Let us denote /  =  (—(1 — A)/A, l//x), Qx = [0, T) x I ,  and define

u(t, z) = V(t, 1 -  z ,z ) ,  ( t , z ) € Q i .  (6.10)

By homothetic property we have

V(t, x, y) = (x + y)pu(t , y / ( x  +  y)). (6 .1 1 )

P ro p o s itio n  6 . 6  Assume u ( t ,z )  and V ( t ,x ,y )  are related by (6.11). Then 
V(t, x ,y )  is a viscosity solution of (5.7) (5.8) if  and only i f u ( t , z) is a viscosity 
solution of the following equation

, du du d2u j j  du
m%n ^~~dt ~  d l ^ p u  ~  ~  3^ d z *  ~ U ( j m  ~

dll dll
pu + d4(z) —  . p u - d 5(z)— } = 0 , ( t , z ) e Q  i ,  (6 .1 2 )

oz az
where

di(z) = r + (a -  r)z  -  ^cr2(l -  p)z2,2
2 /d2(z) =  (a  — r)z ( l  — z) — a  (1  — p)z  (1  — z),

^s(z) =  \ a2z20- -  z)2’

dA{z) = - ( 1  -  yz) ,  
y

M z )  = i ( l - A ( l - z ) ) ,  

with boundary condition

u{t,z)  =  0, (t, z) E d*Q\. (6.13)

We will denote Z>i =  {u(t, z) : u{t, z) =  V(t, 1 — z, z), (t , z ) €  Qi, for some

V ( t , x , y ) E V Q).
Now let us transform u  by

w(t, z) =  efco‘u(t, z), (t, z) E Qi, (6.14)

where fc0 =  maxz€/ \pdi(z)\.
We will denote t>2 =  {w : w(t, z) =  e ^ u f a z ) ,  (t , z ) E Q \,  for some u E

©.}■
Similar to Proposition 6 .6 , we have
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P ro p o s itio n  6 .7  Suppose w (t , z) and u[t. z) are related by (6.14)- Then u is 
a viscosity solution o f (6.12) and (6.13) i f  and only i f  w is a viscosity solution 
of the following equation

m in {e~kot[ - ~ ^  +  (A:0 -  di(z)p)w -  d2(z ) ^  —
p * a l - d w .  _k .. . . .d w .

- e ' - r U ( p w  -  z — ), e 0 \pw -f dA(z )— },

e~kot\pw -  d5( z ) - ^ ] }  =  0, ( t , z ) e Q i, (6.15)

w(t, z) =  0, (t, z ) e d ’Qi- (6.16)

We notice that in (6.15), the three terms inside the minimum are increasing 
with respect to w, this fact will useful in our proof of comparison result.

To simplify the notations, we will use (gi, q2, A ) to represent ( ^ ,  f^r).

We will also use the notations

H {klo)( t ,z ,w ,q 1,q2, A ) = e ' ^ - q i  + (k0 -  d l (z)p)w -  d2(z)q2 -  d3(z)A]
1 — p , ___________ e_ - _—e l~p--------(pui — zq2) l~p, for pw — zq2 >  0 ,

H ™ (t,z ,w ,q2) = e ^ ( p w  + d4(z)q2),

H H \ t , z ,w ,q 2) =  e~kot{pw -  d5(z)q2).

Hko( t ,z ,w ,q u q2,A )  =  m in f i^ ^ t ,  z, w, qu q2, A), H ™ (t, z ,w ,q 2),

(6-17)

D efin itio n  6.3 Let W  be a continuous function on Q i,

1. The set o f second order (parabolic) super-differentials of W at (t, z) G Q\

is

D H l'2)W {t,z )  =  {(quq*,A)  G i *3 : lim sup(Alj/la)_,(o,o)
W (t  +  h u z  +  /12) -  W (t, z) -  qihi -  q2h2 -  \Ah% ^

|/n | +  ^  ~  h
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2. The set of second order (parabolic) sub-differentials of W  at (£, z ) €  Q i
is

D~{l'2)W (t, z) = {(qx,q2, A) £ Rz : liminf(&liA2j_»(0lo)
W {t + h i , z  + h2) -  W { t ,z )  — qxh x -  q2h2 -  \Ah% ^

\h,\ + h* ~  h

D efin itio n  6 .4  Let W be a continuous function on Q

1. A triplet (qi,q2,A ) belongs to cD+(-l,2^W(t, z) i f  there exists a sequence
—► {t, z), and another sequence (qTl,q™,Am) —y {qx,q2,A ) such

that
(q? ,q ? ,A m) £ D +(1'2)W (t ,z ) .

2. A triplet (qx,q2, A ) belongs to cD~^1,2̂ W(t, z) i f  there exists a sequence 

(tm, Zm) —> (t,z) , and another sequence (q™,q™,Am) —> (qi,q2, A ) such 
that

{q?,q?, A m) £ D ~ W W { t , z ) .

D efin itio n  6.5 A continuous function W  on Q l is called semi-convex i f  there 
exists a constant K  > 0, such that the function W (t, z ) +  K (t2 + z2) is convex 
on Q x. W  is called semi-concave if  —W  is semi-convex.

The following two lemmas are standard results in viscosity solution theory. 
We state  them for completeness of our proof. For a detailed exposition of 

viscosity solution theory, we refer the readers to [13].
The first lemma combines Alexandrov’s result on a.s. twice differentiability 

of convex functions, Jensen’s maximal principle and Ishii’s procedure.

L em m a  6.1 Let W ,V  be semi-convex and semi-concave respectively on Q\.  
Suppose that <f> is twice continuously differentiable on Q x x  Qx and $(£, z, s, w) 
=  W (£, z) — V(s, w) — <j>(t, z, s, w) attains an interior maximum  (£, z), (s, w) £ 
(0, T) x I  satisfying

<£(£, z, s, w) >  sup <£.
9Q i x d Q i
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Then there are A  and B  satisfying

(J^ <fi(t,z,s,w),Dz( t , z , s ,w ) ,A ) G cD+{l’2)W ( t ,z ) ,

Q
( - — <t>(t,z,s,w), - D w<t>(t,z, s, w ) ,B )  G cD~(1'2)V(s , w ), 

os
and

' A  0

0 —B
Where K  is a suitable constant depending on W  and V  but not on <f>.

- K h  < < D2z,wd>{t, S,W).

The second lemma states th a t any continuous function can be suitably 
approximated by semi-convex (semi-concave) functions.

L em m a  6.2 Let W, V  G C(Qi). Let us define

ki =  (max{  1 +  4 || W  ||, 1 + 4 || V  ||})^. (6.18)

QI = [7 , T  -  7 ) x { 2  6  /  : dist(z, d l)  > 7 }, (6.19)

1. For each e > 0, there exists semi-convex functions W c such that W e —> 
W  uniformly on Q v as e —► 0.

Moreover, i f  ( t ,z ) €  Q i£fcl and (qi,q2,A )  G cD+ l̂,2^W€(t, z) , then we can 
find  (s ,w ) such that
\s — t\2 4- \w — z\2 < e2k 2 and (<71, 92 , A) G cD+ l̂,2^W e(s, w).

2. For each e > 0, there exists semi-concave functions Vc such that Ve —>• V  
uniformly on Q x as e —► 0.

Moreover, i f  (t,z) G Q i**1 and (qi,q2,A )  G cD+̂ l,T>Vt ( t ,z ) ,  then we can 
find  (s ,w ) such that
\s — t\2 +  \w — z\2 <  e2k 2 and (<71, q2, A) G cD+ 1̂,2)Ve(s, w ) .

T h e o re m  6.2 Suppose W, V  be two functions in class T>2. I f  W ,V  are vis
cosity sub-solution and super-solution respectively of equation (6.15), W  =  V  
on d*Qi. Then

sup (W  -  V)(t, z) < 0. (6.20)
(t,*)€<?!
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Proof: Suppose to the contrary, i.e.,

sup {W  -  \0 ( t ,  z) =  M  > 0. (6.21)

Let us define for 7  > 0,

(% z ) =  argm ax{(lT -  V)(t, z), (£, z) e  Q i},

Q ib] =  { ( * ,  z ) e Q i - . ( w -  V)(t, Z )  >  7} ,  

6('Y) = d i s t { Q l [i],d-Ql }.

Clearly (£, z) € Q\[M],
Step 1 :
Let ki, Qi be defined as in (6.18) and (6.19). For p, e > 0, define

=  W e -  -  (t, z) € Q \ £kl,t — €K\

(te, z e) =  argmax(VF£’p -  Vt ){t,z), (£, z) € Q\eky}-

It is easy to see W c'p is still semi-convex in Q*ekl. Moreover, since IVC, Vc 
converges uniformly to W, V  respectively on Qi, we can find sufficiently small 

eQ, p o  > 0 , such tha t for all e < €q, with po fixed,

(t«z«) € n { ( L z ) e Q 1 : t >  7 o(Po)}, (6.22)

where 7 o(po) is a  constant th a t depends only on po- Notice also th a t (6.22) 

mandates
3 M

dist((te, z e) ,d mQi) > $ (-£ -)  >  0.

Later in the proof, we may require eo>Po to be reduced further(c.f.(6.25) 
second inequality). It is understood th a t the statem ent will be true for all 

e <  e0 with po fixed.
Now for /?, a  > 0, consider the auxiliary function

$(£, z, s, w ) =  (W^e,p(£, z ) -  V;(s, w)) -  -^-((£ -  s ) 2 + (z -  u;)2) +  p (t  -  T).
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Let

(ic,a,0 , Zc,a,0 , $c,a,0 : ™t,a,f}) =  argmax{$(t, s, w) : (t , z, s, w) e  Qlekl X Q *kl}.

We claim there exist e<j» <*0 i A) > 0 , such that for e < e0, a  < £*o, /? < Ao>

M  7°
{tc,a,0 i z t,a,f))i £  QlX-^- ) Cl { (M ) :  ̂ > "2”}' (6.23)

Set M v<_(d) =  sup{|K(£j z) — V^(s, zo)| : dist{(t, z),  ( s . w) }  < d)}.
From the inequality

Se,a,0 i ^c,q,^) ^  ^(^c,a,0 t *£,qj35 tc,a,0 i

we have

.y ((̂ C,Q,0  5e,Q,̂ ) ■+■ (Ze,a,0  ^£,Q,^) ) ^  ^e(^£,Q, ĵ 2 £,Q,̂ ) ^£,Q,^)

< A/v; {((tf.Q,^ — S£ Qî )

+  (2 «f«,/J -^£,a,/3)2)*}

< ^2 ,

where fc2 is the upper bound for the function M V;(d) (A:2 does not depend on 

<0 -

Thus

(te,a,0  ^e.a,/?) "F (^e.q,^ ^£,a,^) ^  2q:Aj2,

which, by the uniform continuity of V̂ , further implies

2^((i£,a,/? -  S£,a,^)2 +  (^£,a,^ -  wt^ ) 2) -> 0 as q | 0 .  (6.24)

Suppose (Jt,a,0 , z ê )  £  Qi(%).
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We have on one hand for sufficiently small a  < a 0

^e(^t,a,0 î U(.,a,f})
_  M

— ^^(te,a,0i Zt,a,(}) V{.St,a,0i "F g

(W e converges to W uniformly on Q t)
r r f -  -  \  t  r r -  ___  .  M  M

— *{tc,a,f3i Zc,a,0) ''{^e,a,0}'^}e,a,0) "1 H g-

^  A/yj {((tt,a,^ St,a,fi) "F (~£,q.3 ) 2}
M  M

+ 4 +  8  
M< — . (for a  sufficiently small) (6.25)

On the other hand, if /? <

*&{tc,a,0 i Z(.,a,t3i St,a,0 i ^e,a,0  ̂ ^  (̂. ê,a.3: 4-c,a,fl) ^t(.te,a,0 i Zc,ct,f}')

+0(tc,a,3 ~ T ) ----—

(by (6.24), we can let a 0 be small)

> ~  + flft.o.a -  T)  (by (6.22))

> y  (6.26)

The contradiction of (6.25) and (6.26) imply tha t (t^aj0 , z ^ aj )  €  Qi(*£)- 

The claim (sCtâ , w etQ̂ )  €  Q i(^f) can be proved similarly.
The claim that

_  7 °
(tc,a,0 i ze,a,ff)i (^e,a,0 ) ^(,0 ,0 ) ^  {(^5 z ) ■ t -> ^ }

is clear from the form of W ('p and the fact that our p0 are fixed in the above 
procedure.

Step 2 :
In step 1, we showed that the maximum points of are uniformly bounded 

away from dQi with respect to the parameters e <  e0, a  < ao, (3 <  /?o and 
with fixed p0. We can now apply Ishii’s lemma and obtain A €iatp, B t a>p and
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kc,a,p > 0  such that

r t e ,a ,0  S e ,a ,0  a  P o Z e ,a ,0  ^ c , a , 0  ~ r ■>

6  c D ^ l'2)W e(tt^ 0, z ê j , ) ,  (6.27)

{ W  - J CA! ' Z « ^ , - S w  g  } g e o - d  J )K (s  s ;  }> ( 6 . 2 8 )
a  a

<  ^ e.a,(3 <  B ^ j ,  <  AreJJ, (6.29)

where A:£ĵ  is a constant that depends on e and /? but not on a.
From Lemma 6.2 we have

cD +W W * ( t e,aj , z t,a,s ) C c D + W W f o ^ z ^ j )  (6.30)

where (t£,Q,ys, z£tQj )  are points in Qi such that

(Hst^{t£ag, (^e,a, ĵ ê.a,/?) } ^  eÂ i, (6.31)

we have

W (te,Qi/Jl Z£,Q̂ ) , ^  ~  W  —^ — 7= ^a (tt,a,0 -  e k i ) 2 '
z.„ ,t ^  0  (6  32)

Similarly still by Lemma 6 .2 .

c D - ^ V t (sê w ê )  C c D - W V ( s CtQtg, wf'Q'p), (6.33)

where (s£>Q,^, w;<:,a,/9) are points in Q i such that

dzst{(s£]0 i)3, Weta j ) ,  (sc,a,0 , «>c,a./?)} <  C2*!*, (6-34)

we have

rr r ... t//-„ \ ~  se,a,£ ze,o,£ ~  w e,a,0 -fi 1 - ^ . 0
B k o \ S e , a , 0 i  W e a g ,  V  ( S £Ct f}, W e a f } ) , , ) B t , a , 0 J  _  0.a; a:

(6.35)
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From (6.32) and (6.35) we arrive a t the conclusion th a t a t least one of 
following three inequalities must hold. That is, either

c/0) ( f  -r W ( +  V \  i c 'a '0 ~  _  a  ~  w €,a ,0ko €̂.yo.^)i Pi ^  j

< 0, (6.36)

t r /0  ̂ t̂,a,/7 s(,a,0 z e,a,0 w e,a,0 -f? \
**ko vs e,a,0i w e,a,0, v ( .S £)a ,0, w e,a,0) i > &c,a,0)

or

or

« W .  I 'O w .  ^ w ) ,  ~  1‘W -) <  0, (6.37)

W ( W  z,,a J ), Z W  )

« W ,  ^ ( < W . « W > . ^  ~ ’‘W ) <  0. (6.38)

From (6.23), (6.24),(6.31) and (6.34) we know for sufficiently small eo><*Oj

M
W (tt^ p, zt<a<0) > V'(se,Q,/3, t i w )  +  -g-. (6.39)

Suppose (6.37) holds, we have by (6.39),

•"fco v̂ e.Q,^7 ze,a,0> ”  (t£tQl̂ , 2T£iQî ), ,)

- « £ W j». « w .  ^ (  W .  « . J .  z,,° 'g ~  JS)'

>  e -h><...j,E M . _  Sup{<V(*)} ^  ~
8  ze/ a

- e _i!0(t«-“^ A*«---tf)pV(aeitt̂ ,Ti;eta^ |teta>/s -  s£,tt,^|
_ e -fco (tc .a .g A ,<,a ,g ) | [[g _  |

O'
> 0, (6.40)

where the last inequality is obtained in the following way: first let e —► 0 , so
that

|̂ e,a,0 se,a,^|  ̂ Î e,a,/3 se,a,/j|i (by (6.34))
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and let a  —> 0  to get

~ We,a,f})2 +  o (by (6.24)),
a  oc

finally, we use Schwartz inequality to show that the last term  goes to 0.
We conclude that the inequality (6.37) can not hold.

Similar as above, we can prove inequality (6.38) can not hold either.

Now we suppose (6.36) hold.
By claim (6.23), (6.31) and (6.34) we know for sufficiently small e <  eQ, 

a  < a 0 and < /3q, there exists positive constant C(eo,oco,0q) >  0, such that

dist{(tC'Qi0, zt af i) ,d  QJ- ^  C7(coj £*0 ) Po)t 

dist{(stiQî 3, Ujt a A), d Qy ^  C (co> ^o) j

if we further take into consideration (6.27), (6.28), (6.30),(6.33) and our hy

pothesis tha t W ,V  € T>2 , we know there exists C  > 0 such that

>  C ,
a

> c.
a

Moreover, (z c,a,p — ^c,a,A)/a  is bounded.
We conclude for e <  eo sufficiently small,

pV(St,a,0, we,a,p) -  — ^ ^ )  >  (6.41)
O' 2

Now we try to obtain a contradiction to (6.36). F irst notice th a t the 
( i )
kooperator H j^  is increasing with respect to w and decreasing with respect to

A. we have

r r ( l ) / a  _  \X /(+  „  \  ~  S (<Q>0 a  Z e ,q ,^  ~  w e,q,0 ~T 1Hko \ t e<ayp, zetCt'0 ,W \te'aj}, zeiQt0), ot

(6.42)
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We conclude that if (6.36) holds, then

p e kot<.a .3 <  V ( S e ,a ,0,

te ,a ,0  S t,a ,0  z c,a,/3 w t,a,f3 ~fS l
7L ’ 71 ’at a

~  {̂ £,0 ,^! ze,Q,̂ ) ^ ( s«,a^i we,a^)i
te,a,0 ~  s t,a ,0  z t,a ,0  ~  w e,a,0 i r c  An\
  ------- ’ --------   ’ c>a>̂ J I6 4 3 )

Notice tha t the operator is continuously differentiable if its arguments 
are as in the right hand side of inequality (6.43), we can repeat the same 
procedure as we did in (6.40) to obtain a contradiction to (6.43).

Q.E.D.

R e m a rk  6.2 Although we proved the above comparison result in in the cylin
der domain Qi, a review on the steps shows the result holds true for arbitrary 
sub-domains of Q\ with smooth boundaries. Indeed, the difficulty lies in the 
lower boundedness of and the case Qi is the most difficult situation.
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CH A PTER  7 

THE EXISTENCE OF THE  
FREE BO U ND AR Y

The fact tha t the value function V  is concave on S  could be used, in 
combination with its viscosity solution property, to partition the domain Q 
into three sub-domains corresponding to  the three terms in the Hamilton- 
Jacobi-Bellman equation (5.7).

We define for (t, x , y) G Q, the sub-differential with respect to (x, y) by

d v ( t ,x ,y )  = {(8x,8y) G R 2 :

v(t, f , 77) < v(t, x, y) + 6X(£ -  x) + Sy(ri -  y), V(f, 77) e  R 2}.

Proposition 7.1-Proposition 7.3 are finite horizon version of the convex 
analysis results of section 6  [28].

P ro p o s it io n  7.1 For all (t, x, y) G Q, (Sx,Sy) G dv(t, x, y), we have the fol
lowing properties:

1 .  S x - ( 1 -  X ) 5 y  > 0 ,  8 y  -  (1 -  f j . ) 8 x  >  0.

2. 8X > 0, 8y >  0.

3. x8x +  y8y =  pv(t, x, y ).

4 . 'Yp~ld v ( t , x , y )  =  9u(t,7x,7y), V7 >  0.
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5. Let (5X, 5y) €  dv(t, x, y), then (5X — 6x)(x — x) + (Sy — £y)(y — y) < 0. 

Define for (t , x, y) € Q,

9+(t ,x ,y )  = max{£y -  (1  -  p)Sx : (Sx,Sy) € d v ( t ,x ,y ) } ,

8~(t,x ,y)  = min{<5y -  (1  -  /x)^x : (6x,Sy) €  d v ( t ,x ,y ) } .

Clearly, 9+(t, x, y) > 9 ~ { t ,x ,y ) > 0, and the above m axim a and minima 
are attained because dv(t, x , y) is compact.

For fixed t 6  [0, T], p > 0, define

P ro p o s it io n  7.2 Under the above setting, for  0 <  p < p < oo, we have

(x(p), y{p)) =  (1 — (1 — p)p, - (1  -  A) +  p), (7.1)

po(t) =  inf{p >  0 ; 8 { t,x ,y )  — 0 }. (7.2)

0+{t,x{p),y{p)) < 9  (t,x(p),y(p)).

Moreover, if  po(t) < oo, then 9 ( t ,x (p0(t)),y(p0(t))) = 0 ,  and

9+{t, x(p), y(p)) =  0, Vp > po.

For fixed t €  [0, T], if po(t) < oo, we can partition the sector set

Q t = {(t , x , y ) € Q}

into two parts,

S S ( t ) =  {(t , x , y ) : {~rx,7 y) =  (x(p),y(p)),

for some 7  > 0, and some p >  P o ( t ) } ,

Qt \  SS (t)  = {(£, x, y) : ( 7 X , 7 y )  =  (x(p), y(p))

for some 7  > 0 , and some p <  po(£)}-

Similarly we can define for fixed t €  [0, T], p >  0,

(Hp),y(p)) =  ( - ( 1  -  p)  + Pi i  -  (1 — *)p), (7.3)
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P o ( t )  = inf{p > 0 : Sx — (1 — A)6y =  0

for some (6x,Sy) G d v ( t ,x ,y )} .  (7.4)

If po(t) < oo, we can also partition Qt into

S M M (t)  =  {(t , x , y ) : ( t x , 7 y) = (x(p), y(p)),

for some 7  > 0 , and some p >  Po(0 }>

Qt \  S M M {t)  =  {(£, x, y) : (7 1 , 7 y) = (x(p),y(p)),

for some 7  > 0, and some p <  Po(£)}-

P ro p o s it io n  7.3 For any t 6  [0, T], (Sx,Sy) € d v (t ,x ,y ) .

1. Sy -  (1 -  p)5x =  0, i f  (t, x, y) G SS(t); Sy -  (1 -  p)Sx > 0, if

(£,x, y) e Q t \  SS(t) .

2. 5X — (1 — A)<5y =  0, i f  (£, x, y) G S M M (t);  Sx — (1 — A)Jy > 0, if  
( t , x , y ) e Q t \ S M M ( t ) .

3. S S ( t ) fl SM M {t)  =  0.

P ro p o s it io n  7.4 For f G [0, T),

lim infpo(s) >  po(t), (7.5)
5—ft

lim infpo(s) >  po(t). (7.6)
5—►t

Proof: To prove (7.5), let (x(p), y{p)) be defined by (7.1), p0 be defined by 
(7.2). We observe that V (s , x(p), y(p)), as a function of p, is strictly increasing 
if p <  po(s); is constant if p >  po(s). Moreover, po(s) >  0, for all s G [0, T).

Suppose there exists a sequence {s„}, such that limSn_,£ Po(s„) <  Po(t) — 2c 
for some e > 0 , then we have on the on hand,

V (sn,x (p o { t ) - e ) ,y (p o ( t ) - e ) )  =  Vr(s„,x(p0 (t)),y (p 0 (t)))

V(t,x(po(t)),y(po(t))).
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On the other hand,

V{sn,x(po(t) -  e),y(p0{t) -  c)) V{t,x{pQ{t) -  e),y(po(t) -  e)).

So V (t,x (p Q(t) — e), y(po(t) -  e)) =  V (t,x (p0(t)), y(po(t))), which is a con
tradiction.

The proof of (7.6) is similar.
Q.E.D.

For each fixed t E [0, T ), we will denote N T { t ) =  Q ( t ) \ { S S ( t ) u S M M ( t ) } ,  

S S  =  S M M  =  D t^ o ^ S  M  M  {t) and N T  =  Ute[o,T,]^^(^)-

P ro p o s itio n  7.5 For each fixed t € [O.T1), N T (t)  ^  0. Moreover, N T  is an 

open subset in Q.

Proof: Suppose N T (t)  =  0 for some t E [0,T), then { S S ( t ) u S M M ( t )  =  S. By 
Proposition 4.3, either S S ( t ) = S  or S M M (t)  = S  which are both impossible. 

T hat N T  is an open set in Q can be directly verified by (7.5) and (7.6).
Q.E.D.

P ro p o s itio n  7.6 Suppose we have that SS(t)  ^  0 fo r  some t  E [0, T), then 
there exists 5 > 0, such that for all s E [0, t], SS{s) contains the wedge

{ (x ,y ): x +  (1  — p)y > 0 , x +  (1 -  p. -  S)y < 0 }.

Proof: For t  E [0,T), let S > 0 be a small number to  be determined later. We 
define

Q(S,t) = { (s ,x ,y )  e  Q : 0 < s < t, x  + ( l - p ) y > 0 ,  x  +  (1 -  p. -  S)y < 0}.

For (s, x, y) E Q(S, t), we define

V (s, x, y) =  -j4(s) l~p{x +  (1 -  u)y)p,
P

where
A(s) =  { -^ ( s > y r h .
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From the hypothesis S5(t) ^  0 and the homothetic property of V  and V, 
we have for 5 > 0 sufficiently small,

V (s ,x ,y )  =  V (s ,x ,y ) ,  (s , x , y ) G dmQ(S,t).

We claim tha t V” is a viscosity solution of (5.7) in the domain Q(6, t). 
T hat V  is a viscosity sub-solution can be seen from the fact th a t V ( t , •, •) 

are continuously differentiable functions and

We prove V  is a  viscosity super-solution of (5.7).
Suppose (s, 27, y) G Q(S, t), <p G C l'2(Q(6, £)) and V —tp has a local minimum

at ( s . x ,  y).  We have,

{Cep -  U ( ^ ) } ( s , x , y )  > - * ^ - ( s ,x ,y )  + A{s)~p(x + {\ -  p )y )p

f (i  (1- /Qy )2A( )

_ a  (1 - -̂ V ^ ( s )  -  r — f — X W
27 4- (1 — ^)y 37 4- (1 -  fJ.)y

> A(s) p(x +  (1 -  y)y )p

> .A(s) P (27 +  ( 1  -  / i ) j / ) P

>  0, (7.8) 

where the the last step is achieved by making the constant 5 sufficiently small.
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We also have

=  A (s ) l~p(x  +  (1 -  p)y)p~l ( 1 -  (1 -  A)(l -  fj,)) 

> 0. (7.9)

(7.7),(7.8) and (7.9) showed th a t V  is a viscosity super-solution of (5.7) on
Q(S,t).

Now we can invoke Theorem 6.2 and Remark 6.2 to obtain th a t V  =  V  on
Q{5,t).

Q.E.D.

P ro p o s itio n  7.7 Suppose we have that SM M (t)  0 for some t €  [0, T),  
then there exists S > 0, such that for all s 6  [0, t\, S M M (s )  contains the 

wedge {(x, y) : x  + y / (  1 — A) >  0, x + y / ( l  — X — 6) < 0}.

P ro p o s itio n  7.8 Let Q be a sub-domain of Q with smooth boundary. Suppose 

the value function V satisfies

d V  d V
— - ( 1 - ^ ) — > 0 ,  ( t , x , y ) e £ l .  (7.10)

then V  is also the value function of a new control problem which has all the 
characteristics as described in Section 5.1 except that it does not has the option 
of making transactions from stock to bond.

Similarly, suppose V satisfies

d V  d V
— - ( 1 - A ) — > 0 ,  ( t , x , y ) e Q ,  (7.11)

then V is also the value function of a new control problem which has all the 
characteristics as described in Section 5.1 except that it does not has the the 
option of making transactions from bond to stock.

Proof: We only give a sketch proof of (7.10).
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Following the procedure from Theorem 6.1 to Theorem 6.2, we can show 
that both V and the value function of the new control problem are the unique 
viscosity solution of the equation

_  d V  d V  dV
m in{£K - [ / ( — ), —  -  (1  -  A) ^ }  =  ( t , x , y ) e Q .

V (t , x, y) =  V (t , x, y ), (£, x, y) G d'Q.

Thus they must be the same.
Q.E.D.

P ro p o s itio n  7.9 For each t G [0, T ), S S { t) ^  0.

Proof: Suppose for some t 6  [0, T),

S S ( t ) =  0. (7.12)

By Proposition 7.6, we know SS(s)  =  0 for all s G \t,T\. In particular, for

s > t , S  =  N T (s ) U  S M M (s) .
For 5 > 0, we have by Proposition 6.1,

V(t, - ( 1  -  fi) +  6 ,1) >  ± f ( t ) l- pP .  (7.13)
P

In the following, we will estimate the increasing rate of V(t, — (1  — fj) + 6 ,1) 
w.r.t. 6 under hypothesis (7.12) and derive a contradiction against (7.13).

From hypothesis (7.12) and Proposition 7.8, we can assume the state pro
cesses (X , Y) satisfy for s > t,

d X ( s ) =  (rX(s) -  c(s))ds -  dL(s), X ( t - ) = - ( 1  -  /z) +  S, 

d Y (s ) =  aY (s)ds  + <jY(s)dW(s) +  (1 -  A)dL(s), Y ( t~ )  =  1 .

Let us denote Z(s) =  AT(s) +  (1 — fj)Y(s), similar to the derivation of (6.9) 
we have that

er(s- £)Z(s) +  J S e - r(u-°c(u )du  +  f  “ e - r(“- £)( l -  (1 -  A)(1 -  n))dL(u)

= 6 + j S e - r(“" £)a ( 1 -  n)Y(u)dW (u)
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is a nonnegative super-martingale w.r.t. the probability P. 
Define

r  =  inf{s >  t : X (s)  +  (1 — f i ) Y (s) =  0} A T. 

We have for any admissible control (c(s),L(s)) and 1 <  q < £

E ^ ^ d s  =  E £ C- ^ d s

< - { E ( r - t ) W E { [  c f s ^ d s } *
P J t

=  ~ { E { t  — t ) } ? f  c(s)P4ds}«
P J t

< ~ { E { t  -  t ) \ 7 e r{T- t)p 
P

■{E{£ ( e - ^ ^ r d s j k Y { E i e lT) ^

<  ~ { E ( t  - t ) } 7 e r(r- t)p(T  
P

■{E £  e - r(j-^c(s)ds}pe i^ 1(^ +1)

<  C {E {t  - t ) } 7 5 p. (7.14)

We claim th a t lim ^o  E ( r  — t) = 0 .  Thus (7.14) is a contradiction against 

(7.13), and the proof will be finished.
Since (X (s) ,  K (s)) have the following explicit solution:

X (s )  =  [ - ( 1  -  fi) +  -  £  er(,- u)c£(u)du -  J ‘ er(5~u)dL(u),

T (s) =  e x p { ( a - y ) ( s - t ) + < r ( W ( s ) - W ^ ( t ) ) }

+ £  exp{(a — ~2 ~)(s — u) +  crW(s — u )}(l — A)dL(u),
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we have

X (s )  +  (1 -  p)Y (s)  =  [ - ( 1 - m ) + '5 K (' - ' )
2

+ ( 1  — m) exp{(a — y ) ( s - t ) + o W ( s - t ) }  

+  +  (1 -  #.)(! -  A)

2
• e x p { (a  2~ ^s — u) + <j W ( s — u)}dL(u)

-  J S - e r{s~u)c(u)du. (7.15)

To estim ate the first term in (7.15), let us define

n  =  inf{s >  t : [—(1 — /z) +  <S]er(5-t)

+  (1 -  n) exp{(a -  y ) ( s  -  t) +crW (s -  0}  = 0 }
2 £

=  inf{s > t : (a — ----r)(s  — t) +  crW(s — t)) = ln (l —  ------- )}.
2* I

Let us denote v  =  £(ar— r),  then i/{s—t) + {W{s) — W{t)) is a Brownian 
motion with drift u, and 7 i is its passage time to hit b(S) =  £ ln (l — yr^)- The 
density function of T\ is given by (e.g. [24] pl97)

P[Tl - t z d i s - 1)} =  y 161 e x p { - (i,- f ( s - t))2-}.
1 V y/2ir(s - 1) 3 2 ( 5  - 1)

Clearly we have
£ [(r , -  t) A T\  =  0 (4 ). (7-16)

To estim ate the second term in (7.15), let us define

W*(s — t) =  sup |v(u — t) +  (W {u) — W{t))\,
t< U < 4

r 2 =  inf{s > t : W*(s -  t) =  log[(l -  ^ ) ( 1  -  A)]

<  inf{s > t : - e r(a" u) +  ( 1  -  /x)(l -  A)} 

•e x p { (a -  y ) ( s  - u )  

for some 0  <  u  <  s}.

2

exp{(<* — ^~)(s — u) +  <r(W(s) — W(u)) =  0, &
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Clearly, P {r2 > 0} =  1, so (7.16) implies

P { r l  > t2} —► 0, as 5 —»• 0.

On the set (r x <  r2), we have by (7.15) ( r  < Ti). Thus

E { ( r - t ) }  = E { ( T - t ) I {Tl<T2)} + E { ( T - t ) I [Tl>Ti)}

< E { { n  — t)I(n<T2)} +  (T — t )P {rx > r2}

< E { tx - t }  + ( T -  t ) P { n  > t2}

—̂ 0  ( as 6 —̂ 0 )

Q.E.D.

Similar to the above proposition we also have 

P ro p o s it io n  7.10 For each t e  [0.T), S MM{ t )  ^  0.
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C H A PTER  8 

THE RUGULARITY OF THE  
VALUE FUNCTIO N

8.1 C ° Continuity of the Value Function

Recall that we used (6.10) to transform the value function V to u. Then all 
the properties of of u can be mapped V by this transform ation, and vice versa. 
The domains SMM, SS, NT are also transformed into disjoint sub-domains of 
Q i, which for notational simplicity we will still denote by SMM, SS and NT. 
The particular meaning of them depends on the context.

P ro p o s it io n  8.1 Let Cl =  [£o,£i) x (a, b) be a subset of N T  in Qi. Then 
on this subset Q, the function u as defined by (6.10) is the unique viscosity 
solution of the equation

- ^ - d i ( z ) p u - d 2( z ) ^ - d 3( z ) ^ - U ( p u - z ^ )  =  0, V(£, z) E Q, (8.1)

u{t, z) =  u(t, z) V(£, z) E d ’Q.. (8.2)

Proof: Same as Proposition 7.8.
Q.E.D.

P ro p o s it io n  8 . 2  Let Cl =  [to,£i) x (a, b) with 0 , 1  0  (a,b) ■ Then on fi, 
| j ( t ,  2 ) exists everywhere and is continuous w.r.t. both (t , z ).
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Proof: We first show that u(t, -) is continuously differentiable on (a, 6).

Let (t0, zo) €  f2, and suppose we have,

^ ( f o ,2 o )  <  ^ (* b .* > ) -  (8.3)

For e > 0 we construct a  test function <p by

cp(t, z) =  u(t0, z0) + 5(z -  z0) -  ^ ( z  -  Zo)2 +  (t -  to)2,

V(t, z) € B r(zo) x (t : t  >  t0, t — t0 <  r),

where S =  | ( ^ £ ( t 0,zo) +  ^ ^ ( t 0 ,z0)) and r  >  0 is a small positive number to 
be determined later.

Fix an e >  0, from (8.3) it is easy to see th a t there exists r > 0 such that

p( t0, z) > u(t0, z) Vz E B r(z0). (8.4)

Since u(-, z0) is a  decreasing function, we also have the strict inequality

<p(t, zo) > u(t, z0) Vt >  t0, t — t0 <  r.

Thus (8.3) implies that for each fixed t  > to,t  — tQ < r, there exists r(t)  >  0,

such tha t

z) > u(t, z) V|z — z0| <  r(f).

We take r(t)  =  i n f { r  : <p(t,z) > u(t, z),V |z — zq| <  r}, and w ithout lose of 
generality we assume <p{t,r{t)) =  u ( t ,r ( t) ) .

We claim
lim inf r( t)  >  0. (8-5)

tjio

Suppose (8.5) is not true, then we can find a sequence tn 4 to, such that 
lim ^oo r ( tn) =  0.

By the concave property of the function u(t, •), we can find A  >  0, such 
that

u(<o,r(t)) <  u(t0 ,zo) + 6 (r(t) -  zq) -  A |r(i)  -  zq|,
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Thus

7*(^n)) =  **(̂ n))

So

=  u ( t 0l zo) +  6 ( r ( t n ) -  z0) -  r ( t n ) -  z0 ) 2 +  ( t n  -  t 0 ) 2

>  u ( t 0 , r ( t n ))  +  A l r C ^ )  -  z 0 \ -  ^ ( r (*n) -  z o ) 2

>  u ( t n , r ( t n ))  +  A | r ( t n ) -  z 0 \ -  ^ ( r (*n) “  z o ) 2

A | r ( t n ) -  z o \ -  ^ ( r (*n) -  Zo)2 <  0 ,  V in .

This inequality can not hold for small r(£n). So claim (8.5) is true.

(8.4) and (8.5) imply that there exists a r > 0 such that

<p >  u V (t ,  z) €  B r ( z o )  X (£ : t  >  t0, t  — t 0 <  r ) ,

Since u is a viscosity solution of (8.1) (c.f. Remark 3.3), from sub-solution 
property we have

1̂ ___

—di(zo)pu(t0, zo) — d2 {zo)S -I- -<f3(zb) -  U { p u ( t Q, z0 ) -  zq8 ) <  0.

Since d3 (z0) > 0 when Zq ^  0 ,1 , the above inequality can not hold for small 
e. We conclude (8.3) is not true. This says u ( t ,  -) is differentiable pointwise, 
which further implies u(t, •) is continuously differentiable.

Next, we show on the line z  =  z0

d%L dix
lim - ^ ( t ,  zq) =  ^ ( t 0, ^0)• (8-6)t-Ho oz Oz

Suppose (8.6) is not true, without lose of generality, we assume there exists 

e > 0 and a sequence tn —> to, such that

^•(^m  zo) > 2°) +  e-

We pick z such that z  < zq. Then
d u

u ( t n , z) < u(tn, Zo)  +  Z o ) ( z  ~  Zo)

d u
< u(to, Zo) +  zo)(z  -  «o) +  e(z -  zo) 4- 0 ( t n -  t0)

=  u ( t o , z )  +  { ^ ( t o , Z o ) - ^ ( t o , z g ) } ( z - Z o )

+e(z — Zo) +  0 (tn — to) (8-8)
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Let tn —► t0 and choose z close to zq, we have by the continuity of S to . - )

\u(tn,z)  -  u{tQ,z)\ > -  2)1, V*n,

So (8.7) can not hold and this imply (8.6) must be true.
Finally, to show is jointly continuous w.r.t. (t, z), we claim that the 

convergence of the following limits are uniform w.r.t. t,

lim ^ - ( t ,  z) = ^ ( t ,  z q ) ,  lim ^ . ( t ,  z) =  ^ ( i ,  z0).
Z-Uo O Z O Z  zfzo O Z  O Z

But this can be readily derived from the concavity of u(t, ■), (8.6) and Dini’s 

theorem.
Q.E.D.

8.2 The Bootstrap Method

P ro p o s itio n  8.3 Let Q be defined as in Proposition 8.2. Then the function 

u as defined by (6 .1 0 )  is the unique viscosity solution of  the following linear 
parabolic differential equation

- ^ - d 3 ( z ) ^ + h ( t , z ) = 0 ,  V ( ( ,z ) e « ,  (8.9)

u(t ,z)  = u ( t , z ) ,  V(£, z) € d ’Vt, (8.10)

where h{t, z) is given by

  dix
h{t ,z)  =  -do(z)pu(t, z) -  d2 (z)— (t, z) -  U(pu(t, z) -  z — (t,z)). (8.11)

Proof: That u is a viscosity solution of (8.9) (8.10) can be proved by direct 
verification. We only need to show the uniqueness result.

We first observe from Proposition 8.2 that h(t, z) €  C(f2). This fact entitles 
us to use the method described in Lemma 6.1, Lemma 6.2 and Theorem 6.2 
to prove similarly a comparison result. We recapitulate the essential point in 

the following.
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A careful examination of the comparison proof shows that all the steps 
tha t lead to (6.32) (6.35) can be directly modified to provide us the following
result:

Suppose there are two distinct viscosity sub and super solutions to the 
equation (8.9) and (8.10), then there exists e0, ao, 0o, po > 0, such tha t for fixed 

Po and for all e <  e0> <* < oc0, 0  < 0Q, we can find (t£,Q,0 , z*.,a£), (s£lQ,£, uf£,Q,0 ) 
bounded away from dCl, and uniformly bounded A£,Q,0 <  B ( Qp, satisfying

e + l J— g2~ r  w - t w t  ~  SwJ> <  0. (8.12){te,a,0 -  €A:i)2 a

J e , a j  S ^ j ,  _  d 3 ( w  ) B  +  h ( s €,QJ ,  W ^ j i )  > 0, (8-13)
OC

where (t£,Q,^, z^a.$) and (s£iQî , weiQî ) are points in the interior of Q such th a t 

dist{(tttaj ,  ze Q<0 ), (tt'Q'0 , ^£,q,^)} ^  zki,

dist{(sê f f ,  W^aj), (se,a,/9j ‘We,a,ff)} — €.k\.

Moreover, we have:

^ ( ( ^ £ , Q , / 3  —  s c , a , ^ )  +  ( ^ £ , Q , ^  W c ' C t ' f j )  )  ^  0 .

Subtract (8.13) from (8.12), let e —► 0 first and then let a —> 0, we will 
obtain a contradiction w.r.t. 0  > 0.

Thus the uniqueness result must hold.
Q.E.D.

To continue our process of upgrading the regularity of u, we need to invoke 
some results from the theory of second order partia l differential equations of 

parabolic type. We refer the readers to [25] for the  detailed information on
this theory.

We will need the following divergence form of (8.9) (8.10).

f t +  T z { i i { z ) ~  ^ {z)Tz  =  h( t ' z) v ( t ’ z ) e n  (8' 14)

u(t, z) = u ( t , z )  V(t,z) €  d*£l (8.15)
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D efin itio n  8.1 A function u  €  C(f2) is called a continuous weak solution of
(8.14) (8.15) i f u E  W_I,2(fl) fo r  some p > 1 and for all ip €  C7o’2(f2),

L

, du , ,  . d u  dip . .d u  .
' ^'~~dt(p+ 3^ d z  ~dz + + hip}dxdt =  °>

and moreover, u( t , 2 ) =  u(t , z) for  all (t , 2 )  €  3*f2.

D efin itio n  8.2 Let X  =  (s, 2 ) €  ft, £/ie parabolic cylinder is defined by 

Q(X,  r) =  { Y  F? z \Y  — X \  < r , t  > s}, where |X | =  m ax{|2 |, s*}.

The parabolic Holder norms are defined by:

r 10 r j r xr t / \  1+ q \Dzu ( \  ) Dzu(Y)  | v  - o lM i+a =  sup{d(X, Y ) l+Q  _  r | Q  : X  #  r t n  S2>,

(u )i+a — sup{a(A, Y)  |X  — yr|1+Q 

MI+« =  Mo +  diam(Q)\Dzu\o +  [u]?+a +  {u)°l+Q,

where d(X )  =  dist{X,d*Q  n  (t >  s)}, d ( X , Y ) =  min{d(X), ^(V')} and 0 <

a  <  1.

u is said to be in H*+a iff  \u i l + Q  < 0 0 .  Clearly H[+a is a Banach space. 
We will also need the following weighted Morrey space norm:

M ?j+ . =  S“ P r~2~ad (X ) l+a f  \u\dY.
x  e  a  Jq(Xr)

0  <  r <  d (X ) /2  

u is said to be in M ^ +a iff Mi?2+a <  °°-

It is easy to verify tha t if u is a continuous function, then

<  C (O )|u |0

The following a priori Holder estimate for H[+a weak solutions is taken 
from [25] Theorem 4.8.
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(2.)L em m a 8.1 Let Q be as in Proposition 8.3. Suppose h €  Af12+a and u € 
H[+a is a weak solution of  (8.14) (8.15). Then there exists a constant C 
depending only on d$(z), a  and f2, such that,

W;+« < C(\u \0 +  |A |g +J -  (816)

The following stability property on viscosity solution will be needed also, 

(e.g. [13] chapter 2 Lemma 6.2)

Lem m a 8.2 Let ht 6 C°°(Q), and he —»• h uniformly onQ  as e —> 0. Suppose 
for each e, ut is a viscosity solution of the linear equation

(8.17)

uc(t, z)  =  u(t, z ) V(t, z) € d*£l. (8.18)

Moreover, uc —*■ uq uniformly on Q.
Then uq must be the viscosity solution of  the equation (8.9) (8.10). In 

particular, u 0 = u.

T heorem  8.1 Let Q be defined as in Proposition 5.2. Then the function u as
defined in (6 .1 0 ) is C°° on Q.

Proof: Let us define

K e x p { l / ( t 2 +  z2 — 1)} if t2 + z2 < 1,

:(pit, z ) =  ,
 ̂ ~ i f t2 + 2 2 >  1,

and let
hc(t, z ) = h *  <f>e(t, z ),

where 4>c =  l f e 2 <f>{t/e, z/e).
Then hc e  C°°(n) and

he(t, z) —¥ h(t, z) uniformly on fi as e —► 0. (8.19)

By standard result in linear parabolic equation theory(e.g. [25] Theorem 
5.9, Theorem 5.10), we know for each e > 0, there exists an ue €  C 1,2(fl) n  
C°(Q) which is the classical unique solution of the equation (8.17) (8.18).
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Clearly, the classical solution uc is also a viscosity solution of (8.17) (8.18), 
and moreover, a i / f +a weak solution of (8.14) (8.15) as well.

Because ut is a  H[+a weak solution of (8.14) (8.15), we can invoke Lemma 

8.1 and obtain the estimate

lU€m — U*nll+a — ~  lo +  |/l£m — h£n|12+Q)

<  C(\htm - h en\0), (8-20)

where the second inequality is obtained by the standard maximum princi

ple^.g. [25] Theorem 2.11).
Thus (u£m)“ =1 is a  Cauchy sequence in the Banach space H*+a, and so 

there exists u0 G H[+a such tha t |u£m — u0|[+Q —> 0. In particular, we have

ju£m — uo|o —> 0, as e —> 0, (8-21)

^  G H a ( Q 0) ,  Q 0 C C  Q . ( 8 .2 2 )
oz

On the other hand, because u£ is a viscosity solution of (8.17) (8.18), and 
also because of (8.19) (8.21) we can invoke Lemma 4.2 and conclude that 
u0 is actually the unique viscosity solution of (8.9) (8.10). Moreover, by the 

uniqueness of viscosity solution, we know u0 =  u.
We conclude from (8.22) that the function u is actually parabolic Holder 

continuous, that is,
dlL

G Hq{Qo), fio C C  fi. (8.23)oz
Now from (8.11) (8.23), we know that h G Ha(Q0). So we can invoke 

the standard theory (e.g. [25] Theorem 5.9, Theorem 5.10) and obtain u G

-^2+a(^o)-
We can continue this bootstrap process (e.g. using the method similar to

[25] Theorem 6.6) to  get
u G C °°(fi).

Q.E.D.
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C H A PTER  9 

ESTIMATES ON THE  
LOCATION OF THE FREE  
BO U ND AR Y

9.1 Upper Bound of the Free Boundary

In accordance with our intuition, we have that it is never optim al to be 
short in stock market if a  > r.

P ro p o s it io n  9.1

{(t, x, y) €  Q : y < 0} n  N T  =  0.

Proof: Suppose the above statement is not true, then on the x-axis there exists 
a point (t0, x 0, 0) € N T .  Because NT(to)  is of wedge shape, we have{(t0, x , 0) : 
Vx >  0} C N T .

Moreover, since NT is open, if we define

To =  sup{t : t > to, (t , x, 0) €  AT, Vx >  0},

then we have to <  T0 and {(t, x, 0) : Vx >  0} C N T  hold true for all to <  t <
T0.
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Clearly we have {(T0,x , 0) : x  > 0} C S M M .  Thus,

V(T 0 , x ,y )  = V(T0 , x +  y / (  1 -A ) ,0 ) ,  V(x, y) €  S  D (y <  0). (9.1)

Using the method similar to th a t of Proposition 8.3, we can show for 
(s, x) € (to,T0 ) x (x : x  > 0), the function U ^ x )  =  K(s, x, 0) is actually 

the value function of the following control problem:

sup E {  f T° C- ^ d s  +  V(T0, X{Tq), 0)}, 
cGAt Jt P

dX(s)  =  (r X ( s ) — c(s))ds, X ( t )  =  x,

where the admissible control set is A t =  (c(s) >  0 : such th a t X (s) > 0, Vs > 

«}■

The dynamical programming equation of this problem is

dv , dv dv c? . . . . _ .  .
—  +  sup{rx— c —  i ------} =  0, (s, x) €  (t0, T0) x (x : x  >  0),OS c >  0 ox ox  p

v(T0 ,x) = V(Tq, x ,0) ,Vx > 0; u(s, 0) = 0 ,V s  €  [t0,T0].

Notice that V^T^x, 0) =  V(T0, l ,0 )x p, we can use the  same method as in 
Proposition 6.1 and conclude

v(s. x) =  -A (s)xp,
V

where A(s) =  { ^ ^ )(e Î T -s  ̂— 1) 4- (pV(T0, 1 ,0))Tr? e ‘̂ ^ T -^ } 1_p, and it sat
isfies the equation

— -?-A'(S) +  rA(s) +  — =  0, A(T0) = (pV(T0, 1 ,0 ))^F . (9.2)
P P

Hence

V(s, x, 0) = -A (s )x p, V(t,x) e  [to, To] x (x : x  >  0). (9.3)
P

Let Q =  (t0, To) x {(x, y) : x  + y / ( l  — A) > 0} D {y < 0}, and define,

V (t, x, y) =  -  A (s)1_p(x +  :j-^T-)p, (t, x, y) €  Q. (9.4)p I — A
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We claim tha t V  = V  on Q. This will contradict with our supposition that 
(to ,x , 0) £ N T ,  and thus complete our proof.

To prove the claim, we suffice to show(c.f. Remark 3.5) V  is the viscosity 
solution of the equation (5.7) with boundary condition

V (t , x ,y )  = V (t, x, y), (t, x, y) £ d mQ.

From (9.1) (9.3) and the definition of V  (9.4) we see readily that the above 
boundary condition is satisfied.

That V  is a viscosity sub-solution is also clear from the definition of V.
T hat V  is a viscosity super-solution of (5.7) could be seen from the following 

computation similar to tha t of (7.8).

Let ip £  C l,2(fi), and suppose V  — <p attains a local minimum a t (t , x, y) £  
Q, then

l g(i - p )y  _
2(1 — p) (1 — X)x +  y  a  ’ U  

1 "  P-A'(t) -  (r +  J f *  -  i ^ ) >
P 2(1 -  p)cr2 p

> A(t)-*(x + -  rA(t) -  1 ^ 2 }  1 -  A p p
(Here we use the standing assumption a  > r)

= 0.(by (9.2))

Q.E.D.

9.2 Lower Bound of the Free Boundary

In the following of this section, we will use x  +  (1 — p)y  =  1 as the reference 
line to reduce the value function V (t , x, y) to the two dimension value function
u(t ,z) .  We denote

Qi  =  [0,T) x (- (1  — A)/(/z +  A — A/i), oo),
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and define
u(t ,z)  = V(t, 1 -  (1 - p ) z , z ) ,  ( t , z ) e Q i .  (9.5)

Similar to Proposition 6.6, we know u(t, z) is the unique viscosity solution 
of the following equation for (t , z) G Qi,

S  d U  J  (  \ W l  \ d u  J  f  \ d 2 u  TT(  d U \mm { - - fa  ~ di{z)pu -  d2 (z) —  -  d3 (z) —  - U ( p u  -  2 — ),
f)'ii du
— , p p u - [ z  + (I -  \ ) ( l  -  (I -  p)z} —  } =  0, (9.6)

where

di(z) =  r  +  (a  -  r ) ( l - p ) z  -  i<r2( l - p ) ( l - / z ) V ,  

d2{z) =  (a  — r)z ( l  — (1 — p)z) — cr2( l  — p )(l — p)z2(l  — (1 — p)z),

dz(z) = ^ 2z2(l -  (1 -  V)z)2,

with boundary condition

u(t, z) =  0, (£, z) G d*Qi. (9.7)

We will denote on the line x + ( l  — p)y =  1 the location of the free boundary 
between NT and SS by (1 — (1 — p)zm(t), z m(t)). From Proposition 4.4 and 4.6, 
we know z*(t) is lower semi-continuous and is locally bounded.

The proof of Proposition 8.2 could also be extended to provide us the 

following result:

P ro p o s itio n  9 .2  is continuous on Qi \  { z  =  1/1 — /*}. In  particular, for
any t G [0,T) with z m(t) #  1/(1 — p), we have

lim f - ( s >z ) =  ?"(*» **(*)) =  °-(s,z)^(t,z*(t)) dz d z

Since NT is an open set, for a fixed point (t, x, y) G N T  \  {x =  0}, we can 
find a open set O, such that (t, x, y) G O  and O is bounded away from the
close set S M M  U (x  =  0}. In the following, we will always restrict the state
processes in such an open set. So we can assume

dX(s)  =  (rX(s) — c(s))ds +  (1 — p )d M ( s ) ,X ( t )  =  x, s  €  [i, t 0 ] , (9.8)

dY(s)  =  aY(s)ds  +  aY(s)dW(s)  -  dM(s) ,  Y(t)  = y , s G  [t, r 0], (9.9)
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where r0 =  inf{s >  t  : (X(s), V(s)) O)}.
For any admissible strategy (c(s), M (s)) G A ( t ,x ,y ) ,  (9.8) and (9.9) have 

the following explicit solution for s G [£, r 0]:

X ( s )  = xer(,- t} -  £  er{s~u)c{u)du + (1 -  y.) £  eT̂ ~ u)dM{u),

Y (s )  =  yr f ( s ) -  J  Tj(s)r}{u)~ldM(u),

where 2
17(a) =  exp{(a -  y ) ( s  -  t) +  a\Vs_t}.

For e >  0, let us define

NT(c)  =  {(«,*,») e  N T  : x  + J _  ^  < z-(t) -  <}.

Clearly, (s, X(s) ,  T(s)) G NT(e)  holds for all s G [£,r0] if and only if for

all s G [£, r 0],

f ' W s M u ) - '  +  (1 -  »)(*■(*) -  £)er< -“»

-  (1 -  y ){ z '{ s ) -  e)Tj(s)T}(u)~l }dM(u)

> y v i s )  — {arer̂5-t̂ — J  er ŝ~u^c(u)du

+  (1 ~  v )yv (s )} ( zm(s) -  e), (9.10)

We notice th a t the strict inequality holds if and only if (s, X (s ) ,  K(s)) G

NT(e).
To make (9.10) amenable to handling, let us define for small 6  > 0,

rg =  inf{s >  t : |W (s — £)| >  6 * } A r0 A (£ 4 - S), (9 1 i)

and we will consider the time that predates rg.
By making <5 >  0 small, we can assume for s G [£, rg] and all sufficiently 

small e >  0,

xer 3̂~^ — er(*-u)c{u)du +  (1 — fj.)yrj(s) «  x  4- (1 — y )y  >  0,

77(s)t7(u)_1 +  (1 -  *x) (*’(«) -  e)er(,_u) -  (1 -  ft)(zm(s) -  c)t7(s)t7(u)_1 «  1 >  0.
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Now let us define for s G [t, rg], 

aSit(s) = yrj(s) -  {xer(s~t} — J  er(s_u)c(u)du +  (l - n)yv(s )}(z ' ( s ) - e ) ,  (9.12)

m s,e(s) =  sup{a,y,t (u) : u G [t, s]}. (9.13)

From the fact that z*(s) is lower semi-continuous and locally bounded, it is 
easy to  see that mgiC(s) is right continuous, increasing and uniformly bounded 
w.r.t. e. In particular, m^e(s) induces a measure on [t, rg].

The transaction process can now be constructed as the following:

be(s) = v(s)v(u)~l + (1 - f i ) ( z m(s) - e ) e r(4~u) -  (1 ~n)(z*(s)  -e)r](s)T](u)~l }~1,
(9.14)

M s,e{s) = J  bt {s)dms<e(u). (9.15)

Clearly, M(s)  is right continuous and uniformly bounded with respect to e on
[ t , T S \ .

P ro p o s it io n  9.3 For (t, x, y) G N T ,  suppose we choose the open set O, the 

stopping time Tg, and the transaction process Mgt€ according to the procedure 
described above, with the consumption strategy specified by:

cg,e{s ,X (s ) ,Y (s ) )  =  { ^ ( s ,X ( s ) ,F ( s ) ) } i ^ ,  s G [t, rg). (9.16)

Then

V ( t ~ ,  x , y) < E {  +  V(rg, X(rg), V (rs))} + C ( 6 , 0)e ,  (9.17)
Jt P

where C (6 , 0 )  is a constant that depends only on 5 and the open set O, but not 
on e.

Proof: Since {(A”(s), K(s)), s G [t, rg]} are restricted in NT{e)  C N T D { x  = 0},
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and V  €  C l,2( N T  n  {x  =  0}). We can apply Ito’s formulae to get

V { t 5 , X { t s) , Y { t s)) = V ( t~ ,  x ,y)  + { V ( t , X ( t ) , Y ( t ) ) ~ V ( t ~ ,  x ,y ) }

+  f ‘ { - C V ( s , X ( s ) , Y ( s ) )

- c M ^ s , X ( s ) , Y ( s ) ) } d s

/ T* d V{ - ^ - ( s , X { s ) , Y { s ) )

+  (1 -  * (» ) . K(S) ) } i % W

+  r  a Y ( s ) ~ ( s , X ( s ) , Y ( s ) ) d W ( s ) .  (9.18)
Jt oy

From our choice of c$ie(s) and the smoothness of V in N T ,  we have
/^I/ Cx / \P

- C V ( s , X ( s ) , Y ( s ) )  -  cs,< (s)Z - ( s ,X (s ) ,Y (s ) )  =
ox p

To estimate the third term in (9.18), we first observe that

J^ I{(X(s),Y(s))eNT(t)}dMs,e(s) =  0,

and moreover, from Proposition 6.1 and (9.6), we have

( s ,x ,y )  +  (1 -  p ) ^ - { s , x , y )  = - ( x  +  (1 -  p)y)p~ldy dy

I

d u ,  y \
dz S' x  +  (1 — p)y  

=  - { x  +  (1 -  p)y)p~l

< C(S, 0)e.

Since Ms,e is uniformly bounded with respect to e, we obtain:

, +  (1 X ( s ) ,Y ( s ) ) } d M U s )  < C(S,0)e.

V ( t ,X ( t ) ,Y ( t ) )  — V ( t—, x, y) can be estimated similarly.
(9.17) now follows forms (9.18) by taking expectations on both sides.

Q.E.D.
The following result on Brownian motion is standard (e.g. [24] p95).
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P ro p o s it io n  9.4 Let { ^ ( s ) ,^ 7,, s >  0} be a Brownian motion on (Q,^F,P),  
b > 0 be a fixed number. Define

W ' ( s ) = max \W{u)\, r  =  inf{s >  0 : W*(s) =  b}.0 < U < 3

Then
b2

P { r  < s } <  C exp{~— }.

T h e o re m  9.1 Let z 0 = (a — r ) / (  1 — fjt)( 1 — p)cr2.

1 . I f  z0 < 1/(1 — p), then for all t €  [0, T), we must have

. / x  a  — r
Z  ( t )  >  Z q =

(1 “ /*)(! ~ P W

2. I f  z0 > 1/(1 — fi), then either

z m( t ) > z 0, Vt G [0, T),

or
z-(t) =  _ L _  v t e [ o , r ) .

i  [A

Proof:
Let us first consider the case zn < r-̂ —.u — l—ft
Suppose there exists a t G [0, T)  such that

z*(t) < zo., (9.19)

We try to derive a contradiction.
We pick a  point z\, such that z*(t) < z\ < z q .  and then choose an open set 

O C  Q such th a t O contains the point (t, 1 — (1 — fi)zm(t), z*(t)) and satisfies

For the point (t , 1 —(1 —p)z*{t), z*(t)), and with arbitrary e >  0, and S > 0, 
we invoke Proposition 9.3 with the control (cs,e, Ms,e) as described therein. We
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obtain:

K ( t , l - ( 1 -*.)*•(«),*•(«)) <  E { [  ‘ C- ! ^ d s  + V(TS,X (T S),Y(T,))}
J t  P

+C{ 8 ,0 ) e

< E J T‘ + C(5, 0 ) t

+E{(X(n)  +  (1 -  n)Y(TS) r

■V{t6 : 1 -  (1 -  f j . )z i ,z i)} ,  (9.20)

where the second inequality came from the fact that V(t,  1 — (1 — f i)z ,z)  is 
increasing w.r.t. z.

Observe the definition of stopping tim e Tg (9.11), we have from Proposition 
9.4 th a t for sufficiently small 5 >  0,

P {rs < t  + 8 } <  C e x p { - ^ = } .

Thus (9.20) can be relaxed to:

V ( t , l - ( l - / i ) z m(t),z*(t)) < E  f t+S ^ ^ - d s  + C (8 ,0 )e
J t  P 

+ E ( X ( t  + 8 ) + (1 -  p )Y { t  +  8 ) Y

•u(t +  8 , z i )  +  C exp{  ^=} (9.21)
2 2 v  8

Now we use (9.8) and (9.9) to compute the term E { X ( t + 8 ) + ( l —p ) Y  ( t+ 8 )) 
in (9.21). We have:

/
£+£

p ( X ( S) +  (1 -  / i ) ^ ) ) * ” 1 

• (r -  cs,c(s))ds

/ t+S
P (X (s) +  (1 -  p ) Y ( s ) Y  

{(1 ~  P)(<* ~  r)z(s)

~ ~ 2 ^ ( 1 ~  P)2e 2 z(s ) 2 }ds, (9.22)

where z(s) =  Y (s)/(X (s) +  (1 — /z)y(s)).
Let us denote

7i(s) =  E p(X (s) +  (1 -  p )Y (s))»-l (r -  c ^ (s )) ,

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



1 0 3

-ft W  =  Ep(X(s)  +  (1 -  fi)V(s))p{ ( l  -  p ) ( c  -  r)z(s) -  ^ ( 1  -  p ) V z ( s ) 2.

Since M s j€( s ) is a right continuous process, so are (A”(s), K (s)). Thus by 
dominated convergence theorem 7 i(s), 7 2(s) are right continuous functions. 
We conclude that E ( X ( t  -+- S) -F (1 — f i)Y(t  +  S))p is equal to

1 ~  + y2 (t)S + o{6 )

= 1 - p { r -  \p u { t , z * { t ) ) ) ^ }5 + p { {  1 -  n){a  -  r ) zm(t)

- i ^ ( l  -  p)2* 2 zm(t ) 2 } 6  + o(S) (9.23)

where o(S)/S —> 0 as S —t 0.
Substitute (9.23) into (9.21) we obtain that V ( t , 1 — (1 — fj.)zm(t), z m(t)) is 

bounded by

E  r ^ s S l A f L ds + C(S, 0 )e  +  C e x p{----^=} +  o(6 )
Jt P 2  y/5

-r-u(t +  5, z i ) {  1 —p{r — \pu(t, ^‘ (i))]1̂ } } ^

+pu(t  +  S, z i){ ( l  - p ) ( c t -  r)zm(t) -  ~  ^ ) W ( t ) 2}5.(9.24)

We now construct a  consumption/transaction strategy for the point (t , 1 — 
(1 — p ) z i ,  z \ ) .  we first choose an open set O i  such th a t O i  contains the point 

(t, 1 — (1 — fi)zi, Zi) and satisfies

O i  n  { (t ,x ,y )  : -----r -  <  Z i ,  , y r -  >  Z q }  =  0.x  + (1 -  p)y   ̂ x  +  (1 -  fi)y

In the following, we will restrict the state processes in this open set. In par
ticular, the stopping time r0 in the equations (9.8) (9.9) will be r0 =  inf{s >

In this open set Ox, we define the same way as in (9.11), define consump
tion strategy to be exactly the same as c*>e(s) (for (£, 1 — (1 — fi)zm(t), z*(t))),
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and we do not make any transactions. We will have the following estimates:

- p ) z l , z l) > E  J ' ' ^ ^ d s  + EV(TS, X ( r s) ,Y(TS))

> E f t+S SidfLds-Cexp{----
~  J t  P 2 V S 1

+ E (X ( t  +  S) +  (1 -  f i )Y ( t  + S))p

■u(t + 6 , z i ) .  (9.25)

To compute E ( X ( t  + 6 ) -F (1 — p)Y ( t  +  6 ))p, we notice tha t the differences 
are that (X ( s ), T"(s)) start a t (t, 1 — (1 — p)zi,  z i) d M ( s ) =  0. We can 
repeat the computation from (9.22) to (9.23) to get

E ( X ( t  + 5) + ( l - p ) Y ( t  + 6 ))p =  1 - p { r - \ p u ( t , z m(t) ) } ^ } 6

+p{(l  -  p ) { a  -  r ) z x 

—  ̂ ^ (1 — p) 2<j2z\}5  +  o(S)( 9.26)

Thus,

rTs cx <s')p 1
V{t, 1 -  (1 - p ) z u z l) > E  /  — ----- ds — C exp{—— -=} -+- o(S)

Jt P 2 VS
+u(t +  S, z i ) {  1 -  p{r -  \pu(t, z*^))]1̂ } } ^  

+pu(t +  5, z i){(1  — — r)zi

-  ^ ( 1  -  m)2<t22i2}A (9.27)

Comparing (9.24) and (9.27), if we let e -> 0, we will get

V(t,  1 -  (1 -  p )z l ,2 i) > V(t,  1 -  (1 -  p)z*(t),z*(t)).

Contradiction.
Thus if zo <  1/(1 — mu),  then z*(t) > z$.
Now let us consider the case Zq > 1/(1 — mu).
We first notice tha t it is impossible to find a  t  €  [0, T)  such that

* <  z*(t) < z q , or z m(t) <
1 — p  1  — p .
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Because then z*(t) is locally bounded away from the degenerate line and we
still have the regularity of uz near (t , z*{t)), so we can repeat the proof for the
case zq <  1/(1 — mu) and derive a contradiction.

If for some t  6 [0, T), z*(t) =  1/(1 — /z), then because z ' ( s )  is lower semi- 
continuous, we must have zm(t) =  1/(1 — fj.). Otherwise we can reduce the case 

to the above situation.
Q.E.D.

Similar result holds for the free boundary between NT and SMM.
We use the reference line x  +  y / ( l  — A) =  1 and denote the free boundary 

between NT and SMM at time t by (1 — y*(£)/(l — A),y‘(t)).

T h e o re m  9-2 For all t € [0, T),  we have

^  (1 -  A ) ( a - r )  
y  (<) 5  ( i
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A PPE N D IX
1 1 0

This appendix contains some elementary compuation on the discrete Fourier 

transformation and discrete Cauchy distribution.

For a function f {x )  defined on Z d satisfying ^2x€Zd | / ( s ) |  <  0 0  > we define 
its discrete Fourier Transform:

/(* )  =  5 3  exP { ^  ' x } / ( x )> k  e  [_7r> *]*■
X € Z d

Clearly f ( k )  is a bounded function on [—tt, it\d.
The inverse Fourier transform relation also holds true:

=  TTTd [  ex p { -i*  • x} f(k )dk ,  x  e  Z d.

Proposition: Suppose

5 3  <  °°»
1 €Zd

then the following Pasavel equality holds:

E /  h k f d k .
x ezd

Proof: By hypothesis on f, clearly we have sumx€Zd\f(x)\2 < 0 0 . Thus 

f  f ( k ) 2dk = f  { exp{ik • x } f { x ) } 2dk
J [-7r,*t1 J[-v,ir]d x^ zd

I { 53 exP i k ' (x  +  y ) f ( x ) f ( y ) dk
x , y € Z d

(2 * ) ' £  /O r)2.
x £ Z d

Q.E.D.
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I l l

By Fourier analysis we have:

x  4 cos(2n — l)x  , ,
(2n — l)2 ’ *  e  I— -.--].

n = l

X 2
71-2 . ( - l ) n cos(nx) _ ^ r _ _ 7

=  y  + 4 Z ^  --------^2-------- ’ arel-TT.TT].
n = l

Combine the above two expression we obtain:

l < M - » ) ’ - g  =  £  n2 .
n =  1

In the above, if we let x  =  0, we will have

oo , 2
1 _  7r

n2 6f l= l

For a random variable X with discrete Cauchy distribution, i.e. P { X  == 
±n} =  C / n 2,n  € N,  we know from the above equality C  =  3 /x 2. Moreover, 

the characteristic function is given by

OO cos(nrr)

!exp{ifX} = 2 c r  =  1 -  l | j |  +
* ^  Tl 7T 2x2
n= l

For a d-dimension random vector X satisfying discrete Cauchy distribution, 

we have

D(k) = Eexp{ ik  ■ X }  =  1 -  k 6  H r>7r]*
i=l

The following estimate on 1 — D(k)  will be critical in proving the convert 

gence of lace expansion:

3{kl < 1 -  D{k) < 3 |* ’
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