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ABSTRACT

ON SOME DEGENERATE DEFORMATIONS OF COMMUTATIVE 

POLYNOMIAL ALGEBRAS

Melanie B. Butler 

DOCTOR OF PHILOSOPHY

Temple University, August, 2004

Professor Edward Letzter, Chair

We examine the prime spectra of algebras of the form

A =  K { x u x 2, ■ • • , xn}/(xiXj -  atijXjXi -  f3i:j, i < j ),

where and are elements of the algebraically closed field K.  When 0tj = 0 

for all i and j , we give a complete classification of the prime ideals, primitive 

ideals, and irreducible representations of A. We also completely describe specA 

when n =  3. These classifications prove that, under the Zariski topology, 

the topological dimension of specA is not greater than its Gelfand-Kirillov 

dimension, when n =  3 or when =  0 for all i and j .
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CHAPTER 1 

INTRODUCTION

Noncommutative polynomial equations have been the subject of extensive 

study since Dirac’s formulation of Heisenberg’s principles of quantum me­

chanics (see [3]). The solutions to noncommutative polynomial equations are 

representations. A deeper study of the topology of representations leads to the 

study of prime and primitive ideals. Broadly speaking, these are the topics 

discussed in this dissertation.

For example, we might want to study the solutions to the noncommutative 

polynomial equation xy  =  —yx, in noncommuting indeterminants x  and y. 

The numerical solutions to this equation are not interesting. There are, how­

ever, many linear operators satisfying this equation. The representations of 

the algebra defined by K { x , y } / ( x y  + yx), where K  is an algebraically closed 

field, are the solutions to this equation.

Systematic investigations of the representation theory of noncommutative 

algebras have been long standing (see, e.g., [10] and [21]). More recently 

the study of the representation theory of noncommutative algebras has been 

approached using noncommutative algebraic geometry (see, e.g., [27]). This 

dissertation focuses on examples not covered by these previous studies. The 

specific constructions that we will discuss are skew and skew-Laurent polyno­
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mial rings. In this chapter, we discuss some of the history of skew polynomial 

rings and then describe the main results of the dissertation.

1.1 H istory

Skew polynomial rings in several variables with coefficients from a field 

K  were introduced by Noether and Schmeidler in 1920 ([25]). Manipulations 

with relations of the form pq — qp =  ih arising from quantum mechanics 

occurred in the work of Dirac in 1926 (see [8]) and Weyl in 1928 ([28]). In 

the 1930’s, Jacobson and Ore began to study iterated Ore extensions (see [19] 

and [26]). Ore produced a systematic investigation of skew polynomial rings 

in one variable over a division ring in 1933 ([26]). Dixmier introduced the 

terminology Weyl algebra in 1968 ([9]).

More specifically, in the 1930’s, Jacobson began to explore cases of algebras 

in noncommuting variables over a field, modulo an ideal generated by relations 

of degree less than or equal to two ([19]). Algebras of this type are particularly 

interesting because, as filtered vector spaces, they are very close to commuta­

tive algebras. Thus these algebras can be viewed as natural generalizations of 

commutative polynomial algebras.

Since Jacobson studied algebras of this type, there have been numerous 

other successful studies of the prime ideals and representations of iterated Ore 

extensions and of other finitely generated noetherian algebras. For instance, 

the prime and primitive ideal theory of quantum groups, enveloping algebras, 

and noetherian group algebras is reasonably well understood (see, e.g., [24] and 

[16]). More specifically, Irving, in the 1970’s, studied the prime ideal structure 

of arbitrary Ore extensions of commutative noetherian rings (see [17] and 

[18]). Gerritzen also played an important role by classifying the irreducible 

representations of K { x , y } / ( y x  — 1), where K  is an algebraically closed field 

(see [11]). More recently there have been studies of iterated Ore extensions by 

Goodearl and Letzter (see [13], [14], and [15]) and Cauchon (see [1], [4], [5], 

[6], and [7]). Many of the algebras discussed in this dissertation are iterated
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Ore extensions, however, the prime and primitive ideal theory is not covered 

by these previous studies.

1.2 Sum m ary o f M ain R esu lts and S tatem en t 

o f M ain T heorem

Inspired by the work discussed in Section 1.1, this dissertation will study 

the prime and primitive ideals of algebras of the form

•%2i ' ' ’ i '-I'n } I  P i j ; ^ ^  j )  ;

where K  is an algebraically closed field and and P^ are elements of K.  

Until now the studies appearing in the research literature have primarily been 

of noetherian domains (except for Irving and Gerritzen). In this dissertation, 

however, we are concerned with the less well-behaved deformations of these 

algebras. For instance, well-known work has shown that

R  = K { x , y , z } / ( x y  — 0 yx — 0, xz  — 0 zx  — 1 ,yz  — 0 zy  — 0)

=  K { x , y, z } / (x y , xz -  1, yz)

has many “bad” properties, such as non-Goldie prime factors and infinite Krull 

dimension. However, the Gelfand-Kirillov dimension of R  is 3.

We begin by studying the prime and primitive ideal theory of algebras of 

the form

K { x , y , z } / ( x y  -  a xyx -  (3u xz  -  a2zx -  f32,yz  ~  a 3zy -  fc).

R e m a r k  1 .2 .1 . N ote  th a t  for any a lgeb ra  of th e  form

K { x , y , z } / ( x y  -  a xyx -  Pi, x z -  a2zx  -  p2,yz  -  a 3zy -  /?3),

we can make a change of variable, replacing Xj with a x x for any 1 < i < m  

and any a  G K,  without changing the isomorphism class of the algebra.
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First, we consider the 64 cases that occur when the scalars au, a 2, a 3, Pi, 

P2, and Pz of

K { x , y , z } / { x y  -  onyx -  (3i,xz -  a 2zx  -  p2,yz  -  a 3zy  -  Pfi)

are either zero or nonzero. These algebras are degenerate, isomorphic to known 

cases, or noetherian, except in two cases (up to isomorphism). The two cases 

(up to isomorphism) that are nondegenerate, not previously studied, and non- 

noetherian are as follows.

• K { x , y , z ]  /  {xy -  Pi ,xz  -  a 2zx ,y z  -  a 2zy), where a 2, a 3, and Pi are 

nonzero, and

• K { x ,y ,  z } / ( x y , x z  — p2 , y z ) , where P2 is nonzero.

In the next chapter, the prime spectra of a case that reduces to known 

cases, a degenerate case, and a noetherian case will be completely described. 

The prime and primitive spectra of the first nonnoetherian case are discussed 

in Chapter 4. The prime and primitive ideals of

K { x u .. . , x n}/{xiXj -  a ij}i < j) ,

for K  an algebraically closed field, n > 3, and G K  are classified in 

Chapter 5 by reducing the study of the n-variable algebra to the study of 

K { x ,y ,  z } / (xy ,xz  — 1 ,yz).  The co-finite dimensional primitive ideals are clas­

sified by Theorem 2.2.13 ([2]). A classification of the prime ideals, primitive 

ideals, and irreducible representations of K{x ,  y, z}/{xy,  y z , x z — 1) is given in 

Chapter 5.

A complete list of the 64 cases and classifications of the prime ideals in 
each case (or appropriate references) are included in Appendix A. These clas­

sifications prove the following.

T h eo rem  1.2.2. Let Si — K { x , y, z} /{xy  — a iyx  — Pi, xz  — a 2zx  — p2, yz  — 

ctzzy — Pz), where K  is an algebraically closed field and ai,  a 2, a 3, Pi, p2, and
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/?3 are elements of K . Let 82 = K { x  1, . . . ,  xn}/ ( XiXj — a ^ , i  < j ) ,  for K  an 

algebraically closed field, n >  3, and G K . Under the Zariski topology, the 

topological dimensions of specSi and specS2 are no greater than the Gelfand- 

Kirillov dimensions of Si and S'2.
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CHAPTER 2 

PRELIMINARIES

In this chapter, we discuss the notation and definitions that will be used 

throughout. Also, we recall some known results that will be used in later 

chapters.

2.1 N ota tion  and D efin itions

We will use the following notation and definitions. These and other defini­

tions can be found in [24] or [16]. Throughout the dissertation, K  will stand 

for an algebraically closed field.

2.1.1 iT-Algebras

D efinition 2.1.1. A K-algebra is a ring R  (with one), together with a ring 

homomorphism </> from K  to R  such that <p(K) is contained in the center of 

R. We will often refer to AT-algebras as algebras.

D efinition 2.1.2. Algebra homomorphisms are ring homomorphisms that re­

strict to the identity map on K.  An algebra automorphism 0 of a A-algebra 

R  is an inner automorphism if there exists an invertible a € R  such that 

<p(r) = a_1ra  for all r  € R.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

D efin ition  2.1.3. Let R  be a AT-algebra and let a and b be elements of R. 

The element a is a factor of b if b = ras for some elements r  and s in R.

D efin ition  2.1.4. A regular element in a K - algebra R  is any element that is 

not a zero-divisor.

N o ta tio n  2.1.5. Let R  be a IL-algebra and r 1; • • • , rn G R. Then K {rx, • • •rn) 

will refer to the AT-subalgebra of R  generated by ri, • • • , rn.

N o ta tio n  2.1.6. The notation K[a\, ■ ■ ■ , an] is used for the commutative poly­

nomial algebra in variables ai, • • • , an over K  and the notation K{a\ ,  ■ • • , an} 

for the free algebra in the noncommuting variables a\ , • • • , an over K.

R em ark  2.1.7. Let R  be a Lf-algebra. If y is an element of R  that is alge­

braically independent over K , we will identify the A-subalgcbra of R  generated 

by y , K(y) ,  with the A-algebra K[y\.

2.1.2 Ideals

N o ta tio n  2.1.8. If A is a ring and n , - -  - , r n G R, then (ri,-- - , r n) will 

denote the (two-sided) ideal of R  generated by r\, • • • , rn.

D efin ition  2.1.9. A ring R  is prime if the product of any two nonzero ideals 

of R  is nonzero. An ideal P  of R  is prime if R / P  is a prime ring.

D efin ition  2.1.10. A minimal prime ideal in a ring R  is any prime ideal of 

R  which does not properly contain any other prime ideals.

D efin ition  2.1.11. Let A be a subring of a ring S, and let P  and Q be prime 

ideals of S  and R, respectively. We say that P lies over Q if Q is minimal over 

P D R .

D efin ition  2.1.12. Let R  be a ring and <f an automorphism of R. Then an 

ideal I  of R  is f-stable if <f(I) C I. The ideal I  of R  is <f-prime if I  is 0-stable 

and A B  C I  implies that A  C I  or B  C I  for all 0-stable ideals A  and B  of 

R. An ideal I  of R  is called f-cyclic if I  — n <fk(J) for a prime ideal J  of A 

with 0m(J) =  J  for some m.
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2.1.3 M odules and Prim itive Ideals

N otation  2.1.13. All modules will be assumed to be left modules unless 

otherwise noted.

Definition 2.1.14. A module is simple if it has no nonzero proper submodules.

Definition 2.1.15. A left or right module M  is called noetherian if every 

submodule of M  is finitely generated. A ring A is called noetherian if R  is 

noetherian as a left and right module over itself.

Definition 2.1.16. An ideal P  of a ring R  is primitive if P  is the annihilator 

of a simple (left) A-module. A ring R  is primitive if (0) is a primitive ideal of 

R.

Definition 2.1.17. A representation of a AT-algebra R  is a K-algebra homo­

morphism from R  to Endx iV) ,  for some A'-vector space V.  Note that we 

can view V  as an A-module. Given a representation from a A'-algebra R  to 

Endx iV ) ,  for a A'-vector space V, we say that the representation is irreducible 

if V  is simple as an A-module. The representation is called finite dimensional 

(infinite dimensional) if V  is finite dimensional (infinite dimensional) over K.

2.1.4 Ore Extensions

Definition 2.1.18. Let A be a ring and 0 an endomorphism of A. A left 

(f>-derivation of A is an additive map S from A to itself such that S(rs) =  

<f>(r)5(s) +  S(r)s for all r  and s in A. A right 0 -derivation of A is an additive 

map 5 from A to itself such that 6 (rs) =  5(r)a(s) -f r5(s) for all r  and s in 

A. By a <p-derivation of A, we mean a left 0-derivation of A, unless otherwise 

noted.

D efinition 2.1.19. Let A be a ring, <f> an endomorphism of A, 6 a 0-derivation 

of A, and 6 an indeterminate. Let A be a ring, containing A as a subring, and 

a free left A-module with basis of the form 1, 9, 92, . . .  and Or = <p(r)9 +  5{r) 

for all r  € A. The ring S  is called a left Ore extension of A (or left skew
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polynomial extension of R) and is denoted S  — R[0;rf),S\. The existence of 

such constructions is assured by [16, Proposition 1.10]. If 4> is the identity 

map on R , then we write S  — R[0]5}. If 5 is the zero map on R, then we 

write S  =  R[0\ fa. One can similarly define a right Ore extension of R. Unless 

otherwise noted, an Ore extension of R  will mean a left Ore extension of R.

Definition 2.1.20. Let R  be a ring, 0* an indeterminate, fa an endomorphism 

of R, and Si a ^-derivation, for 1 < i < n. We will refer to constructions of 

the form

R[Qi\fa,S1\[Q2-,fa,52\ • • • [0n; 4>n,8n\

as iterated Ore extensions of R.

D efinition 2.1.21. Let R  be a ring and 4> an automorphism of R. Let T  be 

a ring and a free left /Lmodule containing R  as a subring with an invertible 

element 0 G T  and basis 1,0, 0~l , 02, 0~2, . . . such that 0r =  far)0 for all r  € R. 

Then T  is called a skew-Laurent extension of R  and is denoted T  =  R[9,0~l \ fa.

2.1.5 Zariski Topology

N otation  2.1.22. Let R  be a ring. The set of prime ideals of R  will be 

denoted specR, the set of maximal ideals maxR, and the set of primitive ideals 

primR.

Definition 2.1.23. Let R  be a ring. The set specR  is a topological space 

under the Jacobson (Zariski) topology when the closed sets of specR  are taken 

to be V(I)  — {P  € spec(R) : / C P }  for ideals I  of R.

Remark 2.1.24. The Zariski topology is the only topology that we will con­

sider on prime spectra in this dissertation.

2.1.6 Localizations and Quotient Rings

We recall some definitions regarding Ore localizations and symmetric quo­

tient rings. For more background, see [16, Chapter 9] and [24, Chapter 10], 

respectively.
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Definition 2.1.25. A multiplicative set in a ring R  is any subset A  C R  such 

that l e i  and X  is closed under multiplication. A right ring of fractions (or 

right Ore quotient or right Ore localization) for R  with respect to A  is a ring 

homomorphism <f> : R  —> S  such that

1. (f){x) is a unit of S  for all x £ X .

2 . Each element of S  has the form (p{r)(p{x)~l for some r  £ R  and some 

x £ X .

3. ker(0) =  {r <E R  : rx  = 0 for some x £ X } .

A left ring of fractions for R  with respect to X  is defined symmetrically.

Definition 2.1.26. Let A  be a multiplicative set in a ring R. Then A  satisfies 

the right Ore condition if and only if r X  D x R  is nonempty for all r  £ R  and 

x £ A . The set A  is right reversible if and only if whenever there exists an 

r  £ R  and x £ X  such that xr = 0 then there exists an x' £ A  such that 

rx ' =  0. A right Ore set is any multiplicative set satisfying the right Ore 

condition and a right denominator set is any right reversible right Ore set.

Remark 2.1.27. Given a right denominator set A  in a ring R, by [16, Chapter 

9], there exists a unique right ring of fractions f  : R  —> S  for R  with respect 

to A.

N otation  2.1.28. Given a right denominator set A  in a ring R, we will denote 

the right ring of fractions of R  with respect to A  by R A -1.

D efinition 2.1.29. A collection F  of right ideals of a ring R  is called a right 

localization set if for any R  and R  in F  and any (p £ H o m ( R , R), there exists 
an I3 and / 4 in F  such that

1- h Q  h O  R  and 

2. Z4 C / 2 and <p(h) C R.
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Remark 2.1.30. Note that the set of nonzero ideals of a prime ring R  is a 

right localization set for R.

Definition 2.1.31. Given a right localization set F, the localization R f of R  

with respect to F  is defined to be the set U{Hom{I ,R) : I  6  F}  modulo the 

equivalence relation given by 0 i ~  02 if 0 i : I\ —> R, 02 : h  R  and 0 i =  02 

when restricted to some h  E F  with / 3 C I x fl F-

Definition 2.1.32. Let F  be the set of nonzero ideals of a prime ring R. Then 

we call R f the Martindale right quotient ring of R.

Definition 2.1.33. The symmetr ic  quotient ring, T, of a prime ring R, is the 

subring of the Martindale right quotient ring, Rp,  of R  consisting of elements 

r  E R f such that r i  C R  for some nonzero ideal I  of R  depending on r.

2.2 Background

2.2.1 Ore Extensions and Skew-Laurent Extensions

We recall and collect some known results about Ore extensions. Specific 

references are given and more background can be found in [24, 1.2.1], Similar 

results hold for right Ore extensions.

Remark 2.2.1. Let R  be a ring, 0 an endomorphism of R, 5 a 0-derivation of 

R, and S  = R[x\ 0,5]. Recall, from [24, 1.2.3], that every element of S  can be 

written in the form a,xl for some a, E R  and this expression is unique. In 

the iterated Ore extensions that we discuss in Chapters 3 and 4, we will use 

several applications of this argument.

The next several results make connections betweens ideals in a ring R  and 

ideals in an extension ring of R.

Theorem  2.2.2. [16, Theorem 1.12 and Theorem 1.17] Let R  be a ring, 0 

an automorphism of R, and 5 a 0 -derivation of R. I f  R  is noetherian, then
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the Ore extension S  =  R[6 \ <f>, <5] is also noetherian. Also, the skew-Laurent 

extension T  =  i? [0 ,0 '1; f] is noetherian.

T h eo rem  2.2.3. [24, Proposition 1.2.9] Let R  be a prime ring, f  an automor­

phism of R, and 8 a f-derivation of R. I f  S  — R[d; 0, 5] is an Ore extension 

of R, then S  is prime .

Lem m a 2.2.4. [24, Proposition 1.2.9] Let R  be a ring, <p an automorphism of 

R, and T  = R[9,0-1; 0]. I f  A is a prime ideal o fT ,  then A n  R  is a ([-prime 

ideal of R.

T h eo rem  2.2.5. [16, Corollary 7.28] Let R  be a noetherian ring and <f> an 

automorphism of R. I f  T  =  1?[#,0_1;0] and P  is a prime ideal o f T ,  then 

there exists a prime ideal Q of R  and a positive integer m  such that P  fl R = 

Q n  f (Q)  fl • • • n  f m~l (Q) and <pm(Q) =  Q.

T h eo rem  2.2.6. [20, Theorem 1] Let R  be a nontrivial ring with identity and 

<p an automorphism of R. Let S  be the ring S  = R[9, 0]. Then the ring S

is simple if  and only if:

1. the only ([-ideals of R  are (0) and R; and

2 . there is no positive integer n for which 0n is inner.

The next two results relate 0-cyclic and 0-prime ideals.

L em m a 2.2.7. [24, Lemma 10.6.11] Let R  be a ring and (f an automorphism 

of R. A f-cyclic ideal of R  is ([-prime.

P ro p o sitio n  2.2.8. [24, Proposition 10.6.14] Let R  be a ring and <f> an auto­

morphism of R. I f  some power of f> is inner and P  is a ([-prime ideal of R, 

then P  is f-cyclic.

For the next two results, let A  denote a prime ring, C  the symmetric 

quotient of A, p  an automorphism of A, Z  the center of C[t; p], and D the 

ring of all central elements in C  which are /j-invariant.
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Proposition  2.2.9. [23, Proposition 1.3] There exists an invertible A in C 

and an I > 0 such that Z  =  D[u\, where u = Atl . Moreover, Z  D (i.e., 

t  OJ i f and only if  a nonzero power of ji is an inner automorphism of C.

Theorem  2.2.10. [23, Theorem 2.10] Suppose that P  is a prime ideal of 

A[t; /i] such that P  fl A = (0). Then P  =  f ( t )C[t ; /j] fl A[t; p] where:

1 . f ( t )  is either equal to t or

2. the center Z  ofC[t] y] is not equal to D and there is an invertible [3 £ C 

such that (3f(t) £ Z  =  D[u] is a monic irreducible polynomial (as a 

polynomial in u) different from u.

2.2.2 Quantized W eyl Algebras

For later discussions, we now review some known results about the prime 

spectra of algebras of the form

R = K { x , y } / ( y x  -  qxy -  A),

where K  is an algebraically closed field and q and A are nonzero elements of 

K.  More background can be found in [13, Section 13]. First, note that, by a 

standard change of variables, we can assume A =  1. Algebras of this form are 

referred to as quantized Weyl algebras and will be denoted A\(K,  q).

C ase 1 : Suppose that q is not a root of unity. In [13, 2.9], the prime 

spectra of quantized Weyl algebras over noetherian rings are described when 

q is not a root of unity. In this case, [13, 2.9] states that

spec(R) = {uR + QR : Q £ spec(K{x}), x  ^ Q},

where u =  (a — \)xz-\-1. Since K  is algebraically closed, the nonzero primes of 

K[x\ are of the form (x — 7 ) for 7  £ K.  If x = 0 in R, then A =  0, contradicting 

the choice of nonzero A. If x = 7 , for 7  nonzero, then, by the relations in R, 

the element y — 1 /(7  — 7 q). Hence, the prime ideals of R  when q is not a root 

of unity are as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

1. (0) and

2. (x — 7 , y — 1 /(7  — 7 q)), for 7  a nonzero element of K.

Case 2: Suppose that q is a primitive Hh root of unity.

Remark 2.2.11. Recall that if K  has positive characteristic than £ is invert­

ible modulo the characteristic of K  (see [13, 13.6]).

We will use the following result.

Theorem  2.2.12. [13, Theorem 13.6] Let S  = Ai(T,q) where T  is a noethe­

rian algebra over a field K  and q is a primitive Ith root of unity in K  for some 

integer £ > 1 which is invertible in K . Set u =  yx — x y .

1. There is a homeomorphism from the set {P  € specS : u 6  P} onto the

set {Q € spec(T(x)) : x £ Q} given by the rule P  i-> P  fl T[x\.

2. There is a homeomorphism from the set {P  € specS : u P} onto 

the set { / € spec(T[xe,y e]) : 1 — (1 — q)£xeye £ 1} given by the rule 

P ^  P r \T [ x e,ye).

Thus, in the case when q is a primitive £th root of unity, spec(R) is a 

disjoint union of two subsets homeomorphic respectively to spec(R'[a:, x-1]) 

and spec{K\xl , y f  (1 — (1 — q)ex eze)~1]). Hence the prime ideals of R  when q 

is a primitive £th root of unity are as follows.

1. (0),

2. (x — A,y — 1 / (A — q~l A)), where A is a nonzero element of K , and

3. fix1 — \ \ , y e — A2), where Ai and A2 are nonzero elements of K  with

AiA2 7̂  1 /(* -  q f .
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2.2.3 Prim e Ideals, Prim itive Ideals, and Related Re­

sults

We now collect some known results that affect our study of prime ideals and 

irreducible representations. The following result, by Adam Berliner, classifies 

all of the finite dimensional irreducible representations of

R = K{x ,  y, z ] / {xy, x z  -  1, yz)

(rings of this type will be discussed in detail in Chapter 4). We thank Berliner 

for allowing us to use this unpublished result.

Theorem  2.2.13. [2] Let X 1, X 2,--- , X m, for m  > 2, be linear operators 

on an n dimensional vector space over an algebraically closed field K  and 

let ctij e  K  for all i and j .  Let aij also denote the corresponding scalar 

operator. Suppose that X tXj  = for all i , j  where 1 < j  < i < m. Then 

Xi,  X 2, • ■ • , X m have a common eigenvector.

The following classification by Irving will be used in discussing the two 

nonnoetherian cases.

Theorem  2.2.14. [18, Theorem 7.1} The following is a complete list (orga­

nized by families) of the prime ideals of K{x ,  y } / (xy  — 1).

1. (0),

2 . (yx — 1), and

3. (x — X ,y  — A-1), where X is a nonzero element of K .

The following is a complete list (organized by families) of the primitive ideals 

of K { x , y } / ( x y  -  1).

1. (0) and

2. (x — A, y — A-1), where X is a nonzero element of K.
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Remark 2.2.15. Let R  =  K { x , y } / ( x y  — 1). Note that R / ( y x  — 1) =  

K[x, x~1].

Remark 2.2.16. In [11, Section 3], Gerritzen gives a complete classification 

of the irreducible representations of K { x , y } / ( x y  — 1).

2.2.4 Gelfand-Kirillov Dimension

Gelfand-Kirillov dimension, or GK dimension, is one of the important di­

mension functions in noncommutative algebra. GK dimension can be thought 

of as a generalization of the Krull dimension of commutative finitely generated 

rings. Thus, we can think of GK dimension as the dimension of the noncom­

mutative spaces associated to these noncommutative rings. We will discuss 

some properties of GK dimension, but omit the details. Please see [22] for 

more background.

More specifically, GK dimension is a measure of the rate of growth of an 

algebra in terms of any generating set. For example, finite dimensional algebras 

have GK dimension zero and, if A  is a finitely generated commutative domain, 

then the GK dimension of A  is equal to the transcendence degree of A  over K.  

Thus the GK dimension of A  is equal to the number of indeterminants in the 

largest possible polynomial algebra contained in A. If K G  is a group algebra, 

then the GK dimension of K G  measures the rate of growth of the group G. 

Also, the GK dimension of a free algebra on two generators will be infinity. 

Thus, we can also think of GK dimension as a measure of how far an algebra 

is from being finite dimensional.

For the work in this dissertation, note that algebras of the form

A — K { x i , x2, ■ • • , xn} / (XiXj — oujXjXi — < j)

will have GK dimension less than or equal to n. If A  is nontrivial and if 

Xi /  axj,  for any 1 < i , j  < n  with i ^  j ,  and for any a E K,  then A  will 

have the same standard filtration as a commutative polynomial algebra in n 

indeterminants. Hence, the GK dimension of A  is n (see [22, Chapter 3]).
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CHAPTER 3 

EXAMPLES OF 
ELEMENTARY CASES

Before discussing the main results of this dissertation, we carefully consider 

three illustrative examples of algebras of the form

K {x ,  y, z ] / ( x y  -  a xyx  -  (3x,xz  -  a 2zx -  fi2)yz  -  a 3zy -  /33}

where the prime ideal theory is elementary or reduces to known work. The 

three examples are meant to demonstrate some of the possibilities for prime 

spectra of algebras of this form. Appendix A contains a description of the 

prime spectra of the 64 possible cases (or appropriate references).

3.1 E xam ple One

In this section, we consider an example where the study of the prime ideal 

theory reduces to known cases. We consider algebras of the form

SR =  K{x ,  y , z}/{xy , xz, yz -  a 3zy),

where a 3 is nonzero. Let x, y , and z  stand for their images in S r . Let 4>l be 

the A-algebra endomorphism of K[x] sending x  to zero. Also, let <p2 be the
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R-algebra endomorphism of the right Ore extension K[x\[y;<fix\ sending x  to 

zero and y to a 3y. Note that S r =  K[x][y, (j)X][z', <p2] is an iterated right Ore 

extension of K[x\. Thus, by Remark 2.2.1, elements of S r  can be written in 

the form X e z^ y^ x ^ , where A< £ i t  are nonzero and the (ie,je,ki) are

distinct for distinct I.

Note that r xx \ z ly:>xkyr2 =  0 for any A € K  and any r x and r2 in S r . Thus, 

(x)(y) = 0. Hence, every prime ideal of S r  contains x  or y. Similarly, every 

prime ideal of S r  contains x  or 2 . Thus the study of the prime ideal theory of 

S r  reduces to the known prime ideal theory of K{y, z } j ( y z  — o/.3zy) (see [17, 

Section 8]) and K[x}.

3.2 E xam ple Tw o

In this section, we consider a seemingly interesting example that is actually 

trivial. We consider algebras of the form

K{x ,  y, z } / ( x y  -  a xyx -  p x,x z  -  a2zx  - f o , y z -  0 zy -  p3)

= K { x , y , z } / ( x y  -  a xyx -  f a , x z -  a 2zx  -  p2,yz  -  fa),

where a x, a 2, Pi, 02, and d3 are nonzero elements of K.  Note that, by changes 

of variables, we may assume that (32 and are equal to one. Thus, for the 

remainder of this section, let

Sd =  K { x , y, z } / (xy  — a xyx — (3x,x z  — a 2zx — 1, yz  — 1).

Let x, y, and 2 also stand for their images in Sd -

Proposition 3.2.1. The algebra Sp  is trivial or isomorphic to K .

Proof. The equation xy — a xyx  =  /3X holds in S d - Multiplying through by 2 

on the right yields xyz  — a xyxz  =  (3X2 . Simplifying using the other relations 

implies that the equation (1 — a xa 2)x — a xy — (3xz  =  0 holds in S d - Thus, it 

is natural to divide our investigation into two cases based on whether or not 

q;iq;2 =  1-
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Case 1 : Suppose ol\Ol<2, =  1. Then ony + p xz — 0. Hence y =  — p x/ a xz.

Then, again using the relation yz  =  1, the equation

z  =  y ~ l = (-«i/A)1/2
holds in Sd - The relation xy  — a xyx = px implies that

x = px/ ( ( - a x/ p x) 1/2 -  a x( - a x/ p x)1/2).

Note that

( - a x/ p x) 1/2 -  a x( - a x/ p x) 1/2 f  0

since Pi ^  0. Hence, if a xa<i =  1, then S d is isomorphic to K.

Case 2: Suppose a xa 2 ^  1- Since (1 — a xa 2)x — a xy — p xz  =  0, the

equation

x = (axy + p xz ) / ( l  -  a xa 2)

holds in S d - Replace x  in the relation xy — a xyx = px with

x = (oiiy +  Pxz ) / (1 -  aqa^).

Further manipulation of the variables implies that the equality

zy = 1 -  a xa 2 +  aq -  («i -  a \) /{px)y2

holds in S d - Multiplying through by z on the left yields

(aqa-2 -  a i )z =  (aj -  a x) /(px)y.

Note that aqai2 — cti =  0 if and only if a 2 = 1, and that a \  — a x =  0 if and 

only if aq =  1. This leads us naturally into the following four subcases.

Subcase 1: Suppose aq =  1 and a 2 = 1. This contradicts the assump­

tion that a i a 2 7  ̂ 1-

Subcase 2: Suppose a i ^  1 and 012 ^  1. Then the above relations

imply that y — cz for some constant c € K.  Thus, as in Case 1, x, y , and z
are all equal to constants and hence S d is isomorphic to K.

Subcase 3: Suppose aq ^  1 and a 2 = 1. By the above relation, this 

implies that y = 0, contradicting that yz  = 1. Hence, S d = 0.

Subcase 4: Suppose a x = 1 and a 2 ^  1. As in Subcase 3, this implies

that z = 0, contradicting that yz — 1. Hence, Sd = 0. □
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3.3 E xam ple T hree

In this section, we consider an example of a noetherian case. Much work 

has been done on noetherian Ore extensions of polynomial algebras (see, e.g. 

[13]). We now carefully work out such an example.

We wish to classify the prime and primitive ideals of

S  = K { x ,  y, z } / ( x y  — oqyx  — 0, x z  — a 2zx  — fa, y z  — a 3zy — 0)

=  K { x , y , z } / ( x y  -  a xy x ,x z  -  a 2zx  -  p2,y z  -  a 3zy),

where aq, a 2, ol3, and fa are nonzero elements of K. We will use the results 

about quantized Weyl algebras discussed in Chapter 1 throughout this section.

Proposition 3.3.1. Ifati /  a 3, then S  is isomorphic to K { x ,  z } / ( x z  — a 2zx  —

f a ) .

Proof. The proof is shown for fa = 1 and follows analogously for arbitrary 

nonzero values of fa. In S, the relation xy  + a iy x  = 0 holds. Multiplying both 

sides of this equation by z on the right, using the other relations in S, and 

simplifying, the equation a f la 3x zy  +  a 2y zx  = y must also hold in S. Note 

that x zy  +  a 2 zxy  =  y. Hence

a f la 3x zy  +  a 2y zx  = x zy  +  a 2zxy

holds in S  and, thus, so does

( a f la 3 — 1 )xzy  =  —a 2(yzx — zxy) — —a 2{ a f la 3zxy  — zxy).

By the relations in S,

[ a f l a 3 — 1 )(xz  +  a 2z x ) y  =  0.

Thus a.fla 3 — 1 =  0 or y =  0. □

For the remainder of this chapter, let

Sfq =  K { x , y, z } / ( x y  — a y x , x z  — a 2zx  — 1, yz  — azy).
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By Proposition 3.3.1 and a change of variable, a classification of the prime 

ideals of S n  will complete a classification of the prime ideals of S. Let

R  = K { x ,  z ) j (x z  — a 2zx  — 1},

where a 2 is a nonzero element of K .  Note that S n  = R[y',cr], where a  is the 

automorphism of R  sending x  to a ~ lx, z to az,  and a to a for all elements 

a G K .  Also, note that S n  is a prime, noetherian domain (see Theorem 2.2.2 

and Theorem 2.2.3).

The primes of S n  fall naturally into two categories. The first category is 

those containing y, which are in one-to-one correspondence with the nonzero 

primes of R. The second category is those prime ideals not containing y, which 

are in one-to-one correspondence with the prime ideals of T  = R [y ,y~ lm,o]. 

Thus, a classification of the prime ideals of T  will complete our classification 

of the prime ideals of Sn- Note that T  is also a prime, noetherian domain (see 

Theorem 2.2.2 and Theorem 2.2.3).

3.3.1 Scalar N ot a Root of Unity Case

In this case, the only finite cr-orbit of prime ideals of R  is A \  =  {(0)}, 

regardless of whether or not a 2 is a root of unity. Thus, by Theorem 2.2.5, if 

P  is a prime ideal of T  then P  n  R  =  (0).

Proposition 3.3.2. The following is a complete list of the prime ideals of S n  

(organized by families) when a  is not a root of unity.

1. (0), 

& {y} ,

3. (x — z — \ 2, y ) , where Ai and \ 2 are nonzero elements of K ,  such that 

^2 =  1 / (Ai — a^Ai).

Proof. Throughout the proof, we use a method adapted from [13, 2.3] and 

omit some details. We wish to classify the prime ideals of S n  not containing
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y that intersect R  at (0). Let C  be the set of regular elements of R. Consider 

the localizations A  =  R C ~ l and B  =  R C ~ 1[y, a\ (see [12 , 1.3]). Note that A  

is cr-simple.

Let Y  be the set of prime ideals of S n  which lie over minimal primes of 

R. Since R  is prime, Y  is in fact the set of prime ideals of S n  which lie over 

(0) in R. Note that (0) is the unique prime ideal of R  that is disjoint from C. 

Hence, Y  is equal to the set of prime ideals of S n  which are disjoint from C. 

Therefore, Y  — {'y~1{P) ■ P  € specB }, where 7  is the natural embedding of 

S n  into B.

Hence our goal is to describe the prime ideals of B  not containing y. These 

primes will be in one-to-one correspondence with primes of

e  =  r c ~' [ w 1; 4

Thus, to finish classifying the prime ideals of S n  in this case, we only need to 

classify the prime ideals of E.

Since a  is not a root of unity, no power of a  will be an inner automorphism. 

Also, as noted earlier, the only cr-ideals of R  are (0) and R. Thus, E  is simple, 

by Theorem 2.2.6. Therefore, the only prime ideal of S n  not containing y 

which intersects R  at (0) is the ideal generated by 0 in Sn- d

3.3.2 Scalar Root of Unity Case

For the remainder of this chapter, let a  be a primitive f'th root of unity. It 

is now necessary to divide our study into cases based on whether or not a 2 is 

a root of unity.

Subcase 1: Suppose that a 2 is not a root of unity. In this case there will 

be two finite a-orbits of prime ideals of R. Let A\  =  (0) be the finite cr-orbit 

of (0) and

M  — {(x  -  Ai, z -  A2), ( x  -  Aia, z -  A2o;_1), • • • ,(x  — Aic/_1, z -  A2o~i+x)} 

be the finite cr-orbit of (x — Ai, z — A2). We need a few preliminary results.
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Lemma 3.3.3. Let I  be a proper ideal of Sn  containing x  — X, for some 

nonzero X G K. Then y G I  or a = 1.

Proof. Let S' = Sn / I  and let x , y, and z also stand for their images in S'. In 

S', the equations x = X and xy — ayx  = 0 hold. These equations imply that 

Axy — aX\y  =  0 in S'. Hence y =  0 in S'  or a  =  1. □

Recall that T  = R[y,y~l ;a}.

Lemma 3.3.4. As ideals o fT ,

(x — Ai, z  — X2) =  (x — X\ar, z — X2a~r),

for any nonzero Ai and X2 in K  and any nonnegative integer r.

Proof. The proof is shown for r  =  1 and follows analogously for arbitrary

values of r. Let I  =  {x — X\a, z — A2« _1). Then

(x — Aia)y = ayx  — X\ay =  ay(x  — Ai) e  I.

Hence,

a~ 1y~1(x — Aia)y = x — X\ G I.

Similarly, if an ideal I  of T  contains z — A2Q;-1 , then I  contains z — A2.

To obtain the reverse inclusion, let J  = (x — Ai, z — A2). Then

y(x — Ai)y~l = x — X\a £ J.

Similarly z — A2o;-1 G J. Thus I  =  J. □

Corollary 3.3.5. In T , the ideal (x — X\,z  — Xf) fl (x — Ai a, z — A2Q;-1) fl • • • fi

(x — Aicd-1, z — X2a~e+1) = (x — Ai, z — A2).

These results allow us to complete the classification.

Proposition  3.3.6. The following is a complete list of the prime ideals of Sn  

(organized by families) when a is a primitive Ith root of unity not equal to one 

and a 2 is not a root of unity.
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1. (0),

& (y)>

3. (x — Ai, z — X2 , y), where Ai and X2 are nonzero elements o f K , such that 

X2 — l/(A i — o^Ai).

4 ■ (ye — A), where A e K .

I f  a  =  1 fie., I  =  l j  and ct2 not a root of unity, then the following prime 

ideals, in addition to the above list of prime ideals, is a complete list of the 

prime ideals of S n -

1. (x — Ax, z  — A2 , y — A3 ), where Ai, A2 , and A3 are nonzero elements o f K ,  

such that A2 =  l/(A i — a^Ai), and

2. (x — X\ , z  — A2 ), where Ai and X2 are nonzero elements of K , such that

^ 2  =  1/ (Ai — a^Ai).

Proof. First, we classify the prime ideals P  of T  such that

P f ] R  = (x — X\, z  — X2 ) P\(x — X\a, z — X2 0 c~l ) f] - ■ ■C\{x — XiOti~l , z  — X2 a~ i+l).

By Corollary 3.3.5 and Lemma 3.3.3, (x — Ai, z  — X2 ) Q P,  and thus y G P  or 

a  =  1 .

Next, we classify the prime ideals of S n  that intersect R  at (0). Let Y  

denote the set of prime ideals P  of S n  such that P n R — (0). Throughout we 

follow [13, 2.3] and omit some details. Let C  denote the set of regular elements 

of R. Then C  is a denominator set for R  and S n - Let A  =  R C ~ l and B  =

S NC - 1 = A[y\ a\. In order to classify Y ,  it suffices to describe specB. Let E  =

A[y, y-1; a\. Then, to describe specB it suffices to describe speciA There are 

mutually inverse homeomorphisms between specE  and specK \y l ,y~ 1]. Hence 

the nonzero prime ideals of S n  that intersect R  at (0) are of the form (ye — A) 

for A E K .  □
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Subcase 2: Suppose that 02 is a primitive tth  root of unity. In this case, 

recall that the prime ideals of R  are as follows.

1. (0),

2. (x — Ai, z — A2), where Ai and A2 are nonzero elements of K  such that 

A2 =  l/(A i -  o^Ai), and

3. (x 1 — Ai, z l — A2}, where Ai and A2 are elements of K  with AiA2(1 — a 2)t

not equal to 1.

Remark 3.3.7. Note that if x ly =  a tyx t and x l = Ai, for some Ai 7  ̂ 0 £ K,

hold in S n , then of =  1 and hence t is a multiple of I.

Proposition 3.3.8. The following is a complete list of the prime ideals of S n 

(organized by families) when a is a primitive tth root of unity not equal to one 

and a 2 is a primitive tth root of unity.

1. (0 ),

& ( y ) ,

3. {x — \ \ ,  z — \ 2 ,y), where Ai and A2 are nonzero elements of K ,  such that 

A2 =  1/ (Ai — a 2Ax),

4 . (x* — Ai, zt — A2, y), where Ai and A2 are elements of K  with AiA2(1 — 0 2 )* 

not equal to one,

5. (x* — Ai, zl — \ f ) ,  where Ai and A2 are elements of K  with AiA2(1 — 0 2 )* 

not equal to one,

6. (ye — X), where A G K , and

7. {x* — Ai, — A2, ye — A), where Ai and X2 are elements of K  with AiA2(1 — 

0:2)* n°t equal to one and X 6  K .
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I f  a  =  1 (ie., £ = 1) and a 2 zs a primitive tth root o f unity, then the following 

prime ideals, in addition to the above list o f prime ideals, is a complete list of 

the prime ideals of Sn-

1. (x — Ai, 2  — A2 , y — A3), where Xi , X2, and A3 are nonzero elements o f K ,  

such that A2 =  1 / (Ax — a 2Xi), and

2. (x — Xi , z  — X2), where Ai and X2 are nonzero elements of K ,  such that

A2 =  1 /(Ai — a 2Ai).

Proof. The primes of S n  that intersect R  at (0) or

{x — Ai, z — A2) H (x — Aict, z — A2q;_1) fl • • • fl (x — Aic/_1, z — X2a~e+l),

will be the same as in the previous case.

The primes P  of T  such that

P  n R  = (x1 -  Ai, z* -  X2) D • • • n (xf — Aiar_1, z l — A2aTr+1),

where r  is the least common multiple of £ and t still need to be classified. As 

previously, in T,

(xt — Ai, z l — A2) fl • • • fl (x* — Xiar~1, z t — X2a~r+1) =  (x t — X \ ,z l — A2),

for any positive integer r. Hence P  contains (aA — Ai , z t — A2). Also, by 

Remark 3.3.7, the least common multiple of £ and t is t. Hence the <j-orbit of 

— Ai, z t -  X2) is (pp -  A 1, z t — A2).

Following [13, 2.3], let R' = R / ( x t — Ai, z t -  A2), S 1 = R f[y;a\, C  be the 

set of regular elements of R ' , A = RC~l , B  = A[y\a], and E  =  A[y,y~l]a\. 
By reasoning as before, the nonzero primes of S' intersecting R' at zero will 

be of the form (ye — A), where A £ K .  □
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CHAPTER 4

NONNOETHERIAN CASE
ONE

In this chapter, we discuss the prime and primitive ideals of

K { x ,  y, z } / ( x y  — 0yx  — Pi, x z  — a 2zx  — 0, yz  — a 3zy — 0)

= K { x , y , z } / { x y  -  pi, x z  -  a 2z x , y z  -  a 3z y ) ,

where Pi, a 2, and o 3 are nonzero elements of K .  Note that by a change of 

variable, we may assume that Pi — 1. Throughout this chapter, let

S  = K { x , y , z } / ( x y  -  1 , x z  -  a 2z x ,y z  -  a 3zy),

let R  = K { x ,  y } / ( x y —1) and let T  = R[z, z~x\ a], where a is the automorphism 

of R  sending the element x  to a 2x , the element y  to a ^ y ,  and elements of K  to 

themselves. When we refer to x, y. or z , we will be referring to their images in 

R, S, or T.  We begin by discussing some preliminary results about these three 

algebras. We then divide the study into two cases based on whether or not a 2 is 

a root of unity and classify the prime ideals of S, using the preliminary results. 

Finally, we discuss the primitive ideals of 5, leaving a complete classification 

open for future work.
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4.1 N ota tion  and Prelim inary R esu lts

4.1.1 R  Preliminaries

Proposition  4.1.1. The set {y^xk : j  and k are integers } is a K-linear basis 

for R.

Proof. Note that R  = K[y][x-,cr,5] is an Ore extension of K{y\ with cr(y) = 0

and 5(y) =  1. By Remark 2.2.1, the set {yj x k : j  and k are nonnegative

integers} is a R'-linear basis for R.  □

Thus, when we write a nonzero element of R  in the form

t

for Xe G K.  we will assume that the X( are nonzero and that the (j?, kf) are 

distinct for distinct I.

Proposition 4.1.2. Let a be an element of R. Then ax  =  0 or ya =  0 i f  and 

only i f  a =  0. The same proposition holds i f  a G S.

Proof Suppose that ax = 0 holds in R. Multiplying through by y  on the right 

yields axy = 0. Since xy  =  1 in R , the element a =  0. Proceed similarly if 

ya = 0 or a e S. □

Proposition 4.1.3. I f  ay G (yx — 1) or xa  G (yx — 1), for  a G R, then 

a G (yx  — 1),

Proof If a = 0, the proposition follows. Suppose that a =  Yle Xeyjex k‘ is a 

nonzero element of R  with ay G {yx — 1). Note that

ay = ( J 2 W ex ke) y =  W +1+
t  £ -.k i= 0  i :k £ >  0

Hence, letting x  and y also stand for their images in R /  {yx — 1),

Aeyi‘+1 +  J ]  \ eyi‘x k‘- 1
£:kg=Q  0
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= J ]  Xtyje+1 +  X  Aey je~ke+1 + XI =  o,
£:ke=0 &'kg>0,jg'>k£~l £:k£>0,kg~ l> j#

in R / { y x  — 1). Note that the vector space generated by powers of x  is orthog­

onal to the vector space generated by powers of y. Thus, a cannot have any 

summands with ke > 0 and ke — 1 > je and the equation

x ; v , + i = - (  Y ,  w '~ * ,+ i)
£:k( = 0 £:kg>0,je>k( — l

holds in R / ( y x  — 1). Hence, if there exists an r  such that kr — 0, then there 

exists an s such that ks > 0, j s > ks — 1, Xr — Xs, and j T = j s — ks. Similarly 

for each s such that ks > 0, there exists an r such that kr =  0, Ar =  As, and 

jr js ks. Thus,

a = J 2 ^ e y Jf- ke -  Aeyj*xk‘ = -  yk‘x k‘),
e i

which equals 0 in R / ( y x  -  1). Hence, a G (yx -  1). Proceed similarly for 

xa  G {yx — 1). □

Corollary 4.1.4. Let a be a nonzero element of R. I f  x ra =  0 or ayr = 0 for  

any nonnegative integer r, then a G {yx — 1).

Proof We proceed by induction on r. If r  =  1, the corollary holds by Propo­

sition 4.1.3. Let n  be an integer greater than 1. Suppose the result is true for 

r < n. The equation

ayn = M y 71̂ 1 = 0

implies that ay  G {yx — 1) by the induction assumption. Proposition 4.1.3 

implies that a G {yx — 1). Proceed similarly to prove that if x r a =  0, then 

a G {yx — 1). Q

Proposition 4.1.5. Suppose that I  is a nonzero ideal of R  and that I  is not 

contained in {yx — 1). Then I  contains a nonzero element that does not have 

x  as a factor o f any summand and a nonzero element that does not have y as 

a factor of any summand.
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Proof. Let a =  ^  \iy?lx kl, for Â  Gi f ,  be a nonzero element of I  that is not 

an element of {yx — 1). Let 71 be the highest exponent of x  appearing in any 

summand of a. By Corollary 4.1.4, ay71 is nonzero. Also

a y *  = J 2 x eyj t x k‘y *  = ^  \ ey jt+11~kt ■
e e

Hence, ay71 is a nonzero element of /  that has no summands with a; as a factor.

Let 72 be the highest exponent of y appearing in any summand of a. Then 

x 12 a is an element of /  without y as a factor of any summand. By Corol­

lary 4.1.4, x l2a is nonzero. □

Lemma 4.1.6. Suppose that I  is a nonzero ideal of R  that is not contained in 

( y x ~  1). Then I  contains a nonzero element with a nonzero constant term and 

with x  not a factor of any summand. Similarly, I  contains a nonzero element 

with a nonzero constant term and with y not a factor o f any summand.

Proof. By Proposition 4.1.5, I  contains a nonzero element a — Ary r with­

out a; as a factor of any summand. Suppose that a, written in its unique form, 

has zero constant term. Let 7  be the smallest exponent of y  appearing in any 

nonzero summand of a. Then x1 a is a nonzero element of /  that has nonzero 

constant term A7 and x  is not a factor of any summand. Proceed similarly to 

prove that I  contains a nonzero element with y  not a factor of any summand 

and a nonzero constant term. □

Proposition 4.1.7. Suppose that I  is a nonzero ideal of R  that is contained 

in {yx — 1). Then I  contains nonzero elements o f the form  Y^m Amy^m{yx — 1) 

and ^ f n Xn{yx — L)xkn, where Xm and Xn are nonzero elements of K .

Proof. Let a be a nonzero element of I. Since a E {yx — 1), the element a is 

a finite sum of elements of the form

A yirx kr{yx — 1 )yjsx ks = X yirx kryxy^3x ks — X y:irx kry ^ x ks.

Let Xy:i"‘ x kmyxyJ"xkn — Xy]mx kmyhlx kn be a summand of a. We now divide the 

proof into cases depending on whether j m, j n, krn, and kn are zero or nonzero.
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C ase 1: Suppose that km > 0. Then

Xyjrnx kmyxyjnx kri -  Xyjmx kmyjnx kn =  Ayjmx kmyjnx kn -  \ y jmx krnyjnx k" = 0.

C ase 2 : Suppose that km =  0 and j n > 0. Then

Xyjmx kmyxyjnx kn -  Xyjmx kTnyjnx kn — Xyjm+lyjn~lx kn -  Xy3m+jnx kn

= Xyjm+jnxkn -  Xyjm+jnx kn = 0.

C ase 3: Suppose that km = 0 and j n = 0. Then

Ayjmx kmyxyjnx kn -  Xyjmx kmyjnx kn = Xyjm+1x kn+1 -  Xy0mx kn

— Xy3m(yx — l ) x kn.

Thus, if a is a nonzero element of an ideal I  contained in (yx — 1), then the 

only nonzero summands of a are of the form Xy3m+1xkn+1 — Xy3rrix kn. Hence a 

is of the form

a = AmyJm(yx -  l ) x km.
m

Next, let 71 be the highest :r;-degree and y2 the highest //-degree of any sum­

mand of a. Then

ay71 =  Amy3m(yx -  1 )xkmy11 = ^  Amy3rn(yx -  l)y7l-fcm
m  m

=  ( -  y71' fcm) +  (  ^my3m( y x ~  l
m :k m <  71  m : k m = 71

= (  S  xmvjm{yn~km -  y71_fcm) +  ( X™yjm(vx ~ 1
m :k m < 71  m : f c m = 7 i

=  AmyJm( y x - 1),
m :k m =

which is a nonzero element contained in I. Similarly,

X12d  =  Xm ( y x  —  l ) x km
m : j m = 72

is a nonzero element of I. □
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Proposition 4.1.8. Suppose that I  is an ideal of R  that is contained in (y x — 

1). Then I  =  (yx — 1).

Proof. By Proposition 4.1.7, I  contains a nonzero element a of the form

' Y ^ \ myjm(yx -  1).
m

Let 7  be the highest exponent of y appearing in any summand of a. Note that 

there will be only one summand of a with j m = 7 . Then

x7 ( y ^ m y Jrn(yx -  1)) =  A mx^y]m(yx -  1) =  A (yx — 1) e l ,
m m

for some A 6  K.  Thus, I  — (yx — 1), as desired. □

4.1.2 S  Preliminaries

Recall that S  — K{x ,  y, z } / ( xy  — l , x z  — a 2z x , yz — a$zy).

Lemma 4.1.9. I f  a 3 7  ̂a f l , then S  is isomorphic to R.

Proof. In S, the equation yz  =  a 3zy holds. Multiplying this equation by x  on 

both sides yields xyz  = a axzy.  The equalities xy — 1 and xz  = a 2zx  imply 

that z =  a^a2z. Hence, 03 =  oif1 or 2 =  0. □

Thus, for the remainder of this chapter, let a  =  a 2 and

S  =  K{x ,  y, z } / (xy — 1, xz  — a z x , yz  — a~l zy).

Note that S  is not noetherian, since R  is not noetherian, and that S  is not 

a domain (for instance, x(yx  — 1) =  0). Also, S  = R[z;a\ is a right Ore 

extension of R, where a is the automorphism of R  sending x  to a x , y to a~ly ) 

and elements of K  to themselves.

Corollary 4.1.10. S  is a prime ring.

Proof. S  is an Ore extension of a prime ring where the multiplication is twisted 

only by an automorphism (see Theorem 2.2.3). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Corollary 4.1.11. The ideal (yx — 1) is prime in S. 

Proof. Note that

where <fi is the A'-algebra automorphism of K[x ,x  sending x  to ax.  Hence

S  is an Ore extension of a prime ring, where the multiplication is twisted only 

by an automorphism. Thus, by Theorem 2.2.3, S / (yx  — 1) is a prime ring. □

P ro p o sitio n  4.1.12. The set {z ty3xk : i, j ,  and k are integers } is a K-linear 

basis for S.

Proof. Let A = AT [?/][£; tx!, <5] be an Ore extension of K[y] with <J\(y) =  0 and 

8(y) = 1. By Remark 2.2.1, the set {y3x k : j  and k are nonnegative integers} 

is a A"-linear basis for A. Then S  = A[z; cr2] is a right Ore extension of A  with

0 2 (y) =  ot~ly and cr2(x) =  ax.  Thus, by Remark 2.2.1, {z ly3x k : i, j ,  k are

nonnegative integers} is a Af-linear basis for S'. □

Thus, when we write a nonzero element of S  in the form

for Xi e  K,  we will assume that the Ae are nonzero and that the (ie,je, fa) are 

distinct for distinct i.

Proposition  4.1.13. Let Z ( S ) be the center of S.

1. I f  a is not a root of unity, then Z ( S ) =  K.

2. I f  a  is a primitive ith root of unity, then Z(S)  = K ( z l ).

Proof. Certainly K  is contained in Z(S),  so Z(S)  is nonempty. Let

A ezteyJex ke,
i

a = Arziryjrxkr £ Z(S)
r

be a nonzero element. Then a must commute with y, and thus

r
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=  ay = {K z iryjrx kr~l ) +  J 2  ( K z iryjr+1).
r-.kr >  0 r \k r = 0

Suppose that kr is nonzero for at least one r  and that 7  is the smallest exponent 

of y appearing in any nonzero summand of a. Then the smallest 7-degree 

of nonzero summands of ya is 7  +  1 and the smallest y-degree of nonzero 

summands of ay is 7 , contradicting that ya = ay. Hence, a must not have x  

as a factor of any summand (ie., a = J2r Xrz LryJr). Thus,

ya =  ^ 2  Ara~trzlryir+1 x kr = ay — ^ 2  Arzlry^r+l.
r  r

Hence, oT%r =  1 for all r. We now divide the proof into two cases depending 

on whether or not a  is a root of unity.

C ase 1: Suppose that a  is not a root of unity. Then ir = 0 for all r. This 

implies that a = Aryjr. Since x  commutes with a,

ax =  Aryirx  =  xa =  (Ary^r~l ) +  (Xrx).
t  r : j r >  0 r : j r =0

Suppose that j r is nonzero for at least one r. Then ax has s  as a factor of 

every summand, but xa has at least one summand without a: as a factor. Thus, 

j r =  0 for all r. Hence, a = A for some A £ I f  and Z(S)  =  K,  as desired.

Case 2: Suppose that a  is a primitive £th root of unity. Then, since 

a~Zr — 1 for all r, the integer ir is a multiple of £ or 0 for each r. The elements 

x  and a commute and thus

ax =  ^ 2  K y jrx  — xa =  '^2  (^r2/'?r_1) +  ^  (Xrx)
r  r : j r > 0  r : j r =0

and, as before, j r = 0 for all r. Thus, a = J2r Xrz lr, where the ir are multiples 

of I  or are zero for all r. Thus, a G K {ze). An easy check shows that, when a 

is a primitive tth  root of unity, (ze) is contained in Z(S).  Thus, Z(S) = (ze) 

in this case, as desired. □

4.1.3 T  Preliminaries

Recall that T  =  R[z, z~1]<j \.
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Proposition 4.1.14. Suppose that I  is a proper ideal o f T  containing z — A, 

for some nonzero A £ K.  Then a = 1.

Proof. Let V  =  T / I  and let x, y, and 2 also stand for their images in T'. 

The equations xz  = azx  and z — A hold in T ' . These equations imply that 

Ax =  a \ x  in V . If x  =  0 in T', then x £ I  and thus xy £ I. Since xy  =  1 in 

T, the element 1 £ I, contradicting the assumption that I  is a proper ideal of 

T. Hence a  =  1. □

Proposition 4.1.15. As an ideal o fT ,

(x -  A, y -  A-1) = { x -  X /ar, y -  aT/A), 

for any nonzero A in K  and any nonnegative integer r.

Proof The proof is shown for r =  1 and follows analogously for arbitrary 

values of r. Let I  = (x — A/a, y — a/A). Then

z(x  — A/a) =  zx  — (Af a ) z  — a~lxz  — (AJa)z = ( a _1x — (Aja ) ) z  £ I.

Hence,

a ( a _1x — (A/a) ) ^ - 1 = x — X £ I.

Similarly y — A-1 £ I. Thus, (x — X,y — A-1) C (x — X /a ,y  — a/X).

To obtain the reverse inclusion, let J  = (x — A,y — A-1). Then

(x — A)z =  xz  — Xz =  z(ax — A) £ J.

Hence

oTlz~l (x — X)z = x — A /a £ J.

Similarly y — a/X £ J. Thus I  = J . □

Corollary 4.1.16. As an ideal o fT ,

(x — X,y — A-1) f l  (x — X /a ,y  — a /X ) f l  • • • f l  (x — X /a n~l ,y  — a n~~l /X)

= ( x - X , y -  A-1).
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4.2 P rim e Ideals o f S

Recall that S  = R[z\cr]. Thus, the prime ideals of S  that contain z will 

be in one-to-one correspondence with the prime ideals of R, which are given 

in 2.2.14. Therefore, it remains to classify the prime ideals of S  that do not 

contain z, which are in one-to-one correspondence with the prime ideals of T. 

Recall that if P  is a prime ideal of T, then P  fl R  is a d-prime ideal of R  (see 

Lemma 2.2.4). Hence a classification of the d-prime ideals of R  will aid in our 

classification of the prime ideals of T. By the previous results, it makes sense 

to divide our study into two cases based on whether or not a  is a root of unity.

4.2.1 Scalar N ot a Root of Unity Case

Throughout this subsection, we will assume that a  is not a root of unity. 

We begin by exploring the d-prime ideals of R  and then use these results to 

classify the prime ideals of T.

P ro p o sitio n  4.2.1. Suppose that I  is a proper nonzero ideal of R  that is not 

equal to (yx — 1). Then I  is not a-stable.

Proof. By Proposition 4.1.5, Lemma 4.1.6, and Proposition 4.1.8, I  contains 

a nonzero element with a nonzero constant term and without x  as a factor 

of any summand. Let s be the smallest nonzero exponent of y appearing in 

any nonzero summand of elements of I  of this type. Let a = ]T)r Aryr be an 

element of /  with A0 not equal to zero and y-degree s.

Next suppose that /  is d-stable. This implies that a(a) € I. Note that

d (a) =  d (]T A r2/r) =  £ ; A ra - V .
r r

Then

r
and

a — a sa (a) =  Ar(l -  o ’- ’V ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

Note that a — a sa(a) G /  is nonzero with a nonzero constant term and without 

£ as a factor of any summand. Also, the y-degree of a — a su(a) is less than s, 

contradicting the choice of a. Hence, if /  is a nonzero ideal of R  that is not 

equal to (yx — 1), then /  is not a-stable. □

C oro llary  4.2.2. The only cr-stable ideals of R  are (0) and (yx — 1). Thus, 

the only a-prime ideals of R  are also (0) and (yx — 1).

Proof. Since R  is a prime ring (see Theorem 2.2.14), (0) will be a cr-prime ideal 

of R. Hence, the corollary follows from Proposition 4.2.1 and Proposition 4.1.8.

□
C oro llary  4.2.3. Let P  be a prime ideal of T. Then P  D R  equals (0) or 

( y x -  1).

Proof. The corollary follows from Corollary 4.2.2 and Lemma 2.2.4. □

P ro p o sitio n  4.2.4. I f  P  is a prime ideal o f T  with P  D R  = (yx — I), then 

P = ( y x - T ) .

Proof. Let T'  =  (K[x,y \/ (yx  — l))[z, z~1; a] and let P'  stand for the natural 

image of P  in T ' . Note that P'  is a prime ideal of T'. Next, consider P" =  

P'  fl K[x, y \ / (yx  — 1). The ideal P"  will be prime in K[x ,y \ / (yx  — 1). Hence 

P" =  (0) and P  =  (yx — 1), using Proposition 4.1.14. □

To classify the prime ideals of T  that intersect R  at (0), note that these 

ideals are in one-to-one correspondence with the prime ideals of S  that intersect 

R  at (0) and do not contain z.

P ro p o sitio n  4.2.5. Let P  be a nonzero prime ideal of S  such that PD R = (0). 

Then P  =  (z).

Proof. Let V  denote the symmetric quotient ring of R , Z(T')  the center of 

T', and D' the ring of all central elements in T'  which are cr-invariant. Since 

a is not a root of unity, no power of a will be an inner automorphism of T ' . 

Hence, by Proposition 2.2.9, Z(T')  =  D'. Therefore, by Theorem 2.2.10, the 

only prime ideal of S  that intersects R  at (0) will be (z). □
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C oro llary  4.2.6. The following is a complete list of the prime ideals of S

(organized by families) in the case when a is not a root of unity.

1. (0),

2. {yx -  1),

3. (z),

4. {yx — 1, z), and

5. {x — A, y — A-1 , z), where X is a nonzero element of K .

4.2.2 Scalar R oot of Unity Case

Throughout this subsection, we will assume that o; is a primitive tth  root 

of unity and hence ae is an inner automorphism of R  (in fact, ae is the identity 

map on R). Thus, by Lemma 2.2.7 and Proposition 2.2.8, the set of ideals of 

R  that are cr-cyclic is equal to the set of ideals of R  that are <r-prime, and the

cr-cyclic ideals of R  will be one of the following.

1. n<Tfc((o}) =  cr((0)) =  (0),

2 . n a k({yx -  1)) =  a({yx -  1)) =  {yx -  1), or

3. ncrk( { x - \ , y - \ - 1)) = {x — A, y — A~1)n -  • -n(a; — \ /o te~l ,y  — a~e+1/ \ ) ,  

for nonzero A € K.

Thus, if P  is a prime ideal of T, then P  f l  R  will be one of the above cr-cyclic 

ideals.

C oro llary  4.2.7. I f  a  ^  1 and P  is a prime ideal o f T  not containing z with 

P  n  R  =  {yx — 1), then P  =  {yx — 1). I f  a = 1 and P  is a prime ideal of T  not 

containing z with P  f l  R = {yx — 1 ) ,  then P  is equal to one of the following.

1. {yx — 1 )  or
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2. (yx  — 1, z — A), for  A a nonzero element of K .

Proof. Let V  — (K[x , ?/]/(y:r— l))[z, z_1; a], let P' stand for the natural image 

of P  in T', and let P" = P'nK[x,  y \ / (y x— 1). Note that P" will be a prime ideal 

of K[x ,y \ / (yx  — 1). Using the assumption that z ^  P  and Proposition 4.1.14, 

if a ^  1, the ideal P f =  (0). If a  =  1, the ideal P'  equals (0) or (z — A), for A 

a nonzero element of K.  □

Corollary 4.2.8. Let P  be a nonzero prime ideal of S  not containing z with 

P n R = { 0 ) .  Then P  = {ze -  A) for  A € K.

Proof. Let T 1 denote the symmetric quotient ring of R, Z(T')  the center of 

T', and D1 the ring of all central elements in V  which are cr-invariant. Since 

q is an t th  root of unity, a1 is an inner automorphism of T'. Thus, by Propo­

sition 2.2.9, Z(T') ^  D'. Therefore, there exists an invertible A in T' and 

an r  > 0 such that Z(T') = D'[u\, where u = Atr. By Proposition 2.2.9, 

u =  zc. Hence, again using Theorem 2.2.10, the nonzero prime ideals P  of S, 

not containing z, with P  Pi R  =  (0) are of the form (ze — A) for A € K.  □

P ro p o sitio n  4.2.9. Let P  be a prime ideal o f T  with

P D  R — (x — X,y — A-1) f l  • • • f l  (x — A /c/-1, y — a~i+l/A).

Then P  = (x — A, y — A-1, z  — 7 ), with 7  nonzero only if  a  — 1 .

Proof. The proposition follows from Corollary 4.1.16 and Proposition 4.1.14.

□

C oro llary  4.2.10. The following is a complete list of the prime ideals of S  

(organized by families) in the case when a is a primitive tth root of unity.

1 ■ <0>,

2. (yx -  1),

S- <*},
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4 . { yx  -  1 , z ) ,

5. {x — A, y — A-1}, for  A a nonzero element of K,

6. (x — A, y — A-1 , z), for  A a nonzero element of K ,  and

7. {zl — 7 ), for 7  a nonzero element of K .

If  a = 1 (i.e., £ = I), then, in addition to the above prime ideals, the following 

prime ideals of S  are a complete list of the prime ideals of S.

1. {yx — l , z  — 'y), for  7  a nonzero element of K , and

2. {x — A, y — A-1 , -2 — 7 ), for  A and 7  nonzero elements of K .

4.3 P rim itive Ideals o f S

Since the set of primitive ideals of S  is contained in the set of prime ideals 

of S,  we need only consider prime ideals of S  to classify the primitive ideals. 

We leave a complete classification for future work

4.3.1 Scalar N ot a Root of U nity Case

In the case when a  is not a root of unity, the following are primitive ideals 

of S  because S  modulo each of these ideals is known to be a primitive ring.

1. (z),

2 . {yx — 1 , z), and

3. (x — A, y — A-1 , z), where A is a nonzero element of K.

The primitivity of the following ideals is left open.

1. (0 ), and

2 . {yx -  1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

4.3.2 Scalar Root of Unity Case

In the case when a  is a primitive ItYi root of unity, the following are primi­

tive ideals of S  because S  modulo each of these ideals is known to be a primitive 

ring.

1. (z),

2 . (yx — 1 ,z),  and

3. (x — A, y — A-1, z), for A a nonzero element of K.

If a  = 1 (i.e., i  = 1), then, in addition to the above primitive ideals, the

following are primitive ideals of S.

1. (yx — 1, 2  — 7 ) ,  for 7  a nonzero element of K , and

2. (x — A, y — A-1, z — 7 ),  for A and 7  nonzero elements of K.

The primitivity of the following ideals is left open.

1. (0 ),

2 . (yx -  1),

3. (x — A, y — A-1), for A a nonzero element of K , and

4. (ze — 7 ),  for 7  a nonzero element of K.
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CHAPTER 5

NONNOETHERIAN CASE
TWO

This chapter will give a classification of the prime ideals, primitive ideals, 

and irreducible representations of

S  = K { x ! , • • • ,  xn}/(xiXj -  OxjXi -  (3i:j, i < j)

= K { x i, • • • , xn}/{xiXj -  Pij, i < j) ,

where K  is an algebraically closed field, n > 3, and /% <E K.  The prime 

and primitive spectra of some classes can be immediately classified. For the 

remaining cases, we reduce our study of the prime and primitive ideal structure 

of the n -variable case to the study of the prime and primitive ideals of

R  = K{x ,  y, z } / (xy  -  0, x z -  1, yz -  0) =  K{x ,  y, z}/{xy , x z - l , y z ) .

After reducing our study of the algebras in n-variables to the study of R, 

we prove some preliminary results about R. In particular, we note that a more 

general result by Adam Berliner (Theorem 2.2.13) allows us to completely clas­

sify the finite dimensional irreducible representations of R. Next, we explicitly 

construct an infinite family of infinite dimensional irreducible representations,
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using a method of Irving. A proof is then given showing that the representa­

tions already classified are indeed all of the irreducible representations of R. 

Finally, we classify the prime ideals of R.

5.1 R edu ction  to  T hree Variable Case

Throughout, let n > 3 and let x, y, and z stand for their images in various 

quotient algebras. We now show that to complete a classification of the prime 

and primitive spectra of algebras of the form

K { x i, • • • , x n}/(xiXj -  pij}i < j) ,

where K  is an algebraically closed field, n > 3, and 6 l3 G K,  it suffices to 

classify the prime and primitive ideals of R  — K {x ,  y , z} /  {x y , xz  — 1, yz). We 

consider the possible cases when each is taken to be zero or nonzero.

First, suppose that /?*,■ is nonzero for all i and j .  We will assume that 

Pij = 1 for all i and j  and the results follow similarly for arbitrary nonzero 

values of the f y .  Let

Si = K { x x , x 2 , ■ ■ • , x n}/{xiXj -  M  < j)-

In Si, the equation X1X2 = 1 holds. Multiplying both sides of this equation 

by Xk on the right yields =  £fc- In Si, however, x 2Xk = 1, for any

2 < k < n. Therefore, X\ = Xk for all 2 < k < n  and the equation X1X1 = 1 

also holds in Si. Multiplying both sides of the equation x \ x 2 =  1 by aq on the 

left yields XiX\x2 =  x\ and, hence, x\ =  x 2. Thus X{ =  Xj for all 1 < i , j  < n 

and Si =  K[x\ / (x2 — 1).

Next, suppose that = 0 for all i and j .  That is, consider

S2 = K { x i , x 2, ■ ■ ■ , x n}/{xiXj,i < j).

Note that XjXi is contained in the nilradical of S2 for 1 <  i < j  < n. Thus, 

modulo its nilradical, S2 is commutative and hence the classification of the 

prime and primitive ideals is clear.
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Let

S3 =  K { x  i , x 2,--- , x n)l{xiXj -  pij, i < j ) ,  

where at least two /% 7  ̂ 1 and at least one 6 , j  =  0. We will assume that 

nonzero =  1 for all i and j  and the results follow similarly for arbitrary 

nonzero values of the Pij.

Proposition 5.1.1. I f  n = 3, then S3 (as above) is trivial.

Proof. We proceed in cases.

Case 1: Suppose £ 1X2 =  1-
Subcase 1: Suppose X2X3 =  1. Multiplying both sides of this equation 

by x\  on the left yields x xx 2x 2 = x x. This implies that x3 =  x x. The equation 

x xx 3 =  0 also holds in S3 . Hence xj  =  0. Multiplying both sides of x xx 2 =  1 

by x\  on the left yields that x x = 0 , contradicting that x x must be nonzero for 

the equation x xx 2 — 1 to hold. Hence S3 is trivial.

Subcase 2: Suppose x 2X3 = 0. Then the equation X\X2 — 1 also holds 

in S3 . Multiplying both sides of the equation x \ x 2 =  1 by x 3 on the right yields 

that X\X2X3 =  X3 and hence x 2 = 0 , contradicting that X3 must be nonzero for 

the equation X1X3 =  1 to hold. Hence S3 is trivial.

Case 2: Suppose x xx 2 — 0. Then the equations x xx 2 = 1 and x 2x 3 = 1 

hold in S3. Multiplying both sides of the equation x2x3 =  1 by x x on the left 

yields x xx 2X3 = aq, implying that x x =  0. This equality contradicts that x x 

must be nonzero for the equation x xx 2 =  1 to hold in S3 and, hence, S3 is 

trivial. □

Corollary 5.1.2. I f  n is any integer with n > 3, then S 3 is trivial.

Proof. We proceed by induction on n. If n = 3, the corollary holds by Propo­

sition 5.1.1. Let k be a positive integer greater than 3 and suppose the result 

is true for n < k. Then, if n =  k, the algebra S3 is an Ore extension of 

S'3 =  K { x  1 , x 2, • ■ • , x k^ x} /{x ixj -  Pij,i <  j) ,  where /% G K.

Case 1: If at least two of = 1 and at least one of the — 0 for 

1 < i , j  < k — I, then S3 is trivial by the induction hypothesis and hence S3 is 

trivial.
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C ase 2 : If /% =  1 for all 1 < i , j  < k -  1, then S3 is isomorphic to 

K[x]/(x2 — 1) by an above argument. But this implies that S3 is an Ore 

extension of K[x]/(x2 — 1) and hence cannot have at least two pt] =  1 and at 

least one P^ =  0 , contradicting the assumptions on the f y .

C ase 3: If there exists only one /% =  1 with 1 < i, j  < k — 1, then there 

exists an r < k such that prk =  1. Hence Xk ^  0. Suppose that X(Xm — 1 

f o r l < ^ < m < / c  — 1. Then in S3 the equation xexmx k = Xk holds. If 

=  0, then Xk — 0 contradicting that Xk must be nonzero. If x mXk = 1, 

then xi — Xk and hence S3 =  S3. But this also contradicts the assumptions 

on the Hence S3 is trivial.

C ase 4: Suppose that =  0 for all 1 <  i, j  <  k — 1. Then there exists 

an r  and an s with l < r < s < k  — 1 such that the following equations hold 

in S3.

1. XrXk =  1,

2 . x sXk =  1, and

3. x rx a =  0.

Then x rx sxk =  xr holds in S3. But this implies that xr = 0 which contra­

dicts that xr must be nonzero for the equation x rXk =  1 to hold. Hence S3 is 

trivial. □

Finally, let

S4 =  K { x i , x 2) ■ • • , x n}/(xiXj -  i < j) ,

and suppose that there exists a k and an £ such that pki ^  0 and Pij = 0 

whenever (i , j )  7  ̂ (k, £). Note that by a change of variable we may assume 

that pu  = 1.

P ro p o sitio n  5.1.3. The algebra S4 (as above) is isomorphic to 

K { x k, x k+1, • • • , x e}/(xiXj -  qfij,i < j) ,  

where 7kt — 1 and 7^ =  0 whenever (i , j ) 7  ̂ (k,£).
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Proof. Suppose fiki =  1 and /% =  0 whenever (i , j)  (k, £'). If there exists

an m  such that 1 < m  < k, then xmXk — 0. Multiplying both sides of the 

equation x^xt — 1 by xm on the left yields xm(xkXf) — x m. This implies that 

(x mXk)x£ = x m and thus that xm =  0. By similar reasoning, xr =  0 for all 

I < r < n. □

Thus for the remainder of this chapter, let

5*4 =  K { x i , x 2 , ■ ■ ■ , x n } / { x i X j  -  <  j ) ,

where fiin =  1 and /% =  0 for (i , j ) /  (1 ,n).

P ro p o sitio n  5.1.4. Let P  be a prime ideal of S^. Then at most one of the 

elements x 2, ■ ■ • , a;n- i  is not contained in P.

Proof. Let P  be any prime ideal of S'4. Suppose there exists a 2 < K n - l  

such that Xk £ P ■ Elements of (xe){xk) are sums of elements of the form 

riX£r2x kr3) where r i , r 2, r 3 G S4. If A; ^  2, then, for any 2 < £ < k, the 

product Xer2Xk = 0. Hence (xf){xk) = 0. Furthermore, since P  is prime and 

Xk <£ P, the element xe £ P. Similarly, if k n —1 , then for any k < m  < n —1, 

the element xm G P. Hence, if Xk P  for 2 <  k < n — 1, then X? G P  for all 

£ such that 2 < I  <  n — 1 and I  j - k. Therefore any prime ideal P  of S4 will 

contain x2, ■ ■ ■ , xn- \  or all but one of x 2, ■ ■ ■ , x n-\.  □

Hence, using Theorem 2.2.14, a classification of the prime and primitive ide­

als of R, will completely determine the prime and primitive spectra of S'4. 

Furthermore, using Gerritzen’s classification of the irreducible representations 

of K { x , y , } / ( x y  — 1) (see [11, Section 3]), a classification of the irreducible 

representations of R  will complete such a classification for ,S'4.
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5.2 P rim e and P rim itive Ideals

5.2.1 N otation and Preliminary Results

Proposition 5.2.1. The set {z ly^xk : i, j , k are nonnegative integers} is a 

K-linear basis for R.

Proof Let A  =  K[x][y\ ny] be a right Ore extension of K[x] with <7 \{x) =  0. 

Then, by Remark 2.2.1, the set {yj x k : j  and k are nonnegative integers} is 

a NT-linear basis for A. Then R  =  A[z;a2 ,d] is a right Ore extension of A, 

where cr2(y) =  0, 5(y) — 0, a2(x) — 0, and 5(ar) =  1. Thus, by Remark 2.2.1, 

{zly lxk : i, j , k are nonnegative integers} is a iL-linear basis for R. □

Hence, whenever we refer to a nonzero element K z lryjrx kr in R, we 

will assume that the (ir, j r, k r) are distinct for distinct r and that the Ar are 

nonzero.

Proposition  5.2.2. Any nonzero ideal of R  contains a nonzero element of 

K[y]-

Proof. Let I  be a nonzero ideal of R  and let /  =  f f  'r=o K zh'y3rxkr be a nonzero 

element of / .

Case 1 : Suppose there exists a nonzero summand si of /  with x  not 

a factor of si. Then f y  will be nonzero and x  will not be a factor of any 

summand of f y .  If there is at least one nonzero summand, s2, of f y  with z 

not a factor of s2, then y f y  will be a nonzero element of I  without x  or z as 

a factor of any of its summands.

Suppose then that f y  has z a s a  factor of every summand. Let a  be the 

y-degree of f y .  Note that a > 1 (since we have multiplied /  by y). Let f3 

be the highest ^-degree of the summands of f y  with y-degree a. Note that 

there can be only one summand of f y  with y-degree a  and z-degree f3. Also, 

note that x^ f y  contains a nonzero summand of the form A ya, for some A e  K,  

and this summand cannot possibly cancel with any other summands (using
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the fact that there is only one summand of f y  with y-degree a  and z-degree 

j3). Therefore, x® f y  is nonzero.

Also, x®fy is an element of I  without a; as a factor of any of its summands 

and there exists at least one nonzero summand of f y  without 2 as a factor. 

Hence, as previously, y x ^ f y  will be a nonzero element of I  without x  or z as 

a factor of any of its summands. Therefore, the desired result is true in this 

case.

Case 2: Suppose there exists a nonzero summand of /  without z  as a 

factor. Then proceed similarly to the above case.

Case 3: Suppose every summand of /  has x  and 2 as a factor. Let a  be the 

minimum exponent of x  appearing in any nonzero summand of / .  Note that 

a >  1. Then f z a will be a nonzero element of I  where not every summand 

has x as a factor. Hence proceed as in Case 1.

Therefore, every nonzero ideal of R  contains a nonzero element of K[y}. □

Corollary 5.2.3. R is prime.

Proof Suppose /  and J  are nonzero ideals of R  with I J  — 0. By Propo­

sition 5.2.2, I  contains a nonzero polynomial in y, say / ,  and J  contains a 

nonzero polynomial in y, say g. Then f g  G I J  and / j  /  0 (the product of 

two nonzero polynomials in y cannot be zero), contradicting the assumption 

that I J  = 0. □

Lemma 5.2.4. In R, the ideal (y l) =  (y)\  where i is any integer greater than 

or equal to zero.

Proof. The proof is shown for i =  2 and the general case follows analogously. 

It is obvious that (y2) C (y)2. Suppose a G (y)2. Then a is a finite sum of 

elements of the form r \yz%yjx kyr2 where ri and , are elements of R  and i, j ,  

and k are nonnegative integers. If either i or k is nonzero, then

rxyz ly3xkyr2 =  0 G (y2).

If i =  0 and k — 0, then rxyz ly3x kyr2 — r xy3+2r2 G (y2). □
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L em m a 5.2.5. Let P  be any nonzero proper prime ideal of R  not containing 

y. Then there exists a nonzero c G K  such that (y2 — cy) C P.

Proof. If (y2 — cy) C P  for some c G K,  then, by Lemma 5.2.4, c is nonzero. 

By Proposition 5.2.2, P  contains a nonzero polynomial in y, say g. If g has 

a nonzero constant term, then xgz  is equal to a nonzero scalar and xgz  G P, 

contradicting that P  is a proper ideal of R. Hence, g must have a zero constant 

term, i.e., g = y f  for some polynomial /  G K[y\.

Suppose then that /  =  (y — ot\){y — a 2) • • • (y — oit) is a factorization of 

/  into irreducible polynomials over K.  Since (g(y)) C P  and P  is prime, we 

need only prove

(■y(v -  <*i ) ) (y(y -  a 2) ) . . . ( y ( y  -  «*)> c  (g(y))

to prove the lemma. We proceed by induction on t.

If t = 2, let a G (y(y — ct{))(y(y — a 2)). Then a is equal to a finite sum of

elements of the form

riy(y -  « i )zzy3x ky{y -  a 2)r2,

for some elements rq and r 2 G R  and nonnegative integers i, j , and k. If i or 

k is nonzero, then

n y ( y  -  a i )z ly3x ky{y -  a 2)r2 =  0 G {y(y -  an){y -  a 2)).

If i and k are zero, then

n y{y  -  a 1)ziyj x ky{y -  a 2)r2 = n y 3+2(y -  ai)(y -  a2) G (y(y -  a x)(y -  a 2)).

Hence, a G (y(y — ot\){y — a 2)) and the desired result is true for t = 2.

Let s be an integer greater than two. Suppose the claim is true for t < s.
Using the induction hypothesis,

(y(y -  a i ))(y{y -  a 2) ) . . .  (y(y -  a s_i)) C (y(y -  a x) • • ■ (y -  a s_i)).

Hence,

( y ( y  -  ) ) ( y ( y  -  a<i ) )  ■ ■ ■ ( y { y  -  ««)) Q ( y { y  -  a x) . . .  (y -  a s- i ) ) ( y ( y  -  a s)}.
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Suppose

a € (y(y - a i ) . . . ( y -  a s-i) )(y(y -  a s)).

Then a is a finite sum of elements of the form

n ( y  -  au) ■■■(y -  a s_i)y(zly3xk)y(y -  a s)r2,

for elements r\ and r2 € R  and nonnegative integers i. j ,  and k. If i or k is 

nonzero,

r\{y -  « i) • • • (y -  a 3^ 1)y(zlyJx k))y(y -  a s)r2 = 0 .

If % and k are zero, then

r\{y - a i ) " - ( y -  a s- X)y{zly3x k))y{y -  a s)r2 

=  riyJ+2(y -  Oil) ■•■(y -  a s - i  )(y -  a a) 

e (y(y -  a i)  • • • (y -  a ,))  C P.

Hence, a G P.  This implies that

{y(y -  «i))(y(y -  £*2)) ■ • • (y{y -  a s)) c p.

Since P  is prime, there exists an 1 < % <  s such that (y(y — a*)) C P , as 

desired. □

Remark 5.2.6. Note that (y) is a prime and primitive ideal of R  (see Theorem 

2.2.14).

Remark 5.2.7. Also note the following corollary to Proposition 2.2.13.

Corollary 5.2.8. All cofinite dimensional primitive ideals of R  are of the form 

(y ,x — X, z — A-1), where X is a nonzero element of K .

5.2.2 Infinite Dimensional Irreducible Representations

To show the existence of infinite dimensional irreducible representations of 

R, we begin by explicitly constructing such a representation, using a method 

of Irving (see [18, Section 7]). Let A be a nonzero element of K  and let M\  

be the infinite dimensional I T - vector space with basis v0, Vi, v2,—  By the 

following action, M\  is a K { x , y , z } - module.
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1. zvn — vn+i for all n £ N with n > 0 ,

2 . xvo =  0

3. xvn =  vn- i  for all n E N with n > 1,

4. yvo =  Xvo, and

5. yvn =  0 for all n E N with n > 1.

Let v E M \. Since Vo, v\, t>2, . .. is a AMinear basis for M\,  we can write 

v in the form v =  Zi=o CiVi, for some q  E A" and some nonnegative integer 

t. Whenever we write an element of M\  in this form, we are assuming that 

c ^ O  and that the vt are the IL-basis vectors of M\.  Therefore,

i
xy ■ v =  xy ■ ^  QVi =  x  • coAuo =  0 .

i=0

Hence, xy  E anriK{x,y,z}(M\). Similarly, yz  and xz  — 1 are elements of 

annK{x,y,z}(M\). Hence, M\  is an R-module.

Let v — Z L o  ciyii (where c* E K  and v.t are A"-basis vectors of M\),  be an 

arbitrary element of M \  with q / 0 .  Then zmx iv =  cevm, which implies that 

Rv  =  M \  or, equivalently since v is arbitrary, that M\  is simple.

P ro p o sitio n  5.2.9. The ideal annpi(Mx) = (Azx + y — A).

Proof. The proof is shown for A =  1 and follows analogously for other values of 

A. An easy check shows that ( zx+y — 1) C anriR{M\). Let R'  =  R / ( z x + y  — 1) 

and let x, y, and 2 also denote their images in R ' . The set {zlyj x k : i, j ,  k are 

integers} spans R! over K.  However, y2 — y £ (zx + y — 1) and hence y 2 — y =  0 

in R ' . Therefore,

{z ly ixk : i, j  and k are nonnegative integers with j  = 0 or j  = 1}

spans R! over K.  Also, zx  =  1 — y in R!. Thus, {z lyxk} U{2*} LK3̂ }) where 

i and j  are nonnegative integers, spans R! over K.  Hence, if r  is any nonzero
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element of R' ,  we can write r  in the form

r  =  A a z l ay x ka +  ^  / v r c ,

a  b e

for nonzero Aa, 7*, and fic E K  and for (za, /ca) distinct for distinct a.
Suppose

0  ^  P  =  ^ z l ay x ka +  7b ^ 6 +  ^  / r c : r c <E a n n R / ( M x ) ,
a b e

where the Aa, 7b, and /ic are nonzero elements of /L. Let q be greater than ka 

for all a  and greater than c for all c. Then

p V q  =  ^   ̂'Jb'Vq+b T ^  ] P c X q —ci

which must be zero since p  € a n n R / ( M x ).
This implies that for each b, there exists a c such that 'jbVq+b =  —p,cvq-c- 

This, in turn, implies that q + b — q — c which can only happen if b = c =  0 

since b,c >  0. Similarly for each c, there exists a b such that 7 bVq+b — —PcVq- c- 

Therefore, c = b =  0. Hence, p  = Aa z Zay x k a .
Let r  be the highest exponent of x  appearing in p .  Then

P y r =  ^ 2 X a z lay x kav r  =  ^  X a z %ay v 0 =  X a z lav 0 =  ^  X a v i a .
a  (a: ka=r ) (a:ka= r)  (a:ka = r )

However, for each a  such that ka = r, the ia must be distinct (otherwise there 

would be two summands with the same x ,  y ,  and ^-degrees). This implies that 

Yl(a-ka=r) Via cannot possibly be zero, which contradicts that p  e a n n R ( M x ).  
Hence, 0 =  a n n R i ( M x ) ,  which implies that ( z x  + y  — 1) D  a n n R ( M x ) and that 

a n n R ( M \ ) =  ( z x  + y  — 1), as desired. □

Thus, R  has an infinite family of infinite dimensional irreducible represen­

tations and we wish to explore the existence of others. Since a classification 

of the irreducible infinite dimensional representations V  of R  with y  E  a n n R V  
can be found in [11, Section 3], we now concentrate on irreducible infinite 

dimensional representations of R  without y  in their annihilator.
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Proposition  5.2.10. Let M  be a nonzero infinite dimensional simple R- 

module with annR(M) /  0 and y annR(M). Then M  is isomorphic to 

M\ (as defined above) for some A 7  ̂ 0 £ K.

Proof. Let M  be any nonzero infinite dimensional simple i?-module. Suppose 

annR(M) ^  0 and y ^ annR(M). Let A = K ( x , y ) and M'  =  (A y x A ) M .

Case 1: Suppose M'  =  0. This implies that yx  is in the annihilator in 

R  of M.  Hence yxz  =  y E annR(M), contradicting the assumption that 

y £ annR(M).

Case 2: Suppose M'  ^ 0. Then x  £ ann^(M '). Therefore, M'  is a 

if[y]-module. By Proposition 5.2.2, there exists a polynomial in y , say f(y),  

with f (y )  £ annR(M). Hence, f ( y )M '  =  0. Therefore, for 0 7  ̂ m € M ' , 

the A-module Am  is finite dimensional over K . Thus A m  contains a simple 

A-module, say Av0, for some v0 £ M ' . Then xv0 = 0 and ijv q  =  Xv0 for some 

A ^  0 £ K.

Choose a basis for M  over K  that includes vq, say vq,v\,V2 , —  Since 

xzVi = Vi for all i, the element vq f  zM.  Let n  be an arbitrary positive integer. 

Since M is a simple Z?-module, there exists an element, °f R

such that

Since xvo = 0, the exponent he =  0 for all I. Using the fact that yv0 =  Auo, 

the product YYi=oa ^ ezH ' v° = Vn■ Thus, there exists a polynomial in z, say 

g(z) = E L o  aeze, such that g(z) • vq = vn. Then

and thus a rv0 = x rvn.

However, we also have from the relations in R  that xrzra rv0 =  a rvo. Thus, 

xrzra rv0 =  xrvn. This implies that

x r £ annR(zrarv0 — vn)
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which implies that

1 G anriR(zra rvo — vn).

Hence, z ra rv0 =  vn. Let wo =  vq and Wi =  z lv o for all i >  0. N ote that the  

set {u.’o, w \ , . . . }  will contain all basis vectors of M  over K  and hence the basis 

wo, w i , . . .  is just a renumbering of the original basis, vq, v\, . . . .  Let uq, u \, . . .  

be the basis for M\,  with iTaction:

1. zun =  un+1 for all n  G N with n > 0,

2 .  x u q  =  0 ,

3. xun = i for all n G N with n >  1,

4. yuo = uq, and

5. yun =  0 for all n G N with n > 1.

Define : M  —> M\  by =  ttj. This is an isomorphism of R-modules. □

Thus, all infinite dimensional irreducible representations of R  that are not 

faithful have been classified. To complete a classification of the primitive 

ideals of R, we need to ascertain whether or not (0) is a primitive ideal.

P ro p o sitio n  5.2.11. R is not primitive.

Proof. Suppose that M  is a faithful, simple nonzero i?-module. Let A  =  

K(x,  y) and M' = (A y x A ) M , as above. Note that M' ^  0 since M  is faithful. 

Thus, for all v G M'  and for all nonzero f (y )  G K[y\, the product f (y )  ■ v ^  0, 

or else M  =  M\  for some A G K,  as in the proof of Proposition 5.2.10.

Choose v 0 G M ' . Then, since M  is simple, Ryv = M.  This implies that 

there exists an a =  fTfffn a^zltyjl,x kf G R  such that ayv =  v.

Then
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Let r be the minimum exponent of z appearing in any nonzero summand of
m

^ 2  ott zHyn+l. 
e-.ke=o

Then m

xr ■ v — xT (  ^ 2  Q-(,zHy^l+l\  ■ v.
'  t.kt=0 '

Since x  E ann^(M '), the product xr • v =  0 and hence

x r f  ^ 2  OL̂ zHy^l+1\  -v = 0 .
'  Lkt =o  '

This implies that

(  a£Zte~ryje+1 + *22 a eyj e + ) • v = 0.
^ £:k(=0,i(>r £:k̂ =0,i(=r '

Note that Yle-ke=o ie=r a iVjt+1 ^  0- Multiplying both sides of the equation

f ^2 atz%i ryJe+1 + aeyJe+1') •v =
'  C:k(=0,ie>r C:k(=0,i i=r '

by y on the left yields

( ^ 2  aey3e+2j  -v = 0 ,
'  £:k(=0,ig=r '

contradicting that f (y )  - r ^ O ,  for all nonzero f (y )  E K[y\. □

5.2.3 Classification of Prime Ideals

P ro p o sitio n  5.2.12. Any nonzero prime ideal of R  not containing y contains 

(Xzx — A + y) for some nonzero A E K.

Proof. Let P  be a prime ideal of R  not containing y. By Lemma 5.2.5, there 

exists a A E K  such that y1 — Xy E P. If (Azx  — A + y){y) Q P, then, because 

P  is prime and P  does not contain y, the ideal (Azx  — A + y) C P. Let 

a E (Azx  — A + y){y). Then a is equal to a finite sum of elements of the form

n{Xzx  -  A +  y)(zlyJx k)(y)r2,
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for some elements r\ and r 2 £ R  and some nonnegative integers i, j ,  and k. If 

k > 0 , then

rx(Xzx -  X + y)(zly3 x k)(y)r2 =  0 £ P.

If k =  0 and i > 0, then

r x(Xzx — A +  y){zly3 x k)yr 2 =  rx(Xzx — A +  y)(z ly3+1)r 2

=  ri(A zV +1 — Xzly3+1 +  yz lyj+l)r2 =  0 € P.

If k =  0 and i — 0, then

ri(Xzx -  A +  y){zlyj x k)yr2 = rx(Xzx -  X + y)(yj+1)r2

= rx(Xzxy3+1 -  Xyj+1 + yi+2)r2 =  rx( -X y3+l + ? /+2)r2 £ (y2 -  Xy) C P. 

Hence, a C P. □

Thus a classification of the prime ideals of P /  (Aza; — X — y) for all A £ K  

will complete the classification of the prime ideals of R.

Proposition 5.2.13. All nonzero ideals of R  properly containing (Xzx — X + y) 

contain y.

Proof. Let P  be a nonzero ideal of R/{Xzx — X + y). Suppose a /  0 £ P. 

Then, as in the proof of Proposition 5.2.9, a can be written in the form

7711 7712 7713

a =  ^  a £lzHiyxkei + a£2zl^y +  ^  a e3yxke*
£i=0 £2=0 h =0

7714 7715

+  S  au z%ti +  <xtsx k‘* +  Ai y + A2,
r4=o  4 = 0

with £n, kn >  0 for all 1 <  n <  5, a n £  PT for all 1 <  n  <  5, and Ai, A2 e  K .

Case 1: Suppose Ai ^  0 and A2 =  0. Then yay =  Xxy £ P,  using the fact 

that Ai|/2 =  Aiy in R/(Xzx — X — y).

Case 2: Suppose Xx =  0 and A2 ^  0- Then yay = X2y £ P.
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C ase 3: Suppose Ai 7  ̂ 0 and A2 7  ̂ 0. Let 7  be strictly greater than the 

highest exponent of z appearing in a. Then
m-4 m  5

x 1a =  0 4  x7-1*’4 +  x 1+k^  +  A2x7.
4 = 0  4 = 0

Therefore,
77i4 7775

aFa^7 =  ^  0:4 P *4 +  ^  +  ^2-
4 = 0  4 = 0

Thus, yx^az^y  =  A2 G P.

C ase 4: Suppose Ai =  0 and A2 =  0.

Subcase a: Suppose XX=o a ^ xkt5 ^  Let 7  be as in Case 2. Then

7714 7715

aPa =  ^  a.iAx'1~H* + ^  « 4 ^7+fc£5- 
4 = 0  4 = o

Let 5 be the minimum exponent of x  appearing in any nonzero summand of 

aPa. Then
7714 7715

A P a  =  a u x ^ - 5 + Y ^ a h x1+k *s"* +  e,
€4:7 _ i £4 > <5 4 = 0

for some e £ if . Finally, z 5x'1ay = ey G P.

Subcase b: Suppose Y^u=oa tizHi /  Then we can proceed similarly 

to Subcase a to get y G P.

Subcase c: Suppose
7775 7714

=  0  = XI •

4 = 0  4 = 0

Subsubcase i: Suppose YlT2=oai2zH2V 7  ̂0- Then

7772

ay =  ^  ote2zH2y.
4=0

Let 5 be the minimum exponent of 2 appearing in any nonzero summand of 

ay. Then
7772

x s a y  =  ^ 2  z lei y  +  e y ,
4 :4  >5
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for some e E K .  Hence, yx5ay =  ey E P.

Subsubcase ii: Suppose Y ^ L o ^ y 00̂ 3 ^  0- Proceed similarly to 

Subsubcase i.

Subsubcase iii: Suppose

m 2 m 3
=  0 =  ae3yxk‘3.

r 2=o  f3=o

Let <5 be the minimum exponent of z appearing in any nonzero summand of

a. Then m\ m i
xsa — ^  ae1z%tl~syxk‘i + ^  a ^ y x ktl.

g i : i e 1 = 6

Hence, mi
yx5a =  ^2  a hVxk(l

l \ : i e 1 = 6

and we can then proceed as in Subsubcase ii to get y E P.

Therefore, any ideal of R /  (Azx  — A — y) contains y. □

Thus, the only nonzero prime ideals of R  are those containing y and those 

of the form (Azx  — A +  y) for A ^  0 E K.  Therefore, we may consider the clas­

sification of the prime ideals, primitive ideals, and irreducible representations 

of K { x i , . . . , x n } / ( x i X j  —  P i j ,  i < j) , where the f y  E K , complete.
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APPENDIX A 

64 CASES

This appendix contains a complete list of the 64 cases that occur when 

each a t and fy in

K { x , y , z } / ( x y  -  a tyx -  f y , x z  -  a 2xz  -  f y , y z  -  a 3zy -  fy)

is either a zero or nonzero element of the algebraically closed field K.  Refer­

ences for previously studied and noetherian cases are given. For the remainder 

of this appendix, variables stand for their images in the quotient algebras and 

the ai and fy are assumed to be nonzero elements of K.  The cases are divided 

as follows.

•  Cases 1 - 1 1 :  These cases are discussed in Chapters 4 and 5.

•  Cases 12 - 17: These cases are isomorphic to K.

•  Cases 18 - 26: These cases are isomorphic to K[x ,y \ / (yx  — 1).

•  Cases 27 - 32: These cases are isomorphic to K { x , y } / ( y x  — 1).

•  Cases 3 3 - 4 1 :  These cases are isomorphic to quantized Weyl algebras.

•  Cases 42 - 49: These cases are noetherian Ore extensions of quantized 

Weyl algebras.
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•  Cases 50 - 55: The study of the prime ideal theory of these algebras 

reduces to known cases because every prime ideal of these algebras con­

tains x  or y.

•  Cases 56 - 64: These cases are trivial.

Cases:
1. K { x , y , z } / ( x y  -  f3x,x z  -  a 2z x ,y z  -  a zzy)

This algebra is discussed in Chapter 4.

2. K { x :y , z } / ( x y  -  a xy x ,x z  -  a 2zx ,y z  -  fa)

This algebra is similar to the above case (discussed in Chapter 4).

3. K {x ,  y, z ) j { xy  -  a xy x , xz  -  (32, yz  -  a szy)

This algebra is similar to the above two cases (discussed in Chapter 4).

4. K { x , y , z } / ( x y , x z , y z )

This algebra is discussed in Chapter 5.

5. K { x , y , z } / ( x y  -  p u xz ,yz)

This algebra is discussed in Chapter 5.

6 . K { x , y , z } / ( x y , x z  -  f32,yz)

This algebra is discussed in Chapter 5.

7. K { x , y , z } / ( x y , x z , y z -  (3S)

This algebra is discussed in Chapter 5.

8 . K { x , y , z } / ( x y - P \ , x z - f a y z )

This algebra is discussed in Chapter 5.

9. K { x ,y ,  z } / (xy  -  f a , x z , y z  -  fo)

This algebra is discussed in Chapter 5.
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10. K { x , y , z } / { x y , x z -  f a , y z -  fa)

This algebra is discussed in Chapter 5.

11. K { x , y , z } / ( x y  -  f a , x z -  f a , y z -  fa)

This algebra is discussed in Chapter 5.

12. K{x ,  y, z } / ( xy  - f a , x z -  fa, yz -  a 3zy -  fa)

This algebra is isomorphic to K  as follows. The equation yz  = a 3zy +  /Ta 

holds in this algebra. Multiplying through by x on the left yields xyz  =  

a 3xzy + fax.  This equation implies that faz  = a 3fay + fax. Multiplying 

through by x  on the left again yields fa fa = ot3fafa +  fa x 2. Hence, x 2 =  

{fa fa — &3fafa)/fa-  Note that x = 0 implies that fa =  0, contradicting 

the assumption that (32 ^  0. Thus, x  =  ((/5i/32 — P2P1) /  Ps) 1^2 is

nonzero and y = z — {{Pi fa — otzPzPi) /  P3)~ll2 ■ Hence, this algebra is 

isomorphic to K.

13. K { x , y , z } / ( x y  -  a xyx - 0 u x z -  p2,yz  -  fa)

This algebra is isomorphic to K  similarly to the previous case.

14. K{x ,  y, z ) j ( x y  -  f3x, x z -  a 2zx -  fa, yz  -  a 3zy -  03)

This algebra is isomorphic to K  and discussed further in Chapter 3.

15. K{x ,  y, z } / ( xy  -  a xyx - f a , x z -  fa, yz  -  a 3zy -  fa)

This algebra is isomorphic to K  similarly to the above case (discussed

in Chapter 3).

16. K {x ,  y, z } / (xy  -  a%yx -  f a ,x z  -  a 2zx -  02,yz  -  fa)

This algebra is isomorphic to K  similarly to the above two cases (dis­

cussed in Chapter 3).

17. K { x , y , z } / ( x y  -  f a , x z  -  a 2zx -  fa ,y z  -  fa)

This algebra is isomorphic to K  as follows. In this algebra, yz  = 03. 

Multiplying through by x  on the left yields the equation xyz  = fax  which
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implies that 2 =  P3/Pxx. Substituting P3/Pxx  for z in x z  = a 2zx  +  p2 

yields p3/ p xx 2 =  a 2p3/ p xx 2 + p2. This equation implies that p3/ p x(l — 

a 2)x2 =  p2. If a 2 =  1 then (32 = 0, contradicting that p2 is assumed to be 

nonzero. Hence a 2 /  1 and x — [p2Pi/(p3(l — a.2)}x/2 is an element of K.  

Thus, y = p1[p2p1/ (p 3(l ~  « 2)]“ 1/2 and z =  P3/Pi[PiP\/(p3{l ~  « 2)]1/2- 

These equations imply that this algebra is isomorphic to K.

18. K { x , y , z } / ( x y  -  p x,x z  -  a 2zx ,y z  -  p3)

This algebra is isomorphic to K[x, y]/(yx — 1) as follows. In this algebra, 

yz  — P3. Multiplying through by x  on the left yields the equation xyz  = 

P3x  which implies that z = p3/ p xx. Substituting p3/ p xx  for z in yz = P3 

yields yx  =  p x. Hence this algebra is isomorphic to K[x,y]/(yx — 1).

19. K {x ,  y, z } /{xy  ~ p u x z -  p2, yz  -  a 3zy)

This algebra is isomorphic to K[x,y] /(yx  — 1) similarly to the above 

case.

20. K { x , y , z } / ( x y  -  a xy x ,x z  -  p2,yz  -  p3)

This algebra is isomorphic to K[x, y \ / (yx — 1} similarly to the above two 

cases.

21. K { x , y , z } / ( x y  -  p x,x z  -  a 2zx ,y z  -  a 3zy -  p3)

This algebra is isomorphic to K[x, y]/(yx — 1) as follows. In this algebra, 

yz  — a 3zy + p3. Multiplying through by x  on the left yields xyz  — 

a 3xzy  +  p3x  implying that p xz = a 3a 2p xz + p3x. Hence p x(l — a 3a 2)z = 

P3x. If qj3 =  a j 1, then x = 0 implying that p\ =  0, which contradicts 

the assumption that f t / 0 .  Hence a 3 ^  ccj1. Thus z 2 =  a 2z 2 implying 

that z =  0 or ot2 — 1. If z =  0 then P3 — 0, which contradicts our 

assumption that p3 is nonzero. Hence a 2 =  1 and z =  (P3/ (P\( l  — 

a 3)))x. Substituting (P3/ (PX(1 — az)))x for z in yz  =  a 3zy  +  p3 yields 

that yx  =  p x. This equation implies that this algebra is isomorphic to 

K [ x , y ] / ( y x - l ) .
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22. K { x , y , z } / ( x y  -  @i,xz -  a 2zx -  (32,yz  -  a 3zy)

This algebra is isomorphic to K[x,y] /(yx  — 1) similarly to the above 

case.

23. K {x ,  y, z } / ( xy  -  a xy x , xz  -  fi2, yz -  a 3zy -  fa)

This algebra is isomorphic to K[x, y]/ (yx — 1) similarly to the above two 

cases.

24. K { x , y , z } / ( x y  — a xy x ,x z  — a 2zx — /32,yz  — /33)

This algebra is isomorphic to K[x,y] /(yx  — 1) similarly to the above 

three cases.

25. K {x ,  y,  z} / (xy  -  a xyx - f a , x z -  fo, yz  -  a 3zy)

This algebra is isomorphic to K[x, y] / (yx— 1) similarly to the above four 

cases.

26. K {x ,  y, z } / ( x y  — a xyx  — /3x, x z  — a 2z x , yz — j33)

This algebra is isomorphic to K[x, y]/(yx — 1) similarly to the above five 

cases.

27. K{x ,  y, z } / (xy  — a xy x , x z  — @2, yz)

This algebra is isomorphic to K {x , y} / (yx— 1) as follows. In this algebra, 

xy  =  a xyx. Multiplying through by z  on the right yields xyz  =  a xyxz  

which implies that 0 =  oti/32y. Hence this algebra is isomorphic to 

K { x , y } / ( y x  — 1) (see Theorem 2.2.14 and [11, section 3]).

28. K {x ,  y, z } f  (xy — a xyx, xz, yz  — /53)

This algebra is isomorphic to K{x ,  y } / (yx  — 1) similarly to the above 

case.

29. K { x , y , z } / ( x y  -  p x, x z , y z  -  a 3zy)

This algebra is isomorphic to K { x , y } / ( y x  — 1) similarly to the above 

two cases.
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30. K { x , y , z } / ( x y , x z -  f32, y z -  a 3zy)

This algebra is isomorphic to K{x ,  y } / ( y x  — 1) similarly to the above 

three cases.

31. K{x ,  y, z } / ( xy  — (3X, xz  — a 2zx, yz)

This algebra is isomorphic to K{x ,  y} /{yx  — l) as follows. In this algebra 

xy = j3 \ .  Multiplying by z on the right yields xyz  — (3\ z. Since yz = 0 

in this algebra, the equation j3 \Z  =  0 also holds. Hence z = 0 and this 

algebra is isomorphic to K { x , y } / ( y x  — 1).

32. K {x ,  y,z}/(xy,xz -  a2zx,yz -  p3)
This algebra is isomorphic to K{x ,  y } / ( y x  — 1) similarly to the above 

case.

33. K { x , y , z } / ( x y  ~  otxyx -  (3x,xz ,yz)

This algebra is isomorphic to a quantized Weyl algebra as follows. In this 

algebra, xy  =  a xyx + fix. Multiplying through by 2 on the right yields 

the equation xyz  = a xyxz  + fc z  which implies that (3\z = 0. Hence, this 

algebra is isomorphic to a quantized Weyl algebra, which is discussed in 

Chapter 2.

34. K {x ,  y, z} / (xy ,  x z  — a 2zx — (32, yz)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above case (see Chapter 2).

35. K {x ,  y, z} / (xy ,  xz, yz  -  a 3zy -  (33)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above two cases (see Chapter 2).

36. K{x ,  y, z } / (xy  — ayyx — j3\,xz — a 2zx, yz)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above three cases.
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37. K{x ,  y, z ) j ( x y  -  a xyx -  fc ,x z ,  yz  -  a 3zy)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above four cases.

38. K {x ,  y, z } / ( xy  — a xyx, xz  — a 2zx — j32, yz)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above five cases.

39. K { x , y, z } / ( xy  -  a xyx, x z , yz -  a 3zy -  fi3)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above six cases.

40. K { x , y , z } / ( x y , x z  — a2zx — (32,yz  — a 3zy)

This algebra is isomorphic to a quantized Weyl algebra as follows. In 

this algebra, yz  =  a 3zy. Multiplying through by x  on the left yields 

xyz  =  a 3xzy  implying that 0 =  a 3(a2zx  +  /32)y =  a 3cx2zxy  +  a 3(32y = 

a 3(32y. Hence this algebra is isomorphic to a quantized Weyl algebra, 

which is discussed in Chapter 2.

41. K { x , y, z}/ (xy,  xz  -  a 2z x , yz  -  a 3zy -  fi3)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the 

above case.

42. K{x ,  y, z } j ( xy  -  a xyx  -  f3x,xz  -  a 2xz  -  /32,yz  -  a 3zy -  /?3)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

(see [13]).

43. K { x , y,  z ) / (xy  — a xyx,  x z  — a 2z x  — /32, y z  — a 3z y  — j33)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

(see [13]).

44. K {x ,  y, z } / (xy  — a xyx — (3X, xz  — a 2zx, yz  — a 3zy — j33)
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This algebra is a noetherian Ore extension of a quantized Weyl algebra 

(see [13]).

45. K{x ,  y, z } / ( xy  — a xyz  — fa ,x z  — a 2zx — fa, yz — a 3zy)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

(see [13]).

46. K {x ,  y, z} /{xy  — a xyz  — fa , x z  — a 2zx, yz  — a 3zy)

This algebra is a noetherian Ore extension of a quantized Weyl algebra, 

and is discussed more in Chapter 3.

47. K{x ,  y, z } f  (xy -  a xy x , xz  -  a 2zx, yz  -  a 3zy -  fa)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

similar to the above case (see Chapter 3).

48. K { x , y, z } / ( xy  — a xyx, xz  — a 2zx — fa, yz — a 2zy)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

similar to the above two cases (see Chapter 3).

49. K{x ,  y, z } / ( xy  — a xyx, x z  — a 2zx, yz  — a 3zy)

This algebra is multiparameter quantum three space (see [14]).

50. K { x , y , z } / ( x y , x z , y z  -  a 3zy)

The study of the prime ideal theory of this algebra reduces to known 

cases and is discussed in Chapter 3.

51. K {x ,  y , z } / ( x y , x z  — a 2zx ,yz)

The study of the prime ideal theory of this algebra reduces to known 

cases similarly to the above case (discussed in Chapter 3).

52. K { x , y , z } / ( x y  -  a xyx ,xz ,y z )

The study of the prime ideal theory of this algebra reduces to known 

cases similarly to the above two cases (discussed in Chapter 3).
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53. K {x ,  y, z } / ( xy  — a xy x , xz  — ct2zx, yz)

The study of the prime ideal theory of this algebra reduces to known 

cases similarly to the above three cases (discussed in Chapter 3).

54. K{x ,  y, z } /{xy  -  a xyx, x z , yz  -  a 3zy)

The study of the prime ideal theory of this algebra reduces to known 

cases similarly to the above four cases (discussed in Chapter 3).

55. K{x ,  y, z} / (xy ,  xz  — a-2,zx, yz  — a 3zy)

The study of the prime ideal theory of this algebra reduces to known 

cases similarly to the above five cases (discussed in Chapter 3).

56. K { x , y , z } / ( x y  -  f a , x z , y z  -  a 3zy -  fa)

This algebra is trivial as follows. In this algebra, yz — a 3zy + fa. Mul­

tiplying through by x  on the left yields xyz  =  a 3xzy + fax  implying 

that faz  = fax.  This equation implies that fa / fa z 2 = 0 and hence that 

z = 0. If 2 =  0 then fa — 0, contradicting the assumption that fa ^  0.

57. K {x ,  y, z} /{xy  -  a xyx  -  fa ,xz ,  yz -  fa)

This algebra is trivial similarly to the above case.

58. K { x , y , z } / { x y , x z  -  fa ,y z  -  a 3zy -  fa)

This algebra is trivial similarly to the above two cases.

59. K{x ,  y, z)  /  {xy -  a xyx -  f a , x z -  f a , yz)

This algebra is trivial similarly to the above three cases.

60. K{x ,  y, z}j(xy ,  x z  -  a2zx  -  f a ,y z  -  a 3zy -  fa)

This algebra is trivial similarly to the above four cases.

61. K { x , y , z } / ( x y  -  a xyx -  f a , x z , y z  -  a 3zy -  fa)

This algebra is trivial similarly to the above five cases.
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62. K {x ,  y, z } / ( xy  — ol\yx  — /3\,xz — a 2zx — fo, yz)

This algebra is trivial similarly to the above six cases.

63. K { x ,y ,  z } / ( x y  -  j3\,xz -  a2zx -  (32, yz)

This algebra is trivial as follows. The equation xy = fix holds in this 

algebra. Multiplying through by z on the right yields xyz  = (3\Z .  Since 

yz  =  0 holds in this algebra, z =  0 , implying that /52 =  0 contradicting 

the assumption that /32 ^  0 .

64. K{x ,  y, z } / (xy ,  x z  -  a 2zx -  (32, yz -  fc)

This algebra is trivial similarly to the above case.
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