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ABSTRACT

ON SOME DEGENERATE DEFORMATIONS OF COMMUTATIVE
POLYNOMIAL ALGEBRAS

Melanie B. Butler
DOCTOR OF PHILOSOPHY

Temple University, August, 2004

Professor Edward Letzter, Chair

We examine the prime spectra of algebras of the form
A= K{z1, 22, @a}/ (2% — 0z = By, < ),

where a;; and §;; are elements of the algebraically closed field K. When §;; = 0
for all 7 and j, we give a complete classification of the prime ideals, primitive
ideals, and irreducible representations of A. We also completely describe specA
when n = 3. These classifications prove that, under the Zariski topology,
the topological dimension of specA is not greater than its Gelfand-Kirillov

dimension, when n = 3 or when 8;; = 0 for all 7 and .
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CHAPTER 1

INTRODUCTION

Noncommutative polynomial equations have been the subject of extensive
study since Dirac’s formulation of Heisenberg’s principles of quantum me-
chanics (see [3]). The solutions to noncommutative polynomial equations are
representations. A deeper study of the topology of representations leads to the
study of prime and primitive ideals. Broadly speaking, these are the topics
discussed in this dissertation.

For example, we might want to study the solutions to the noncommutative
polynomial equation zy = —yz, in noncommuting indeterminants z and y.
The numerical solutions to this equation are not interesting. There are, how-
ever, many linear operators satisfying this equation. The representations of
the algebra defined by K{xz,y}/{zy + yz), where K is an algebraically closed
field, are the solutions to this equation.

Systematic investigations of the representation theory of noncommutative
algebras have been long standing (see, e.g., [10] and [21]). More recently
the study of the representation theory of noncommutative algebras has been
approached using noncommutative algebraic geometry (see, e.g., [27]). This
dissertation focuses on examples not covered by these previous studies. The

specific constructions that we will discuss are skew and skew-Laurent polyno-
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mial rings. In this chapter, we discuss some of the history of skew polynomial

rings and then describe the main results of the dissertation.

1.1 History

Skew polynomial rings in several variables with coefficients from a field
K were introduced by Noether and Schmeidler in 1920 ([25]). Manipulations
with relations of the form pg — gp = ih arising from quantum mechanics
occurred in the work of Dirac in 1926 (see [8]) and Weyl in 1928 ([28]). In
the 1930’s, Jacobson and Ore began to study iterated Ore extensions (see [19]
and [26]). Ore produced a systematic investigation of skew polynomial rings
in one variable over a division ring in 1933 ([26]). Dixmier introduced the
terminology Weyl algebra in 1968 (]9]).

More specifically, in the 1930’s, Jacobson began to explore cases of algebras
in noncommuting variables over a field, modulo an ideal generated by relations
of degree less than or equal to two ([19]). Algebras of this type are particularly
interesting because, as filtered vector spaces, they are very close to commuta-
tive algebras. Thus these algebras can be viewed as natural generalizations of
commutative polynomial algebras.

Since Jacobson studied algebras of this type, there have been numerous
other successful studies of the prime ideals and representations of iterated Ore
extensions and of other finitely generated noetherian algebras. For instance,
the prime and primitive ideal theory of quantum groups, enveloping algebras,
and noetherian group algebras is reasonably well understood (see, e.g., [24] and
[16]). More specifically, Irving, in the 1970’s, studied the prime ideal structure
of arbitrary Ore extensions of commutative noetherian rings (see [17] and
[18]). Gerritzen also played an important role by classifying the irreducible
representations of K{z,y}/(yz — 1), where K is an algebraically closed field
(see [11]). More recently there have been studies of iterated Ore extensions by
Goodearl and Letzter (see [13], [14], and [15]) and Cauchon (see [1], [4], 5],
[6], and [7]). Many of the algebras discussed in this dissertation are iterated
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Ore extensions, however, the prime and primitive ideal theory is not covered

by these previous studies.

1.2 Summary of Main Results and Statement
of Main Theorem

Inspired by the work discussed in Section 1.1, this dissertation will study

the prime and primitive ideals of algebras of the form
K{.’El, T, ,xn}/(xixj — O LT — ﬂi]',i < ]>,

where K is an algebraically closed field and «;; and §;; are elements of K.
Until now the studies appearing in the research literature have primarily been
of noetherian domains (except for Irving and Gerritzen). In this dissertation,
however, we are concerned with the less well-behaved deformations of these

algebras. For instance, well-known work has shown that
R = K{z,y,2}/(zy — Oyz — 0,22 — 0zz — 1,y2 — Ozy — 0)

= K{z,y,2}/(zy, 2z = 1,y2)

has many “bad” properties, such as non-Goldie prime factors and infinite Krull
dimension. However, the Gelfand-Kirillov dimension of R is 3.
We begin by studying the prime and primitive ideal theory of algebras of

the form

K{z,y,z}/(zy — aryz — B1, 72 — 022x — B, yz — azzy — f3).
Remark 1.2.1. Note that for any algebra of the form

K{z,y, z}/{zy — anyx — b1, 22 — agzx — P, yz — azzy — fs),

we can make a change of variable, replacing z; with az; for any 1 <17 < m

and any a € K, without changing the isomorphism class of the algebra.
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First, we consider the 64 cases that occur when the scalars o4, ag, as, 51,

625 and ﬂ?) of
K{z,y,z}/(zy — cnyz — Br, 22 — agzx — o, yz — azzy — )

are either zero or nonzero. These algebras are degenerate, isomorphic to known
cases, or noetherian, except in two cases (up to isomorphism). The two cases
(up to isomorphism) that are nondegenerate, not previously studied, and non-

noetherian are as follows.

o K{z,y,z}/{zy — P1,22 — apzx,yz — a32y), where oy, a3, and f; are

nonzero, and
o K{z,y,2}/{zy,xz — f2,yz), where [y is nonzero.

In the next chapter, the prime spectra of a case that reduces to known
cases, a degenerate case, and a noetherian case will be completely described.
The prime and primitive spectra of the first nonnoetherian case are discussed

in Chapter 4. The prime and primitive ideals of
K{xy, ...,z }/{ziz; — ayy,0 < 3),

for K an algebraically closed field, n > 3, and a;; € K are classified in
Chapter 5 by reducing the study of the n-variable algebra to the study of
K{z,y,z}/(xy,xz—1,yz). The co-finite dimensional primitive ideals are clas-
sified by Theorem 2.2.13 ([2]). A classification of the prime ideals, primitive
ideals, and irreducible representations of K{x,y, 2}/{xy, yz,xz—1) is given in
Chapter 5.

A complete list of the 64 cases and classifications of the prime ideals in
each case (or appropriate references) are included in Appendix A. These clas-

sifications prove the following.

Theorem 1.2.2. Let Sy = K{z,y, 2}/{zy — anyx — b1, x2 — oz — P, yz —

aszy — (3), where K is an algebraically closed field and on, o, s, B1, B2, and
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B3 are elements of K. Let So = K{z1,...,zn}/{zixj — ayj,1 < j), for K an
algebraically closed field, n > 3, and a;; € K. Under the Zariski topology, the
topological dimensions of specSy and specSy are no greater than the Gelfand-

Kirillov dimensions of S1 and Ss.
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CHAPTER 2

PRELIMINARIES

In this chapter, we discuss the notation and definitions that will be used
throughout. Also, we recall some known results that will be used in later

chapters.

2.1 Notation and Definitions

We will use the following notation and definitions. These and other defini-
tions can be found in [24] or [16]. Throughout the dissertation, K will stand
for an algebraically closed field.

2.1.1 K-Algebras

Definition 2.1.1. A K-algebra is a ring R (with one), together with a ring
homomorphism ¢ from K to R such that ¢(K) is contained in the center of

R. We will often refer to K-algebras as algebras.

Definition 2.1.2. Algebra homomorphisms are ring homomorphisms that re-
strict to the identity map on K. An algebra automorphism ¢ of a K-algebra
R is an inner automorphism if there exists an invertible a € R such that

é(r) =a"'ra for all r € R.
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Definition 2.1.3. Let R be a K-algebra and let a and b be elements of R.

The element a is a factor of b if b = ras for some elements r and s in R.

Definition 2.1.4. A regular element in a K-algebra R is any element that is

not a zero-divisor.

Notation 2.1.5. Let R be a K-algebraand ry,--- ,r, € R. Then K{ry,---ry)
will refer to the K-subalgebra of R generated by 7, -, 7.

Notation 2.1.6. The notation K[ay, - - - , a,] is used for the commutative poly-
nomial algebra in variables ay, - - ,a, over K and the notation K{ay, -+ ,a,}
for the free algebra in the noncommuting variables ay,- - ,a, over K.

Remark 2.1.7. Let R be a K-algebra. If y is an element of R that is alge-
braically independent over K, we will identify the K-subalgebra of R generated
by y, K (y), with the K-algebra K[y].

2.1.2 Ideals

Notation 2.1.8. If R is a ring and ry, -+ ,7, € R, then (ry,---,r,) will
denote the (two-sided) ideal of R generated by ry, -+ 7y,

Definition 2.1.9. A ring R is prime if the product of any two nonzero ideals

of R is nonzero. An ideal P of R is prime if R/P is a prime ring.

Definition 2.1.10. A minimal prime ideal in a ring R is any prime ideal of

R which does not properly contain any other prime ideals.

Definition 2.1.11. Let R be a subring of a ring S, and let P and @) be prime
ideals of S and R, respectively. We say that P lies over @ if () is minimal over
PNR.

Definition 2.1.12. Let R be a ring and ¢ an automorphism of R. Then an
ideal I of R is ¢-stable if $(I) C I. The ideal I of R is ¢-prime if I is ¢-stable
and AB C [ implies that A C I or B C [ for all ¢-stable ideals A and B of
R. An ideal I of R is called ¢-cyclic if I = N¢*(J) for a prime ideal J of R

with ¢™(J) = J for some m.
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2.1.3 Modules and Primitive Ideals

Notation 2.1.13. All modules will be assumed to be left modules unless

otherwise noted.
Definition 2.1.14. A module is simple if it has no nonzero proper submodules.

Definition 2.1.15. A left or right module M is called noetherian if every
submodule of M is finitely generated. A ring R is called noetherian if R is

noetherian as a left and right module over itself.

Definition 2.1.16. An ideal P of a ring R is primitive if P is the annihilator
of a simple (left) R-module. A ring R is primitive if (0) is a primitive ideal of
R.

Definition 2.1.17. A representation of a K-algebra R is a K-algebra homo-
morphism from R to Endg(V), for some K-vector space V. Note that we
can view V as an R-module. Given a representation from a K-algebra R to
Endg(V), for a K-vector space V, we say that the representation is srreducible
if V' is simple as an R-module. The representation is called finite dimensional

(infinite dimensional) if V is finite dimensional (infinite dimensional) over K.

2.1.4 Ore Extensions

Definition 2.1.18. Let R be a ring and ¢ an endomorphism of R. A left
¢-derivation of R is an additive map § from R to itself such that §(rs) =
#(r)0(s) + 6(r)s for all r and s in R. A right ¢-derivation of R is an additive
map 6 from R to itself such that §(rs) = §(r)a(s) + rd(s) for all r and s in
R. By a ¢-derivation of R, we mean a left ¢-derivation of R, unless otherwise

noted.

Definition 2.1.19. Let R be a ring, ¢ an endomorphism of R, § a ¢-derivation
of R, and € an indeterminate. Let S be a ring, containing R as a subring, and
a free left R-module with basis of the form 1,6,62, ... and r = ¢(r)8 + §(r)
for all 7 € R. The ring S is called a left Ore extension of R (or left skew
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polynomial extension of R) and is denoted S = R[6;¢,6]. The existence of
such constructions is assured by [16, Proposition 1.10]. If ¢ is the identity
map on R, then we write S = R[f;6]. If ¢ is the zero map on R, then we
write S = R[f; ¢]. One can similarly define a right Ore extension of R. Unless

otherwise noted, an Ore extension of R will mean a left Ore extension of R.

Definition 2.1.20. Let R be a ring, 8; an indeterminate, ¢; an endomorphism
of R, and §; a ¢;-derivation, for 1 < 7 < n. We will refer to constructions of
the form

R[01; ¢1,61][02; 2, 02] - - - [On; Pn, On]

as iterated Ore extensions of R.

Definition 2.1.21. Let R be a ring and ¢ an automorphism of R. Let T" be
a ring and a free left R-module containing R as a subring with an invertible
element # € T and basis 1,6,071,0% 072, ... such that 6r = ¢(r)8 for all 7 € R.
Then T is called a skew-Laurent extension of R and is denoted T = R[f, 677; ¢).

2.1.5 Zariski Topology

Notation 2.1.22. Let R be a ring. The set of prime ideals of R will be
denoted specR, the set of maximal ideals mazR, and the set of primitive ideals
primR.

Definition 2.1.23. Let R be a ring. The set specR is a topological space
under the Jacobson (Zariski) topology when the closed sets of specR are taken
to be V(I) = {P € spec(R) : I C P} for ideals I of R.

Remark 2.1.24. The Zariski topology is the only topology that we will con-

sider on prime spectra in this dissertation.

2.1.6 Localizations and Quotient Rings

We recall some definitions regarding Ore localizations and symmetric quo-
tient rings. For more background, see [16, Chapter 9] and [24, Chapter 10],

respectively.
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Definition 2.1.25. A multiplicative set in a ring R is any subset X C R such
that 1 € X and X is closed under multiplication. A right ring of fractions (or
right Ore quotient or right Ore localization) for R with respect to X is a ring

homomorphism ¢ : R — S such that
1. ¢(x) is a unit of S for all z € X.

2. Each element of S has the form ¢(r)é(z)~* for some r € R and some
reX.

3. ker(¢) = {r € R:rz =0 for some z € X}.
A left ring of fractions for R with respect to X is defined symmetrically.

Definition 2.1.26. Let X be a multiplicative set in a ring R. Then X satisfies
the right Ore condition if and only if rX N zR is nonempty for all » € R and
x € X. The set X is right reversible if and only if whenever there exists an
r € R and z € X such that xr = 0 then there exists an ' € X such that
re’ = 0. A right Ore set is any multiplicative set satisfying the right Ore

condition and a right denominator set is any right reversible right Ore set.

Remark 2.1.27. Given a right denominator set X in aring R, by [16, Chapter
9], there exists a unique right ring of fractions ¢ : R — S for R with respect
to X.

Notation 2.1.28. Given a right denominator set X in a ring R, we will denote

the right ring of fractions of R with respect to X by RX 1.

Definition 2.1.29. A collection F of right ideals of a ring R is called a right
localization set if for any I, and I in F and any ¢ € Hom(Is, R), there exists
an Is and I in F such that

1. I3 - Il mfz and

2. [4 (_: [2 and ¢(.[4) g ]1.
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Remark 2.1.30. Note that the set of nonzero ideals of a prime ring R is a

right localization set for R.

Definition 2.1.31. Given a right localization set F, the localization R of R
with respect to F is defined to be the set U{Hom(I,R) : I € F'} modulo the
equivalence relation given by ¢1 ~ ¢o if ¢1 : [ — R, ¢ : [y — R and ¢1 = ¢
when restricted to some I3 € F with I3 C I; N .

Definition 2.1.32. Let F be the set of nonzero ideals of a prime ring R. Then
we call Rp the Martindale right quotient ring of R.

Definition 2.1.33. The symmetric quotient ring, T', of a prime ring R, is the
subring of the Martindale right quotient ring, Rp, of R consisting of elements

r € Rp such that rI C R for some nonzero ideal I of R depending on 7.

2.2 Background

2.2.1 Ore Extensions and Skew-Laurent Extensions

We recall and collect some known results about Ore extensions. Specific
references are given and more background can be found in [24, 1.2.1]. Similar

results hold for right Ore extensions.

Remark 2.2.1. Let R be a ring, ¢ an endomorphism of R, ¢ a ¢-derivation of
R, and S = R[z; ¢,0]. Recall, from [24, 1.2.3], that every element of S can be
written in the form Y a;z* for some a; € R and this expression is unique. In
the iterated Ore extensions that we discuss in Chapters 3 and 4, we will use

several applications of this argument.

The next several results make connections betweens ideals in a ring R and

ideals in an extension ring of R.

Theorem 2.2.2. [16, Theorem 1.12 and Theorem 1.17] Let R be a ring, ¢

an automorphism of R, and § a ¢-derivation of R. If R is noetherian, then
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the Ore extension S = R[0;¢,0] is also noetherian. Also, the skew-Laurent

extension T = R[#,071; ¢] is noetherian.

Theorem 2.2.3. [2/, Proposition 1.2.9] Let R be a prime ring, ¢ an automor-
phism of R, and & a ¢-derivation of R. If S = R[f;¢, 4] is an Ore extension
of R, then S is prime .

Lemma 2.2.4. [24, Proposition 1.2.9] Let R be a ring, ¢ an automorphism of
R, and T = R[0,07%;¢]. If A is a prime ideal of T, then AN R is a ¢-prime
tdeal of R.

Theorem 2.2.5. [16, Corollary 7.28] Let R be a noetherian ring and ¢ an
automorphism of R. If T = R[0,07%;¢] and P is a prime ideal of T, then
there exists a prime ideal Q of R and a positive integer m such that PN R =

QNe@Q)N---Ng" Q) and ¢™(Q) = Q.

Theorem 2.2.6. [20, Theorem 1] Let R be a nontrivial ring with identity and
¢ an automorphism of R. Let S be the ring S = R[0,07; ¢|. Then the ring S

is simple if and only if:
1. the only ¢-ideals of R are {0) and R, and

2. there is no positive integer n for which ¢™ is inner.

The next two results relate ¢-cyclic and ¢-prime ideals.

Lemma 2.2.7. [24, Lemma 10.6.11] Let R be a ring and ¢ an automorphism
of R. A ¢-cyclic ideal of R is ¢-prime.

Proposition 2.2.8. [2/, Proposition 10.6.14] Let R be a ring and ¢ an auto-
morphism of R. If some power of ¢ is inner and P is a ¢-prime ideal of R,
then P is ¢-cyclic.

For the next two results, let A denote a prime ring, C' the symmetric
quotient of A, p an automorphism of A, Z the center of C[t; u], and D the

ring of all central elements in C' which are p-invariant.
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Proposition 2.2.9. /23, Proposition 1.8] There exists an invertible A in C
and an £ > 0 such that Z = Dlu|, where u = Mt‘. Moreover, Z # D (i.e.,

£#0) if and only if a nonzero power of p is an inner automorphism of C.

Theorem 2.2.10. (283, Theorem 2.10] Suppose that P is a prime ideal of
Alt; p) such that PN A = (0). Then P = f(t)C[t; u] N Alt; ] where:

1. f(t) is either equal to t or

2. the center Z of Ct; u] is not equal to D and there is an invertible 3 € C
such that Bf(t) € Z = Dlu] is a monic irreducible polynomial (as a

polynomial in u) different from u.

2.2.2 Quantized Weyl Algebras

For later discussions, we now review some known results about the prime

spectra of algebras of the form
R = K{z,y}/{yz — qzy — A),

where K is an algebraically closed field and ¢ and A are nonzero elements of
K. More background can be found in [13, Section 13]. First, note that, by a
standard change of variables, we can assume A = 1. Algebras of this form are
referred to as quantized Weyl algebras and will be denoted A;(K, q).

Case 1: Suppose that ¢ is not a root of unity. In [13, 2.9], the prime
spectra of quantized Weyl algebras over noetherian rings are described when

q is not a root of unity. In this case, [13, 2.9] states that

spec(R) = {uR + QR : Q € spec(K|[z]),z ¢ Q},

where u = (a—1)xzz+1. Since K is algebraically closed, the nonzero primes of
Klz] are of the form (z—~) fory € K. If x = 0in R, then A = 0, contradicting
the choice of nonzero A. If x = «, for v nonzero, then, by the relations in R,
the element y = 1/(~y —vq). Hence, the prime ideals of R when ¢ is not a root

of unity are as follows.
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1. (0) and
2. (x —v,y—1/(y —vq)), for v a nonzero element of K.

Case 2: Suppose that g is a primitive Zth root of unity.

Remark 2.2.11. Recall that if K has positive characteristic than ¢ is invert-
ible modulo the characteristic of K (see [13, 13.6]).

We will use the following result.

Theorem 2.2.12. [13, Theorem 18.6] Let S = A;(T, q) where T is a noethe-
rian algebra over a field K and q is a primitive £th root of unity in K for some

integer £ > 1 which is invertible in K. Set u = yzr — xy.

1. There is a homeomorphism from the set {P € specS : v € P} onto the
set {Q € spec(T(x)) : x ¢ Q} given by the rule P — PN T[x].

2. There is a homeomorphism from the set {P & specS : u ¢ P} onto
the set {I € spec(T[z%,y"]) : 1 — (1 — ¢)*z%y* ¢ I} given by the rule
P— PNT[z% yY.

Thus, in the case when g is a primitive ¢th root of unity, spec(R) is a
disjoint union of two subsets homeomorphic respectively to spec(K|z,z7}])
and spec(K[zt, y%, (1 — (1 — q)*z%2*)~1]). Hence the prime ideals of R when ¢

is a primitive ¢th root of unity are as follows.
2. {z— \y—1/(A—=¢7'))), where X is a nonzero element of K, and

3. (¥ — M, %% — \2), where A\; and Ay are nonzero elements of K with

Mz # 1/(i — ).
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2.2.3 Prime Ideals, Primitive Ideals, and Related Re-

sults

We now collect some known results that affect our study of prime ideals and
irreducible representations. The following result, by Adam Berliner, classifies

all of the finite dimensional irreducible representations of
R = K{CE, Y, Z}/(.’I?y, Tz — 1) y2>

(rings of this type will be discussed in detail in Chapter 4). We thank Berliner

for allowing us to use this unpublished result.

Theorem 2.2.13. [2] Let X1, Xo, -, Xm, for m > 2, be linear operators
on an n dimensional vector space over an algebraically closed field K and
let a;; € K for all i and j. Let ay; also denote the corresponding scalar
operator. Suppose that X;X; = a; for all i,5 where 1 < j < ¢ < m. Then

X1, Xo, -+, Xy have a common eitgenvector.

The following classification by Irving will be used in discussing the two

nonnoetherian cases.

Theorem 2.2.14. [18, Theorem 7.1] The following is a complete list (orga-
nized by families) of the prime ideals of K{x,y}/{xy —1).

1. (0),
2. (yx —1), and
8. (x— Ny — A1), where \ is a nonzero element of K.

The following is a complete list (organized by families) of the primitive ideals
of K{z,y}/(zy — 1).

1. (0) and

2. (x— N\, y— A7), where X is a nonzero element of K.
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11

Remark 2.2.15. Let R = K{z,y}/(zy — 1). Note that R/(yz — 1)
Klz,z71.

Remark 2.2.16. In [11, Section 3], Gerritzen gives a complete classification

of the irreducible representations of K{z,y}/(zy — 1).

2.2.4 Gelfand-Kirillov Dimension

Gelfand-Kirillov dimension, or GK dimension, is one of the important di-
mension functions in noncommutative algebra. GK dimension can be thought
of as a generalization of the Krull dimension of commutative finitely generated
rings. Thus, we can think of GK dimension as the dimension of the noncom-
mutative spaces associated to these noncommutative rings. We will discuss
some properties of GK dimension, but omit the details. Please see [22] for
more background.

More specifically, GK dimension is a measure of the rate of growth of an
algebra in terms of any generating set. For example, finite dimensional algebras
have GK dimension zero and, if A is a finitely generated commutative domain,
then the GK dimension of A is equal to the transcendence degree of A over K.
Thus the GK dimension of A is equal to the number of indeterminants in the
largest possible polynomial algebra contained in A. If KG is a group algebra,
then the GK dimension of K'G measures the rate of growth of the group G.
Also, the GK dimension of a free algebra on two generators will be infinity.
Thus, we can also think of GK dimension as a measure of how far an algebra
is from being finite dimensional.

For the work in this dissertation, note that algebras of the form
A= K{x, 24, - ,zn}/{Tiz; — agyxjes — By, i < §)

will have GK dimension less than or equal to n. If A is nontrivial and if
x; # axy;, for any 1 < 4,5 < n with 7 # j, and for any o € K, then A will
have the same standard filtration as a commutative polynomial algebra in n

indeterminants. Hence, the GK dimension of A is n (see [22, Chapter 3]).
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CHAPTER 3

EXAMPLES OF
ELEMENTARY CASES

Before discussing the main results of this dissertation, we carefully consider

three illustrative examples of algebras of the form

K{z,y,z}/{zy — aryz — B, 22 — agzzx — o, yz — a2y — Fs)

where the prime ideal theory is elementary or reduces to known work. The
three examples are meant to demonstrate some of the possibilities for prime
spectra of algebras of this form. Appendix A contains a description of the

prime spectra of the 64 possible cases (or appropriate references).

3.1 Example One

In this section, we consider an example where the study of the prime ideal

theory reduces to known cases. We consider algebras of the form
SR = K{.’E, Y, Z}/(ny, Tz, Yz — Cl’32y>,

where «g is nonzero. Let z, y, and z stand for their images in Sg. Let ¢; be

the K-algebra endomorphism of K|[z] sending 2 to zero. Also, let ¢; be the
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K-algebra endomorphism of the right Ore extension K|[z][y; #1] sending = to
zero and y to azy. Note that Sg = K[x][y; ¢1][2; @2 is an iterated right Ore
extension of K[z]. Thus, by Remark 2.2.1, elements of Sg can be written in
the form >, Aezylta®, where A\, € K are nonzero and the (i, jo, k¢) are
distinct for distinct £.

Note that maAz'y’zFyry = 0 for any A € K and any 71 and ry in Sg. Thus,
(x){(y) = 0. Hence, every prime ideal of Sg contains z or y. Similarly, every
prime ideal of Sk contains z or z. Thus the study of the prime ideal theory of
Sk reduces to the known prime ideal theory of K{y, z}/{yz — aszy) (see [17,
Section 8]) and K|[z].

3.2 Example Two

In this section, we consider a seemingly interesting example that is actually

trivial. We consider algebras of the form
K{z,y,z}/(zy — oqyz — B1, 22 — apzx — B2, y2 — Ozy — Ba)

= K{m7y7z}/<xy — oy — ,61,1'2 — Q2T — ﬁ?ayz - ﬁ3>)

where a1, ag, [1, 32, and (3 are nonzero elements of K. Note that, by changes
of variables, we may assume that 3; and (B3 are equal to one. Thus, for the

remainder of this section, let
Sp = K{z,y,z}/{xy — oqyx — 1,22 — agzx — 1,yz — 1).
Let x, y, and z also stand for their images in Sp.

Proposition 3.2.1. The algebra Sp is trivial or isomorphic to K.

Proof. The equation zy — ajyx = (4 holds in Sp. Multiplying through by 2
on the right yields zyz — ayyxz = (2. Simplifying using the other relations
implies that the equation (1 — o)z — oyy — P12z = 0 holds in Sp. Thus, it
is natural to divide our investigation into two cases based on whether or not

a0 = 1.
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Case 1: Suppose ajas = 1. Then ayy + 1z = 0. Hence y = —f1/o 2.

Then, again using the relation yz = 1, the equation
2=yt = (~aa/f)"?
holds in Sp. The relation xy — ayyx = [y implies that

z=B/((—on/B)? — ar(—en/B)?).
Note that
(—au/B)"? = ar(~ar /)2 # 0
since 1 # 0. Hence, if ajas = 1, then Sp is isomorphic to K.
Case 2: Suppose ayag # 1. Since (1 — aqag)z — oy — Biz = 0, the
equation
z = (ay + 012)/(1 — ar10n)

holds in Sp. Replace z in the relation zy — ayyx = B; with
z = (uy+ fiz)/(1 — ana).

Further manipulation of the variables implies that the equality

2y =1—omay+a; — (g —a?)/(61)y°
holds in Sp. Multiplying through by z on the left yields

(@12 — )z = (04% —a1)/(B1)y-
Note that ajap — @1 = 0 if and only if ap = 1, and that a? — oy = 0 if and
only if @y = 1. This leads us naturally into the following four subcases.

Subcase 1: Suppose oy = 1 and @y = 1. This contradicts the assump-
tion that ajas # 1.

Subcase 2: Suppose oy # 1 and ag # 1. Then the above relations
imply that y = cz for some constant ¢ € K. Thus, as in Case 1, z, y, and 2
are all equal to constants and hence Sp is isomorphic to K.

Subcase 3: Suppose a; # 1 and a; = 1. By the above relation, this
implies that y = 0, contradicting that yz = 1. Hence, Sp = 0.

Subcase 4: Suppose a; = 1 and as # 1. As in Subcase 3, this implies
that z = 0, contradicting that yz = 1. Hence, Sp = 0. O
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3.3 Example Three

In this section, we consider an example of a noetherian case. Much work
has been done on noetherian Ore extensions of polynomial algebras (see, e.g.
[13]). We now carefully work out such an example.

We wish to classify the prime and primitive ideals of
S = K{z,y,2}/{xy —~ a1yz — 0,22 — aozx — Po,yz — azzy — 0)

= K{xz,y, 2} /(xy — c1yx, 22 — qozx — B2, Yz — 32y,

where a1, g, as, and (B, are nonzero elements of K. We will use the results

about quantized Weyl algebras discussed in Chapter 1 throughout this section.

Proposition 3.3.1. If a; # as, then S is isomorphic to K{z, z}/{(xz—aszz—
B2)-

Proof. The proof is shown for 8, = 1 and follows analogously for arbitrary
nonzero values of ;. In S, the relation xy +aiyz = 0 holds. Multiplying both
sides of this equation by z on the right, using the other relations in S, and
simplifying, the equation of'aszzy + apyzz = y must also hold in S. Note

that zzy + aszzy = y. Hence
oy 1a3xzy + aoyzr = T2Y + QiaZTY
holds in S and, thus, so does
(o7 as — 1)zzy = ~an(yzz — 22y) = —as(a] 'azzay — zxy).
By the relations in S,
(a7las — 1) (w2 + agzz)y = 0.
Thusaflag—lzooryzo. d
For the remainder of this chapter, let

Sy = K{z,y,2}/{zy — ayz, 2 — agzx — 1,y2 — azy).
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By Proposition 3.3.1 and a change of variable, a classification of the prime

ideals of Sy will complete a classification of the prime ideals of S. Let
R=K{z,z}/(zz — azzz — 1},

where ay is a nonzero element of K. Note that Sy = R[y; o], where o is the

1z, 2 to az, and a to a for all elements

automorphism of R sending z to o~
a € K. Also, note that Sy is a prime, noetherian domain (see Theorem 2.2.2
and Theorem 2.2.3).

The primes of Sy fall naturally into two categories. The first category is
those containing y, which are in one-to-one correspondence with the nonzero
primes of R. The second category is those prime ideals not containing y, which
are in one-to-one correspondence with the prime ideals of T = Rly,y7}; a].
Thus, a classification of the prime ideals of T will complete our classification
of the prime ideals of Sy. Note that T' is also a prime, noetherian domain (see

Theorem 2.2.2 and Theorem 2.2.3).

3.3.1 Scalar Not a Root of Unity Case

In this case, the only finite g-orbit of prime ideals of R is A; = {(0)},
regardless of whether or not ay is a root of unity. Thus, by Theorem 2.2.5, if
P is a prime ideal of T then PN R = (0).

Proposition 3.3.2. The following is a complete list of the prime ideals of Sy

(organized by families) when « is not a root of unity.

3. {x— Ay, z— Ao, y), where Ay and Ay are nonzero elements of K, such that

)\2 = 1/(/\1 — Oég/\l).

Proof. Throughout the proof, we use a method adapted from [13, 2.3] and

omit some details. We wish to classify the prime ideals of Sy not containing
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y that intersect R at (0). Let C be the set of regular elements of R. Consider
the localizations A = RC~! and B = RC™![y; o] (see [12, 1.3]). Note that A
is o-simple.

Let Y be the set of prime ideals of Sy which lie over minimal primes of
R. Since R is prime, Y is in fact the set of prime ideals of Sy which lie over
(0) in R. Note that (0) is the unique prime ideal of R that is disjoint from C.
Hence, Y is equal to the set of prime ideals of Sy which are disjoint from C.
Therefore, Y = {y~1(P) : P € specB }, where 7 is the natural embedding of
Sy into B.

Hence our goal is to describe the prime ideals of B not containing y. These

primes will be in one-to-one correspondence with primes of
E =RCy,y 0]

Thus, to finish classifying the prime ideals of Sy in this case, we only need to
classify the prime ideals of E.

Since « is not a root of unity, no power of o will be an inner automorphism.
Also, as noted earlier, the only o-ideals of R are (0) and R. Thus, E is simple,
by Theorem 2.2.6. Therefore, the only prime ideal of Sy not containing y
which intersects R at (0) is the ideal generated by 0 in Sy. O

3.3.2 Scalar Root of Unity Case

For the remainder of this chapter, let a be a primitive ¢th root of unity. It
is now necessary to divide our study into cases based on whether or not aj is
a root of unity.

Subcase 1: Suppose that as is not a root of unity. In this case there will
be two finite o-orbits of prime ideals of R. Let A; = (0) be the finite o-orbit
of (0) and

Ay ={{z = A, 2= M), (T — Mo,z — Mo ™), -+, (= Mol 2 — Mo ™)}

be the finite o-orbit of (x — Ay, z — A3). We need a few preliminary results.
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Lemma 3.3.3. Let I be a proper ideal of Sy containing x — X\, for some
nonzero A € K. Theny €I ora=1.

Proof. Let S" = Sy /I and let z, y, and z also stand for their images in $’. In
S’, the equations x = X\ and zy — ayx = 0 hold. These equations imply that
My —ahy=0in 5. Hence y=0in S’ or o = 1. O

Recall that T = R[y,y % o).
Lemma 3.3.4. As ideals of T,
(x— A, z— X)) = {(x—Na",z— ha™"),
for any nonzero Ay and Ay in K and any nonnegative integer r.

Proof. The proof is shown for » = 1 and follows analogously for arbitrary

values of 7. Let I = {(z — Ajr, 2 — Aga™!). Then
(x — M)y = ayz — May = ay(z — \;) € 1.

Hence,

oty - Ma)y=z- )\ €1

Similarly, if an ideal I of T' contains z — Mo~ then I contains z — Ao.

To obtain the reverse inclusion, let J = (z — A1, 2 — A2). Then
ylz =My =z - ha €
Similarly z — Adoa™' € J. Thus I = J. O

Corollary 3.3.5. In T, the ideal (x— X1, z— Xo) N{z— Ma,z—dga” )N+ N

(x— Mot 2 — Xoa ™) = (2 — A, 2 — Ng).
These results allow us to complete the classification.

Proposition 3.3.6. The following is a complete list of the prime ideals of Sy
(organized by families) when o is a primitive £th root of unity not equal to one

and oy is not a root of unity.
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3. (x— A1, 2= Ao, y), where Ay and Ao are nonzero elements of K, such that

)\2 = 1/()\1 - 0(2)\1).

4. {y* = \), where A € K.

Ifa =1 (ie.,, £ =1) and aq is not a root of unity, then the following prime
ideals, in addition to the above list of prime ideals, is a complete list of the

prime ideals of Sy .

1. {x— A1,z — Az, y — A3), where A\j, A2, and A3 are nonzero elements of K,
such that Ay = 1/(M — ag)y), and

2. (x — M,z — Aa), where Ay and Ay are nonzero elements of K, such that

Ay = 1/(A1 — agAq).
Proof. First, we classify the prime ideals P of T such that
PHR = <$—/\1,z_)\2>m<$—)\1a’2_)\2a_l>ﬂ_ . ‘ﬂ<$—)\1ae—1,Z—)\2a_e+l>,

By Corollary 3.3.5 and Lemma 3.3.3, (x — A1,z — A2) C P, and thus y € P or
a=1.

Next, we classify the prime ideals of Sy that intersect R at (0). Let Y
denote the set of prime ideals P of Sy such that PN R = (0). Throughout we
follow [13, 2.3] and omit some details. Let C' denote the set of regular elements
of R. Then C is a denominator set for R and Sy. Let A = RC~! and B =
SnC~1 = Aly; o]. In order to classify Y, it suffices to describe specB. Let E =
Aly,y~1;0]. Then, to describe specB it suffices to describe specE. There are
mutually inverse homeomorphisms between specE and specK [y¢, y~*]. Hence
the nonzero prime ideals of Sy that intersect R at (0) are of the form (y¢ — \)

for \e K. d
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Subcase 2: Suppose that oy is a primitive ¢th root of unity. In this case,

recall that the prime ideals of R are as follows.

1. (o),

2. {(z — A1,z — Ag), where A\; and Ay are nonzero elements of K such that
A2 =1/(A — agA), and

3. {x' — A1, 2t — Aa), where \; and A; are elements of K with A Az(1 — ag)*

not equal to 1.

Remark 3.3.7. Note that if z'y = ofyz’ and 2! = A\, for some A\ # 0 € K,

hold in Sy, then of = 1 and hence ¢ is a multiple of /.

Proposition 3.3.8. The following is a complete list of the prime ideals of Sy
(organized by families) when o is a primitive £th root of unity not equal to one

and ag is a primitive tth root of unity.

3. (x— M, 2— A, y), where Ay and Ay are nonzero elements of K, such that
/\2 = 1/()\1 - a2>\1),

4. {xt =1, 28— Xa, ), where Ay and Ay are elements of K with Ay Aa(1—ay)*

not equal to one,

5. {xt— Ai, 2t — \a), where Ay and Ag are elements of K with M Aa(1 — ag)*

not equal to one,
6. (y* — \), where A\ € K, and

7.zt =Xy, 28— Ao, yt = A\), where A1 and Ay are elements of K with A Aa(1—

as)' not equal to one and X € K.
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Ifa=1 (ie., £ = 1) and oy is a primitive tth root of unity, then the following
prime ideals, in addition to the above list of prime ideals, is a complete list of

the prime ideals of Sy.

1. (z =X, z— Ao,y — As), where Ay, A, and X3 are nonzero elements of K,

such that Ay = 1/{A\1 — ag)1), and

2. {x — A,z — Ag), where A and Ay are nonzero elements of K, such that

>\2 = 1/()\1 - 042)\1).
Proof. The primes of Sy that intersect R at (0) or
<SC — A1, 2 — >\2> N{x — Ma,z— )\204_1> N---N{x— )\10/_1, z— )\za—f—H),

will be the same as in the previous case.

The primes P of T such that
PNR=(z" =X, 2" =g} -0 (2* = da" ™ 2" = ™),

where 7 is the least common multiple of £ and t still need to be classified. As

previously, in 7',
<£L‘t — )\1, Zt — )\2> N---N (CL‘t — )\104r_1, Zt - )\QCY_T+1> = <.’17t — )\1, Zt — )\2),

for any positive integer r. Hence P contains (zf — Aj, 2 — Ag). Also, by
Remark 3.3.7, the least common multiple of £ and ¢ is t. Hence the o-orbit of
(zt — Ap, 28— o) is (o — Mg, 28 — Ag).

Following [13, 2.3], let R’ = R/(x* — A, 2" — Ag), S" = R'[y; 0], C be the
set of regular elements of R/, A = RC™!, B = Aly;0], and E = Aly,y}; o).
By reasoning as before, the nonzero primes of S’ intersecting R’ at zero will

be of the form (y* — \), where X € K. O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

CHAPTER 4

NONNOETHERIAN CASE
ONE

In this chapter, we discuss the prime and primitive ideals of
K{x,y,2}/{zy — Oyx — B1, 22 — agzx — 0,yz — azzy — 0)

= K{z,y,2}/{zy — b1, 22 — an2z, yz — a32y),

where (1, as, and a3 are nonzero elements of K. Note that by a change of

variable, we may assume that §; = 1. Throughout this chapter, let
S = K{z,y,z}/{zy — 1,22 — apzx,yz — Q32Y),

let R = K{z,y}/{xy—1)andlet T = R|z, 2~ !; o], where o is the automorphism
of R sending the element z to sz, the element y to a; 'y, and elements of K to
themselves. When we refer to z, y, or 2, we will be referring to their images in
R, S, or T. We begin by discussing some preliminary results about these three
algebras. We then divide the study into two cases based on whether or not ay is
a root of unity and classify the prime ideals of S, using the preliminary results.
Finally, we discuss the primitive ideals of S, leaving a complete classification

open for future work.
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4.1 Notation and Preliminary Results

4.1.1 R Preliminaries

Proposition 4.1.1. The set {y/z* : j and k are integers } is a K -linear basis
for R.

Proof. Note that R = K|[y|[z; 0, ] is an Ore extension of K[y] with o(y) = 0
and §(y) = 1. By Remark 2.2.1, the set {y/z* : j and k are nonnegative

integers} is a K-linear basis for R. O

Thus, when we write a nonzero element of R in the form
Z A eyjzxk‘e,
¢

for \; € K, we will assume that the )\, are nonzero and that the (jy, k¢) are
distinct for distinct £.

Proposition 4.1.2. Let a be an element of R. Then ax =0 or ya =0 if and
only if a = 0. The same proposition holds if a € S.

Proof. Suppose that axz = 0 holds in R. Multiplying through by y on the right
yields azy = 0. Since zy = 1 in R, the element a = 0. Proceed similarly if

ya=0oraels. O
Proposition 4.1.3. Ifay € (yz — 1) or za € (yz — 1), for a € R, then
a€ (yxr—1).

Proof. If a = 0, the proposition follows. Suppose that a = ), Aeylexke is a
nonzero element of R with ay € (yz — 1). Note that

ay = (O Ay )y = > AT+ D Aytateh
£ 0

Likp= L:ke>0

Hence, letting = and y also stand for their images in R/({yx — 1),

Z >\({ng+1 + Z /\eyjex.ke—l

L:ke=0 :kp>0
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— Z )\eyje+1 + Z )\eyje—ke+1 + Z NpzFe 179 = 0,

L:kp=0 L:kg>0,7,>kp~1 Lk >0,k —1>7¢
in R/{(yx —1). Note that the vector space generated by powers of z is orthog-
onal to the vector space generated by powers of y. Thus, a cannot have any

summands with k, > 0 and k; — 1 > j; and the equation

Z )\e’yjHl _ _( Z )\eijke*i—l)

£:kp=0 Z:ke>0,j52kg—1

holds in R/(yx — 1). Hence, if there exists an r such that k. = 0, then there
exists an s such that &k, > 0, js > ks — 1, A, = Ag, and j, = js — ks. Similarly
for each s such that kg > 0, there exists an 7 such that k. = 0, A\, = A, and

jr = js — ks. Thus,
a = Z Azng—kg _ )\engxke — Z Aeyje—kl(l _ ykéxke)’
£ £

which equals 0 in R/{yx — 1). Hence, a € (yz — 1). Proceed similarly for
za € (yz — 1). O

Corollary 4.1.4. Let a be a nonzero element of R. If z"a =0 or ay” =0 for

any nonnegative integer r, then a € (yr — 1).

Proof. We proceed by induction on r. If 7 = 1, the corollary holds by Propo-
sition 4.1.3. Let n be an integer greater than 1. Suppose the result is true for

r < n. The equation
ay" = (ay)y"~ =0
implies that ay € {(yz — 1) by the induction assumption. Proposition 4.1.3

implies that a € (yxr — 1). Proceed similarly to prove that if "a = 0, then
a € (yx —1). O

Proposition 4.1.5. Suppose that I is a nonzero ideal of R and that I is not
contained in (yx — 1). Then I contains a nonzero element that does not have
z as a factor of any summand and a nonzero element that does not have y as

a factor of any summand.
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Proof. Let a = Y, Aey?a®¢, for A, € K, be a nonzero element of I that is not
an element of (yr — 1). Let +; be the highest exponent of z appearing in any

summand of a. By Corollary 4.1.4, ay™ is nonzero. Also
ay™ = Z )\Zyjexkzyvl — Z /\eyj”'yl_k‘f.
¢ ¢

Hence, ay™ is a nonzero element of I that has no summands with z as a factor.
Let 9 be the highest exponent of y appearing in any summand of a. Then
27aq is an element of I without y as a factor of any summand. By Corol-

lary 4.1.4, 2™a is nonzero. OJ

Lemma 4.1.6. Suppose that I is a nonzero ideal of R that is not contained in
(yx—1). Then I contains a nonzero element with a nonzero constant term and
with  not a factor of any summand. Similarly, I contains a nonzero element

with a nonzero constant term and with y not a factor of any summand.

Proof. By Proposition 4.1.5, I contains a nonzero element a = Y \.y" with-
out z as a factor of any summand. Suppose that a, written in its unique form,
has zero constant term. Let  be the smallest exponent of y appearing in any
nonzero summand of a. Then z7a is a nonzero element of I that has nonzero
constant term A\, and z is not a factor of any summand. Proceed similarly to
prove that I contains a nonzero element with y not a factor of any summand

and a nonzero constant term. O

Proposition 4.1.7. Suppose that I is a nonzero ideal of R that is contained
in (yx —1). Then I contains nonzero elements of the form > \ny™(yx —1)

and > An(yx — 1)zk~ | where A, and X\, are nonzero elements of K.

Proof. Let a be a nonzero element of I. Since a € (yz — 1), the element a is

a finite sum of elements of the form
My (ya — 1)yfeabe = Mk yyToaks — Ayl ahrydeghs

Let Ayimakmyxyinghn — Myimgkmydnghn be a summand of a. We now divide the

proof into cases depending on whether j,,, jn, kmn, and k,, are zero or nonzero.
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Case 1: Suppose that k,, > 0. Then
Xydm ghm gy gpyinghn — Ngdmghmginghn — Xgdmphmginghn _ \gdm glmyin gk — ),
Case 2: Suppose that k,, = 0 and j, > 0. Then
Ay gkmyanghn — Nyimghmyinghn = \gintlyin=lgkn _ \gdmtin ke
— /\yjm+jn )\yjmﬂn =0.
Case 3: Suppose that k,, = 0 and j, = 0. Then
AyPmghmyydnghn — AyImghmyinghn = \yfmFlghntl _ \yimghn

= \yim(yz — 1)z"

Thus, if a is a nonzero element of an ideal I contained in (yz — 1), then the

only nonzero summands of a are of the form Ay/m+lgkntl — \ydmgks  Hence a

a= Z Ay’ (yz — 1)2"

Next, let v, be the highest z-degree and 7, the highest y-degree of any sum-

is of the form

mand of a. Then

Ay =Y Any'm(yz — Dafry =) Any'm(ya — Ly"
m m

:( Z Amyim (yay " ~Fm — 1= km) ( Z Amy?™( y:c~1))

mikm <v1 mikm=m
mikm<m m:km=1

Z Amy'™ (yz — 1),

m:k;m="1

which is a nonzero element contained in /. Similarly,

za = Z Am(yz — 1)z*

mifm="y2

is a nonzero element of 1. |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32
Proposition 4.1.8. Suppose that I is an ideal of R that is contained in (yx —
1). Then I = (yz —1).

Proof. By Proposition 4.1.7, I contains a nonzero element a of the form
Z )\myjm(yx - 1)

Let « be the highest exponent of y appearing in any summand of a. Note that

there will be only one summand of a with j,, =+. Then
:c"(z Ay’ (yz — 1)) = Z Az Ty (yz — 1) = Myz — 1) € 1,

for some A € K. Thus, I = (yx — 1), as desired. O

4.1.2 S Preliminaries
Recall that S = K{z,y,z}/(zy — 1,22 — aszz, yz — a32y).
Lemma 4.1.9. If as # a5 ', then S is isomorphic to R.

Proof. In S, the equation yz = azzy holds. Multiplying this equation by z on
both sides yields xyz = asxzy. The equalities zy = 1 and z2 = agzz imply

that z = asasz. Hence, ag = a;l or z = 0. O
Thus, for the remainder of this chapter, let o = a2 and
S =K{x,y,2}/{zy — 1,22 — azz,yz — o '2y).

Note that S is not noetherian, since R is not noetherian, and that S is not
a domain (for instance, z(yz — 1) = 0). Also, S = R|[z;0] is a right Ore
extension of R, where ¢ is the automorphism of R sending x to az, ¥ to a1y,

and elements of K to themselves.
Corollary 4.1.10. S is a prime ring.

Proof. S is an Ore extension of a prime ring where the multiplication is twisted

only by an automorphism (see Theorem 2.2.3). O
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Corollary 4.1.11. The ideal (yz — 1) is prime in S.

Proof. Note that
S/(yz - 1) = Klz,27 ][z ¢),

where ¢ is the K-algebra automorphism of K[z, z!] sending = to az. Hence
S is an Ore extension of a prime ring, where the multiplication is twisted only

by an automorphism. Thus, by Theorem 2.2.3, S/(yz — 1) is a prime ring. 0O

Proposition 4.1.12. The set {z*y’z" : i, j, and k are integers } is a K-linear

basis for S.

Proof. Let A = K|[yl[x;01, 0] be an Ore extension of K[y] with o1(y) = 0 and
§(y) = 1. By Remark 2.2.1, the set {¢/z* : j and k are nonnegative integers}
is a K-linear basis for A. Then S = Al[z; 09] is a right Ore extension of A with
oa(y) = o'y and o9(x) = ax. Thus, by Remark 2.2.1, {z'yz* : ¢, j, k are

nonnegative integers} is a K-linear basis for S. d

Thus, when we write a nonzero element of S in the form
Z ie, ok
)\ZZ l?yJE:L- Z’
¢

for A\, € K, we will assume that the )\, are nonzero and that the (s, jo, ko) are

distinct for distinct £.

Proposition 4.1.13. Let Z(S) be the center of S.
1. If a is not a root of unity, then Z(S) = K.
2. If a is a primitive £th root of unity, then Z(S) = K(z*).
Proof. Certainly K is contained in Z(S), so Z(S) is nonempty. Let
a= Z \2ryirab € Z(9)
be a nonzero element. Then a must commute with y, and thus

ya = § :/\Toz_“z“"y”“xkr
T
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=ay = Z (A\e2iryirat1) + Z (A2ryir .
rikr>0 rikr=0
Suppose that &, is nonzero for at least one r and that -y is the smallest exponent

of y appearing in any nonzero summand of a. Then the smallest y-degree
of nonzero summands of ya is v + 1 and the smallest y-degree of nonzero
summands of ay is v, contradicting that ya = ay. Hence, @ must not have x

as a factor of any summand (ie., a = > A\.2"y’7). Thus,
ya — Z Ara—irziryjr'f'lxkr — ay — Z Arziryjr'i—l'

Hence, a~ =1 for all . We now divide the proof into two cases depending
on whether or not « is a root of unity.
Case 1: Suppose that « is not a root of unity. Then 4, = 0 for all r. This
implies that a = Y~ A.y/r. Since z commutes with a,
ar = Z/\ryjrx =za = Z Ay + Z (Arz).
r rijr>0 rijr=0
Suppose that j, is nonzero for at least one . Then az has x as a factor of
every summand, but xza has at least one summand without z as a factor. Thus,
J» = 0 for all 7. Hence, a = A for some A € K and Z(S) = K, as desired.
Case 2: Suppose that « is a primitive £th root of unity. Then, since
a™% =1 for all r, the integer i, is a multiple of £ or 0 for each r. The elements
x and a commute and thus
ar = Z MyTT = za = Z (A7) + Z (M)
r rije>0 rijr=0
and, as before, j, = 0 for all r. Thus, a = Y A.z%, where the ¢, are multiples
of £ or are zero for all r. Thus, a € K(2%). An easy check shows that, when «
is a primitive £th oot of unity, (z¢) is contained in Z(S). Thus, Z(S) = (z%)

in this case, as desired. O

4.1.3 T Preliminaries

Recall that T = R|[z,27 ;0]
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Proposition 4.1.14. Suppose that I is a proper ideal of T containing z — A,

for some nonzero A\ € K. Then o = 1.

Proof. Let T' = T/I and let z, y, and z also stand for their images in T".
The equations zz = azx and z = A hold in T". These equations imply that
M =alxinT'. If z=0in T’ then z € I and thus zy € I. Since zy = 1 in
T, the element 1 € I, contradicting the assumption that I is a proper ideal of
T. Hence oo = 1. (]

Proposition 4.1.15. As an ideal of T,
(— Xy — A ={z—Na"y—a" /N,
for any nonzero A in K and any nonnegative integer .

Proof. The proof is shown for r = 1 and follows analogously for arbitrary
values of r. Let I = (x — A/a,y — a/X). Then

2z = Aa) = zz — (Na)z=azz — (Ma)z= (e 'z — (Ma))z € L.

Hence,
ala™lz — (Ma)zz7l=x— el

Similarly y — A™' € I. Thus, {(x — A,y — A1) C (z — M a,y — a/A).

To obtain the reverse inclusion, let J = (z — A,y — A™!). Then
(x=Nz=zz—-X z=2z(az— ) € J.

Hence
alz N o —Nz=z-Nacl

Similarly y — a/X € J. Thus I = J. O

Corollary 4.1.16. As an ideal of T,
<5U_)\ay—)\—1>m<l‘*~)\/a,y—-a/)\>ﬂ...ﬂ<x_)\/an—1,y_an—1/)\>

= (x—X\y— ).
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4.2 Prime Ideals of S

Recall that S = R|[z;0]. Thus, the prime ideals of S that contain z will
be in one-to-one correspondence with the prime ideals of R, which are given
in 2.2.14. Therefore, it remains to classify the prime ideals of S that do not
contain z, which are in one-to-one correspondence with the prime ideals of T'.
Recall that if P is a prime ideal of T, then P N R is a o-prime ideal of R (see
Lemma 2.2.4). Hence a classification of the o-prime ideals of R will aid in our
classification of the prime ideals of T'. By the previous results, it makes sense

to divide our study into two cases based on whether or not « is a root of unity.

4.2.1 Scalar Not a Root of Unity Case

Throughout this subsection, we will assume that o is not a root of unity.
We begin by exploring the o-prime ideals of R and then use these results to

classify the prime ideals of 7'

Proposition 4.2.1. Suppose that I is a proper nonzero ideal of R that is not
equal to (yx — 1). Then I is not o-stable.

Proof. By Proposition 4.1.5, Lemma 4.1.6, and Proposition 4.1.8, I contains
a nonzero element with a nonzero constant term and without z as a factor
of any summand. Let s be the smallest nonzero exponent of y appearing in
any nonzero summand of elements of I of this type. Let a = > Ay" be an
element of I with Ao not equal to zero and y-degree s.

Next suppose that I is o-stable. This implies that o(a) € I. Note that

o(a) = 0(2 AyY') = Z PWIETIS
Then
a’o(a) = Z Are®TY"

and

a—a’o(a) = Z Ar(l =)y

rir#£s
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Note that a —a®o(a) € I is nonzero with a nonzero constant term and without
z as a factor of any summand. Also, the y-degree of a — a®c(a) is less than s,
contradicting the choice of a. Hence, if I is a nonzero ideal of R that is not

equal to (yz — 1), then I is not o-stable. O

Corollary 4.2.2. The only o-stable ideals of R are (0) and (yxz — 1). Thus,
the only o-prime ideals of R are also (0) and (yx — 1).

Proof. Since R is a prime ring (see Theorem 2.2.14), (0) will be a o-prime ideal

of R. Hence, the corollary follows from Proposition 4.2.1 and Proposition 4.1.8.
O

Corollary 4.2.3. Let P be a prime ideal of T. Then P N R equals {0) or
(yz —1).
Proof. The corollary follows from Corollary 4.2.2 and Lemma 2.2.4. 0

Proposition 4.2.4. If P is a prime ideal of T with PN R = (yz — 1), then
P=(yz-1).

Proof. Let T" = (K|[z,y]/(yz — 1))[z, 27%; o] and let P’ stand for the natural
image of P in T'. Note that P’ is a prime ideal of 7”. Next, consider P" =
P'N Klz,y]/{yx — 1). The ideal P” will be prime in K[z, y]/(yx — 1). Hence
P" ={0) and P = (yx — 1), using Proposition 4.1.14. O

To classify the prime ideals of T that intersect R at (0), note that these
ideals are in one-to-one correspondence with the prime ideals of S that intersect

R at (0) and do not contain z.

Proposition 4.2.5. Let P be a nonzero prime ideal of S such that PNR = (0).
Then P = (z).

Proof. Let T denote the symmetric quotient ring of R, Z(T") the center of
T’, and D’ the ring of all central elements in 7" which are o-invariant. Since
a is not a root of unity, no power of o will be an inner automorphism of 7.
Hence, by Proposition 2.2.9, Z(T") = D’. Therefore, by Theorem 2.2.10, the
only prime ideal of S that intersects R at (0) will be (z). O
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Corollary 4.2.6. The following is a complete list of the prime ideals of S

(organized by families) in the case when « is not a root of unity.

4. {yz—1,2), and

5. {(x— X\ y— A1 2), where X is a nonzero element of K.

4.2.2 Scalar Root of Unity Case

Throughout this subsection, we will assume that « is a primitive £th root

14

of unity and hence o is an inner automorphism of R (in fact, o* is the identity

map on R). Thus, by Lemma 2.2.7 and Proposition 2.2.8, the set of ideals of
R that are o-cyclic is equal to the set of ideals of R that are o-prime, and the

o-cyclic ideals of R will be one of the following.

L. ne*((0)) = a({0)) = (0),
2. No*((yz — 1)) = o({yz — 1)) = (yz — 1), or

3. NekF({z— A y—=A"D)) = (- y=2A"Hn--Nn{z—Nat y—a /N,

for nonzero A € K.

Thus, if P is a prime ideal of T', then P N R will be one of the above g-cyclic

ideals.

Corollary 4.2.7. If « # 1 and P is a prime ideal of T not containing z with
PNR = (yx—1), then P = (yr—1). Ifa =1 and P is a prime ideal of T' not
containing z with PN R = (yx — 1), then P is equal to one of the following.

1. (yx—1) or
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2. (yx — 1,z — A), for A a nonzero element of K.

Proof. Let T' = (K|z,y]/(yz—1))[z, 271; o], let P’ stand for the natural image
of PinT’, and let P" = P'NK|z,y]/(yz—1). Note that P” will be a prime ideal
of K[z,y]/(yx —1). Using the assumption that z ¢ P and Proposition 4.1.14,
if o # 1, the ideal P’ = (0). If @ = 1, the ideal P’ equals (0) or (z — A), for A

a nonzero element of K. O

Corollary 4.2.8. Let P be a nonzero prime ideal of S not containing z with
PNR=/{(0). Then P = (z*— ) for A\ € K.

Proof. Let T' denote the symmetric quotient ring of R, Z(T") the center of
T', and D’ the ring of all central elements in 7" which are o-invariant. Since
a is an £th root of unity, of is an inner automorphism of 7”. Thus, by Propo-
sition 2.2.9, Z(T") # D'. Therefore, there exists an invertible A in 7" and
an r > 0 such that Z(T") = D’'[u], where u = At". By Proposition 2.2.9,
u = z*. Hence, again using Theorem 2.2.10, the nonzero prime ideals P of S,

not containing z, with P N R = (0) are of the form (2% — \) for A € K. O

Proposition 4.2.9. Let P be a prime ideal of T' with
PNR={(z-X\y-2AHn-nx-Xra"ty—a /N,

Then P = (z — A,y — A7, 2 — ), with v nonzero only if o = 1.

Proof. The proposition follows from Corollary 4.1.16 and Proposition 4.1.14.
O

Corollary 4.2.10. The following is a complete list of the prime ideals of S

(organized by families) in the case when a is a primitive £th root of unity.
1..{0),

3. (2),
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4' (yx - ]-) Z):
5. (x— X\ y— A1), for X a nonzero element of K,
6. (x— X\ y— A1 2), for X a nonzero element of K, and

7. {2t — ), for v a nonzero element of K.

Ifa =1 (ie., £=1), then, in addition to the above prime ideals, the following

prime ideals of S are a complete list of the prime ideals of S.

1. {yz — 1,z —~), for v a nonzero element of K, and

2. (x—MNy—X12—7), for X and v nonzero elements of K.

4.3 Primitive Ideals of S

Since the set of primitive ideals of S is contained in the set of prime ideals
of S, we need only consider prime ideals of S to classify the primitive ideals.

We leave a complete classification for future work

4.3.1 Scalar Not a Root of Unity Case

In the case when « is not a root of unity, the following are primitive ideals

of S because S modulo each of these ideals is known to be a primitive ring.
1. (2},
2. {yz—1,z), and
3. {x — X,y — AL, 2), where )X is a nonzero element of K.
The primitivity of the following ideals is left open.
1. {0), and

2. (yx —1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

4.3.2 Scalar Root of Unity Case

In the case when « is a primitive £th root of unity, the following are primi-
tive ideals of S because S modulo each of these ideals is known to be a primitive

ring.
1. {2),
2. (yz —1,z), and
3. (x— N,y — A1, 2), for A a nonzero element of K.

If « =1 (ie, £ = 1), then, in addition to the above primitive ideals, the

following are primitive ideals of S.

1. (yz — 1,2 — 1), for v a nonzero element of K, and

2. (x— A\ y— A1 z—7), for A and v nonzero elements of K.
The primitivity of the following ideals is left open.

1. {0y,

2. (yx —1),
3. (x — A,y — A71), for A a nonzero element of K, and

4. {2* — ), for v a nonzero element of K.
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CHAPTER 5

NONNOETHERIAN CASE
TWO

This chapter will give a classification of the prime ideals, primitive ideals,

and irreducible representations of
S = K{.’El, o ,.’En}/<$i$j — Ol'jﬂli — ,8@']',2' < _]>

= K{JUl, e ,CUn}/(Q?il‘j — Bij, 1 < I

where K is an algebraically closed field, n > 3, and 3;; € K. The prime
and primitive spectra of some classes can be immediately classified. For the
remaining cases, we reduce our study of the prime and primitive ideal structure

of the n-variable case to the study of the prime and primitive ideals of
R = K{fﬁ,y; Z}/(.’Ey - O,CCZ - 1,y2 - 0) - K{I,y, z}/(a:y,mz - 1,yZ>-

After reducing our study of the algebras in n-variables to the study of R,
we prove some preliminary results about R. In particular, we note that a more
general result by Adam Berliner (Theorem 2.2.13) allows us to completely clas-
sify the finite dimensional irreducible representations of R. Next, we explicitly

construct an infinite family of infinite dimensional irreducible representations,
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using a method of Irving. A proof is then given showing that the representa-
tions already classified are indeed all of the irreducible representations of R.

Finally, we classify the prime ideals of R.

5.1 Reduction to Three Variable Case

Throughout, let » > 3 and let z, y, and 2 stand for their images in various
quotient algebras. We now show that to complete a classification of the prime

and primitive spectra of algebras of the form
Kz, @}/ (zimj — By, i < J),

where K is an algebraically closed field, n > 3, and §3;; € K, it suffices to
classify the prime and primitive ideals of R = K{z,y, 2}/{zy,zz — 1,yz). We
consider the possible cases when each (;; is taken to be zero or nonzero.
First, suppose that §;; is nonzero for all i and j. We will assume that
Bij = 1 for all 4 and j and the results follow similarly for arbitrary nonzero

values of the 3;;. Let
S = K{.Z’l,xg, SR ,$n}/<$i$j -1 < ]>

In Si, the equation z12z2 = 1 holds. Multiplying both sides of this equation
by zr on the right yields xjxzexr = zx. In S, however, xs2; = 1, for any
2 < k < n. Therefore, r; = xy for all 2 < k < n and the equation z17; =1
also holds in S7. Multiplying both sides of the equation 2129 = 1 by z; on the
left yields z12129 = x1 and, hence, 21 = 29. Thus z; = z; forall 1 < 4,5 < n
and S = Klz|/(z? - 1).

Next, suppose that §;; = 0 for all ¢ and j. That is, consider

So = K{x1,29, + ,xn}/{(ziz;,1 < j).

Note that x;z; is contained in the nilradical of Sy for 1 < ¢ < j < n. Thus,
modulo its nilradical, S is commutative and hence the classification of the

prime and primitive ideals is clear.
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Let
93 = K{wy, 2, -+, @n}/{wizj — Bijy i < J),
where at least two (;; # 1 and at least one 8;; = 0. We will assume that
nonzero B;; = 1 for all 7 and j and the results follow similarly for arbitrary

nonzero values of the ;.
Proposition 5.1.1. Ifn = 3, then Ss (as above) is trivial.

Proof. We proceed in cases.

Case 1: Suppose z1x9 = 1.

Subcase 1: Suppose zox3 = 1. Multiplying both sides of this equation
by z; on the left yields z 2923 = 1. This implies that 23 = z;. The equation
z;23 = 0 also holds in S3. Hence 23 = 0. Multiplying both sides of z129 = 1
by z; on the left yields that x; = 0, contradicting that z; must be nonzero for
the equation 2325 = 1 to hold. Hence Sj is trivial.

Subcase 2: Suppose zox3 = 0. Then the equation 123 = 1 also holds
in S3. Multiplying both sides of the equation z1z; = 1 by z3 on the right yields
that x1z923 = z3 and hence z3 = 0, contradicting that z3 must be nonzero for
the equation ziz3 = 1 to hold. Hence Sj is trivial.

Case 2: Suppose z;22 = 0. Then the equations zyz3 = 1 and xex3 = 1
hold in S3. Multiplying both sides of the equation zoz3 = 1 by x; on the left
yields xyxoxs = x1, implying that xy = 0. This equality contradicts that z;
must be nonzero for the equation zi1z3 = 1 to hold in S3 and, hence, S3 is

trivial. ]
Corollary 5.1.2. If n is any integer with n > 3, then Sy is trivial.

Proof. We proceed by induction on n. If n = 3, the corollary holds by Propo-
sition 5.1.1. Let k be a positive integer greater than 3 and suppose the result
is true for n < k. Then, if n = k, the algebra S;3 is an Ore extension of
St = K{zy, 29, ,Zk-1}/{xiz; — Bij, 1 < j), where B;; € K.

Case 1: If at least two of 3;; = 1 and at least one of the 3; = 0 for
1<14,5 <k-—1,then S} is trivial by the induction hypothesis and hence Ss is

trivial.v
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Case 2: If B;; = lforall 1 < 4,5 <k —1, then S5 is isomorphic to
K[z]/{z* — 1) by an above argument. But this implies that S3 is an Ore
extension of K[z]/{z? — 1) and hence cannot have at least two §;; = 1 and at
least one f;; = 0, contradicting the assumptions on the [;;.

Case 3: If there exists only one §;; = 1 with 1 <4,j < k - 1, then there
exists an r < k such that 8., = 1. Hence z; # 0. Suppose that xz,, = 1
for 1 < ¢ <m < k—1. Then in S; the equation z,x,,zx = zx holds. If
Tmr = 0, then z, = 0 contradicting that x; must be nonzero. If z, 2, = 1,
then z, = x; and hence S3 = S}. But this also contradicts the assumptions
on the f;;. Hence S5 is trivial.

Case 4: Suppose that 3;; = 0 for all 1 < 4,5 <k — 1. Then there exists
an r and an s with 1 < r < s < k — 1 such that the following equations hold

in Ss.
1. z.a =1,
2. xsx = 1, and
3. zyxs = 0.

Then z,z,7; = x, holds in S3. But this implies that x,, = 0 which contra-
dicts that z, must be nonzero for the equation z,xx = 1 to hold. Hence S; is

trivial. O
Finally, let
Sy = K{x1, 22, ,xn}/{Ti; — Bij, 8 < 7),

and suppose that there exists a k and an ¢ such that G # 0 and 8;; = 0
whenever (i,7) # (k,£). Note that by a change of variable we may assume
that 5“ = 1.

Proposition 5.1.3. The algebra Sy (as above) is isomorphic to
K{ag, @prr, - - e} /(@i — 7igp i < J),

where e = 1 and ~y;; = 0 whenever (3,5) # (k,£).
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Proof. Suppose fre = 1 and §;; = 0 whenever (i, j) # (k,£). If there exists
an m such that 1 < m < k, then z,,zx = 0. Multiplying both sides of the
equation zxz, = 1 by z,, on the left yields x,,(zxz¢) = z,. This implies that
(Tmxk)Te = Ty and thus that z,, = 0. By similar reasoning, z, = 0 for all

{<r<n. O

Thus for the remainder of this chapter, let
54 = K{$17$2, te 7mn}/<xixj - ﬁij)i < .7>7
where (1, = 1 and §;; = 0 for (7,7) # (1,n).

Proposition 5.1.4. Let P be a prime ideal of S4. Then at most one of the

elements xq,- -+ ,x,_1 18 not contained in P.

Proof. Let P be any prime ideal of Sy. Suppose there exists a2 <k <n -1
such that z; ¢ P. Elements of (z,)(x)) are sums of elements of the form
T ZereTrTs, Where 11,79, 73 € Sy If k # 2, then, for any 2 < ¢ < k, the
product x,rex; = 0. Hence (x,){xx) = 0. Furthermore, since P is prime and
xy, ¢ P, the element x, € P. Similarly, if k # n—1, then for any k < m < n—1,
the element z,, € P. Hence, if 23 ¢ P for 2 < k <n — 1, then z; € P for all
¢ such that 2 </ <n—1 and ¢ # k. Therefore any prime ideal P of S will

contain &, -+ ,Zn_1 or all but one of g, -+, x,_1. O

Hence, using Theorem 2.2.14, a classification of the prime and primitive ide-
als of R, will completely determine the prime and primitive spectra of Sy.
Furthermore, using Gerritzen’s classification of the irreducible representations
of K{z,y,}/{(xy — 1) (see [11, Section 3]), a classification of the irreducible

representations of R will complete such a classification for Sy.
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5.2 Prime and Primitive Ideals

5.2.1 Notation and Preliminary Results

Proposition 5.2.1. The set {z'y’z* : i, j, k are nonnegative integers} is a

K -linear basis for R.

Proof. Let A = K|[x][y; 01] be a right Ore extension of K[z] with o1(z) = 0.
Then, by Remark 2.2.1, the set {y72* : j and k are nonnegative integers} is
a K-linear basis for A. Then R = A[z;09,6] is a right Ore extension of A,
where o3(y) = 0, 6(y) =0, o2(x) = 0, and 6(z) = 1. Thus, by Remark 2.2.1,

{2'yIz* i, j, k are nonnegative integers} is a K-linear basis for R. O

Hence, whenever we refer to a nonzero element Y .- .2 yirz* in R, we
will assume that the (i,, j,, k.) are distinct for distinct 7 and that the A, are

nonzero.

Proposition 5.2.2. Any nonzero ideal of R contains a nonzero element of

Kly|.

Proof. Let I be a nonzero ideal of R and let f = Y " \.z""y"z¥ be a nonzero
element of I.

Case 1: Suppose there exists a nonzero summand $; of f with z not
a factor of s;. Then fy will be nonzero and z will not be a factor of any
summand of fy. If there is at least one nonzero summand, sy, of fy with z
not a factor of sg, then yfy will be a nonzero element of / without x or z as
a factor of any of its summands.

Suppose then that fy has z as a factor of every summand. Let o be the
y-degree of fy. Note that o > 1 (since we have multiplied f by y). Let g
be the highest z-degree of the summands of fy with y-degree a. Note that
there can be only one summand of fy with y-degree o and 2-degree 3. Also,
note that z° fy contains a nonzero summand of the form Ay®, for some A € K,

and this summand cannot possibly cancel with any other summands (using
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the fact that there is only one summand of fy with y-degree @ and z-degree
3). Therefore, z” fy is nonzero.

Also, z° fy is an element of I without z as a factor of any of its summands
and there exists at least one nonzero summand of z” fy without z as a factor.
Hence, as previously, yz® fy will be a nonzero element of I without z or z as
a factor of any of its summands. Therefore, the desired result is true in this
case.

Case 2: Suppose there exists a nonzero summand of f without z as a
factor. Then proceed similarly to the above case.

Case 3: Suppose every summand of f has x and z as a factor. Let a be the
minimum exponent of z appearing in any nonzero summand of f. Note that
a > 1. Then fz* will be a nonzero element of I where not every summand
has = as a factor. Hence proceed as in Case 1.

Therefore, every nonzero ideal of R contains a nonzero element of K|y]. O
Corollary 5.2.3. R is prime.

Proof. Suppose I and J are nonzero ideals of R with IJ = 0. By Propo-
sition 5.2.2, I contains a nonzero polynomial in y, say f, and J contains a
nonzero polynomial in ¥, say g. Then fg € IJ and fg # 0 (the product of
two nonzero polynomials in y cannot be zero), contradicting the assumption
that IJ = 0. O

Lemma 5.2.4. In R, the ideal (y*) = (y)¢, where i is any integer greater than

or equal to zero.

Proof. The proof is shown for ¢ = 2 and the general case follows analogously.

2

It is obvious that (y%) C (y)®. Suppose a € (y)?. Then q is a finite sum of

elements of the form riyz‘y’z*yr, where r; and ro, are elements of R and i, 7,

and k are nonnegative integers. If either ¢ or k is nonzero, then
riy2'y’ztyry = 0 € (y?).

If i =0 and k = 0, then ryyzlyizFyry = riyi*2ry € (¥2). O
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Lemma 5.2.5. Let P be any nonzero proper prime ideal of R not containing

y. Then there exists a nonzero ¢ € K such that (y* — cy) C P.

Proof. If {y* — cy) C P for some ¢ € K, then, by Lemma 5.2.4, ¢ is nonzero.
By Proposition 5.2.2, P contains a nonzero polynomial in y, say g. If g has
a nonzero constant term, then xzgz is equal to a nonzero scalar and zgz € P,
contradicting that P is a proper ideal of R. Hence, g must have a zero constant
term, i.e., g = yf for some polynomial f € K[y].

Suppose then that f = (y — a1)(y — a2) -+ (y — @) is a factorization of
f into irreducible polynomials over K. Since (g(y)) C P and P is prime, we

need only prove

(y(y — an))(y(y — ). (Y(y — ) € (9(y))

to prove the lemma. We proceed by induction on ?.
If t =2, let a € (yly — o1))(y(y — az2)). Then a is equal to a finite sum of

elements of the form

ry(y — a2y y(y — ag)re,

for some elements r; and 7, € R and nonnegative integers ¢, j, and k. If 7 or

k is nonzero, then

riy(y — )2y e y(y — ag)ra = 0 € (y(y — n)(y — ).
If 4 and k are zero, then
j+2(

ry(y — al)ziijky(y — )Ty =T1Y y—an)(y — ag) € (Y(y — 1) (y — a2)).

Hence, a € (y(y — a1)(y — a2)) and the desired result is true for ¢ = 2.
Let s be an integer greater than two. Suppose the claim is true for ¢ < s.

Using the induction hypothesis,

Yy — o))y — @) ... Wy — 1)) S (y(y —an) - (Y — as-1))-

Hence,

(yy —a))(yly —a2)) - (ly — as)) S{y(y —ar) ... (¥ ~ as-1)){y(y — o))
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Suppose
a € (y(y—a1)...(y — as—1)){y(y — a)).

Then a is a finite sum of elements of the form

ri(y — ) (Y — a1y (2 3y (Y — as)ra,

for elements r; and ro € R and nonnegative integers i, j, and k. If i or k is
nonzero,
Py — aa) -+ (y — Qe Jy(2ye)y(y — ars = 0.
If 7 and k are zero, then
ri(y — 1) (Y — )y ('Y a®))yly — as)ry
=y 2y — o) (Y — o) (Y — o)
e(yly—a) - (y—a)) S P.

Hence, a € P. This implies that

(y(y — o)) (y(y — a2)) -+ (y(y — o)) € P.

Since P is prime, there exists an 1 < i < s such that (y(y — o)) C P, as
desired. O

Remark 5.2.6. Note that (y) is a prime and primitive ideal of R (see Theorem
2.2.14).

Remark 5.2.7. Also note the following corollary to Proposition 2.2.13.

Corollary 5.2.8. All cofinite dimensional primitive ideals of R are of the form

{y,o — X,z — A1), where X\ is a nonzero element of K.

5.2.2 Infinite Dimensional Irreducible Representations

To show the existence of infinite dimensional irreducible representations of
R, we begin by explicitly constructing such a representation, using a method
of Irving (see [18, Section 7]). Let A be a nonzero element of K and let M)
be the infinite dimensional K-vector space with basis vy, v1, vg,.... By the

following action, M), is a K{z,y, z}-module.
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1. 2v, = vpqq for all n € N with n > 0,
2. 2y =10

3. xv, = vp_g for alln € Nwithn > 1,
4. yvo = Ao, and

5. yv, =0 for alln € Nwithn > 1.

Let v € M,. Since vg, v1, Ug,... is a K-linear basis for M), we can write

. ¥ . .
v in the form v = >_,_, c;v;, for some ¢; € K and some nonnegative integer
¢. Whenever we write an element of M) in this form, we are assuming that

¢; # 0 and that the v; are the K-basis vectors of M. Therefore,

¢
TY v =Y E CU; = X - CoAvg = 0.
=0

Hence, zy € anng(zy.(My). Similarly, yz and xz — 1 are elements of
ANNK {z,y,-}(My). Hence, M) is an R-module.
Let v = Zf:o ¢;v;, (where ¢; € K and v; are K-basis vectors of M)), be an

L

arbitrary element of M, with ¢; # 0. Then 2z™x"v = ¢pv,,, which implies that

Rv = M, or, equivalently since v is arbitrary, that M, is simple.
Proposition 5.2.9. The ideal annp(My) = (A\zz +y — A).

Proof. The proof is shown for A = 1 and follows analogously for other values of
A. An easy check shows that (zz+y—1) C anng(M,). Let R' = R/(zx+y—1)
and let z, y, and z also denote their images in R'. The set {z'y/z"* : 4, j, k are
integers} spans R over K. However, y?—y € (¢2z+y—1) and hence y*~y =0
in R'. Therefore,

{z%y7z* : 4, j and k are nonnegative integers with j = 0 or j = 1}

spans R over K. Also, zz = 1 —y in R". Thus, {z'yz*} U{2'} U{z"*}, where

i and j are nonnegative integers, spans R’ over K. Hence, if r is any nonzero
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element of R, we can write r in the form
T = Z Aazteyzhe 4+ Z Y2® + Z e,
a b c

for nonzero A, v, and u. € K and for (i, k,) distinct for distinct a.

Suppose
0#p= z A2yt 4 Z’)’bzb + Z,uc:ﬂc € annp (M),
a b c

where the \,, 73, and p. are nonzero elements of K. Let g be greater than k,

for all a and greater than c for all ¢. Then

pyvg = Z YoVq+b + Z HeVg—c,

which must be zero since p € anng (M)).

This implies that for each b, there exists a ¢ such that Y1 = —eVg—c.
This, in turn, implies that ¢ + b = ¢ — ¢ which can only happen if b =¢c =0
since b, ¢ > 0. Similarly for each ¢, there exists a b such that v,v41p = —cVg—c.
Therefore, ¢ = b = 0. Hence, p = Y__ A2 yxke.

Let 7 be the highest exponent of x appearing in p. Then

va=Z/\azi”yxk“vT: Z a2 yvg = Z A2 vg = Z AaUi, -
a

(a:ka=r) (a:kg=r) (a:kg=T)

However, for each a such that k, = r, the i, must be distinct (otherwise there
would be two summands with the same z, y, and z-degrees). This implies that
Z(a: kazr) Auv;, cannot possibly be zero, which contradicts that p € anng(My).
Hence, 0 = anng/(M,), which implies that (zx +y — 1) D anng(M,) and that
annp(M)) = {(zx + y — 1), as desired. O

Thus, R has an infinite family of infinite dimensional irreducible represen-
tations and we wish to explore the existence of others. Since a classification
of the irreducible infinite dimensional representations V of R with y € anngV
can be found in {11, Section 3|, we now concentrate on irreducible infinite

dimensional representations of R without y in their annihilator.
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Proposition 5.2.10. Let M be a nonzero infinite dimensional simple R-
module with annp(M) # 0 and y ¢ anng(M). Then M is isomorphic to
My (as defined above) for some A #0 € K.

Proof. Let M be any nonzero infinite dimensional simple R-module. Suppose
annp(M) # 0 and y ¢ anng(M). Let A = K(z,y) and M’ = (AyzA)M.

Case 1: Suppose M’ = 0. This implies that yz is in the annihilator in
R of M. Hence yrz = y € anng(M), contradicting the assumption that
y ¢ annp(M).

Case 2: Suppose M’ # 0. Then z € anna(M’'). Therefore, M’ is a
K[y]-module. By Proposition 5.2.2, there exists a polynomial in y, say f(y),
with f(y) € anng(M). Hence, f(y)M' = 0. Therefore, for 0 # m € M,
the A-module Am is finite dimensional over K. Thus Am contains a simple
A-module, say Avg, for some vy € M’. Then zvy = 0 and yvy = Avy for some
A#£0€EK.

Choose a basis for M over K that includes vy, say wvp,vi,va,.... Since
zzv; = v; for all 7, the element vy ¢ zM. Let n be an arbitrary positive integer.

Since M is a simple R-module, there exists an element, Y, , apztyiexke of R

such that .
( Z agzi‘g/j”xk‘> Vg = Up.

=0
Since zvy = 0, the exponent k, = 0 for all £. Using the fact that yvy = Avp,
the product > y-, agA¢2* - vg = v,. Thus, there exists a polynomial in z, say

g(2) = Y)_p auz®, such that g(2) - vo = v,. Then

.
ZL'T< E arze> “ Uy = X' Up,
=0

and thus o, v = 2"v,.
However, we also have from the relations in R that " 2" a,vg = a,v9. Thus,

" 2" o v9 = x"v,. This implies that

x" € anng(2" vy — Vp),
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which implies that

1 € annp(z"oyvg — vy,).

Hence, 2"a,v9 = v,. Let wy = vy and w; = 2'vp for all 4 > 0. Note that the
set {wo, w1, ...} will contain all basis vectors of M over K and hence the basis
Wo, W, . .. IS just a renumbering of the original basis, vy, vy, .... Let ug, u,...

be the basis for M), with R-action:

1. zu, = upy; for all n € N with n >0,
2. xug =0,

3. U, = U,y for alln € Nwithn > 1,
4. yug = up, and

5. yu, =0 for all n € N withn > 1.

Define ¢ : M — M), by ¢(w;) = ;. This is an isomorphism of F-modules. [

Thus, all infinite dimensional irreducible representations of R that are not
faithful have been classified. To complete a classification of the primitive

ideals of R, we need to ascertain whether or not (0) is a primitive ideal.
Proposition 5.2.11. R is not primitive.

Proof. Suppose that M is a faithful, simple nonzero R-module. Let A =
K{z,y) and M' = (AyxA)M, as above. Note that M’ # 0 since M is faithful.
Thus, for all v € M’ and for all nonzero f(y) € K[y|, the product f(y)-v # 0,
or else M = M), for some A € K, as in the proof of Proposition 5.2.10.
Choose v # 0 € M'. Then, since M is simple, Ryv = M. This implies that
there exists an a = Y-, apz™yitz* € R such that ayv = v.
Then

m m
£=0

L:kp=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Let 7 be the minimum exponent of z appearing in any nonzero summand of

E azzleyjrl—l

£:ky=0

V=T ( Z o z”y““) -

Ckp=

Then

Since = € anng(M'), the product z” - v = 0 and hence
m
ﬂ( Z aezizyjﬁl) -v=0.
é:kg:O
This implies that
( Syt Y ozgyj‘“) v =0.
O:kp=0,5p>r £:kg=0,ip=r

Note that 3., agy’et! # 0. Multiplying both sides of the equation

=0,ig=7’
( E aezw—Tsz-H + E Ozgy”H) =0
L:ke=0,ig>r L:kp=0,ig=r

by y on the left yields

( > ae@;”“) v =0,
L:ky

=0,ig=r

contradicting that f(y)-v # 0, for all nonzero f(y) € Kly|. O

5.2.3 Classification of Prime Ideals

Proposition 5.2.12. Any nonzero prime ideal of R not containing y contains

(Azz — A + y) for some nonzero X € K.

Proof. Let P be a prime ideal of R not containing y. By Lemma 5.2.5, there
exists a A € K such that y> — Ay € P. If (\zz — A +y)(y) C P, then, because
P is prime and P does not contain y, the ideal (\zz — A + y) C P. Let

€ (Azz — A+ y){y). Then a is equal to a finite sum of elements of the form

ri(Aax = A+ y)(2'y’2*) (y)ra,
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for some elements m and ry € R and some nonnegative integers ¢, j, and k. If
k > 0, then
ri(Azz — X+ ) (2 2") (y)ra =0 € P.

If k=0 and i >0, then
r(Azz — A+ 1) (272" yre = ri(Azx — A+ y) (2 )y
=r (AP — A2y gty )y =0 € P
If k=0 and 7 =0, then
ri(Azz — A+ y) (2 " yra = ri(dza — A+ ) (7 )

= ri(Azzy’™ = M+ Py = (T e € (VP - ) C P
Hence, a C P. a

Thus a classification of the prime ideals of R/{A\zx — A —y) for all A € K

will complete the classification of the prime ideals of R.

Proposition 5.2.13. All nonzero ideals of R properly containing (Azx—A+y)

contain y.

Proof. Let P be a nonzero ideal of R/(Azx — A + y). Suppose a # 0 € P.

Then, as in the proof of Proposition 5.2.9, a can be written in the form

mi mo ms

; k ; k

a=> apuyr + > ap2ey+ ) agyzts
£1=0 £2=0 £3=0

m4 ms
+ E 018425124 + 5 afsmkes + )\1?/ + )‘27
04=0 £5=0

with £,,k, >0forall 1 <n <5, a, € Kforalll <n <5, and A\, Ay € K.
Case 1: Suppose A1 # 0 and Ay = 0. Then yay = Ay € P, using the fact
that \j92 = \iy in R/(Azz — A —y).
Case 2: Suppose A; = 0 and A; # 0. Then yay = Ay € P.
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Case 3: Suppose A; # 0 and Ay # 0. Let «y be strictly greater than the

highest exponent of z appearing in a. Then

my4 ms
za = g TR AN E xR 4 Ao,
£4=0 5=0

Therefore, - ~
za’ = 24 ag4zi‘4 + Zs ks + .
24=0 25=0
Thus, yzYaz"y = Ay € P.
Case 4: Suppose A\; =0 and Ay = 0.
Subcase a: Suppose 225: 0 o,z # 0. Let  be as in Case 2. Then

mq ms
Va = 5 g, VM + E g Y s
£4=0

£5=0

Let & be the minimum exponent of x appearing in any nonzero summand of

27a. Then
my ms
2L2Va = Z g, "m0 Z o xR0 e
K4:’y—ig4>6 £5=0

for some € € K. Finally, 2’z7ay = ey € P.
Subcase b: Suppose ZZ“:O oy, 2" # 0. Then we can proceed similarly
to Subcase a to get y € P.

Subcase c: Suppose
ms mq
E gzt = 0 = E O, 2t
{5=0 24=0

Subsubcase i: Suppose Y%, ar,z"2y # 0. Then

m2
ay = E e, 22y,
£5=0

Let § be the minimum exponent of z appearing in any nonzero summand of

ay. Then

ma

x‘say = E 22y + €y,
Z2:22>§
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for some € € K. Hence, yz’ay = ey € P.
Subsubcase ii: Suppose ) .2, agyx™s # 0. Proceed similarly to
Subsubcase i.

Subsubcase iii: Suppose

m2 ma3a
E a2ty =0= E Oég3y1'k£3.
i>=0 £3=0

Let § be the minimum exponent of z appearing in any nonzero summand of

a. Then
my m1
1’a = E ozglz“fl”‘sya:kfl + E gy
fltig1>6 eltielzé
Hence,

my
yra = E agly:ckel

Zl:igl =4
and we can then proceed as in Subsubcase ii to get y € P.

Therefore, any ideal of R/(Azz — X — y) contains y. O

Thus, the only nonzero prime ideals of R are those containing y and those
of the form (Azx — A+y) for A # 0 € K. Therefore, we may consider the clas-
sification of the prime ideals, primitive ideals, and irreducible representations

of K{x1,...,xn}/{zix; — Bij,i < j), where the §;; € K, complete.
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APPENDIX A

64 CASES

This appendix contains a complete list of the 64 cases that occur when
each o4 and §; in
K{x,y,z}/{zy — aryx — B1, 72 — aazz — P2, yz — 032y — fs)

is either a zero or nonzero element of the algebraically closed field K. Refer-
ences for previously studied and noetherian cases are given. For the remainder
of this appendix, variables stand for their images in the quotient algebras and
the o; and §; are assumed to be nonzero elements of K. The cases are divided

as follows.
e Cases 1 - 11: These cases are discussed in Chapters 4 and 5.

Cases 12 - 17: These cases are isomorphic to K.

Cases 18 - 26: These cases are isomorphic to K|z, y]/(yr — 1).

Cases 27 - 32: These cases are isomorphic to K{z,y}/(yx — 1).

Cases 33 - 41: These cases are isomorphic to quantized Weyl algebras.

Cases 42 - 49: These cases are noetherian Ore extensions of quantized

Weyl algebras.
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e Cases 50 - 55: The study of the prime ideal theory of these algebras
reduces to known cases because every prime ideal of these algebras con-

tains x or y.

e Cases 56 - 64: These cases are trivial.
Cases:

1. K{z,y,z}/(zy — B1,x2 — an2z,y2 — a32Y)
This algebra is discussed in Chapter 4.

2. K{z,y,2}/(xy — a1yz,z2 — a2z, yz — P3)

This algebra is similar to the above case (discussed in Chapter 4).

3. K{.’L’,y, Z}/<£L'y — YT, Tz — 5272/2 - OégZ:U)

This algebra is similar to the above two cases (discussed in Chapter 4).

4. K{z,y,z}/{zy, xz,yz)

This algebra is discussed in Chapter 5.

5. K{x,y,2}/{zy — B, z2,yz)

This algebra is discussed in Chapter 5.

6. K{.’L’, Y, Z}/<xy, Tz — ﬁ?a yZ)

This algebra is discussed in Chapter 5.

7. K{.’E,y, Z}/(IIJ:IJ,Z'Z, Yz — /B3>

This algebra is discussed in Chapter 5.

8. K{z,y,z}/{zy — Pr,xz — P2,y2)

This algebra is discussed in Chapter 5.

9. K{z,y,z}/(zy — b1, x2,y2 — P3)

This algebra is discussed in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10.

11.

12.

13.

14.

15.

16.

17.

65

K{LI?, Y, Z}/(.’]jy, rz — /827 Yz — /83>

This algebra is discussed in Chapter 5.

K{.’L‘,y,Z}/(I’y - Blawz - /82792 - /83>

This algebra is discussed in Chapter 5.

K{z,y,2}/(zy — B1, 22 — P2, yz — azzy — [Bs)

This algebra is isomorphic to K as follows. The equation yz = aszy+ 33
holds in this algebra. Multiplying through by z on the left yields zyz =
asxzy -+ Psx. This equation implies that £z = asBoy + Fsz. Multiplying
through by 2 on the left again yields 3,82 = a3B:061 + Bs2%. Hence, 22 =
(8182 — asf2f1)/Ps. Note that £ = 0 implies that 8, = 0, contradicting
the assumption that By # 0. Thus, z = ((8i182 — a3Be31)/0:)'/? is
nonzero and y = z = ((B182 — a35281)/Bs)"1/*. Hence, this algebra is

isomorphic to K.

K{z,y,2}/(zy — oayzx — b1, 22 — P, y2 — Bs)

This algebra is isomorphic to K similarly to the previous case.

K{z,y,2}/{xy — pr, 22 — cwzx — Ba, yz — azzy — [Ba)
This algebra is isomorphic to K and discussed further in Chapter 3.

K{z,y,2}/(zy — onyx — Br, 22 — Ba,yz — azzy — Bs)
This algebra is isomorphic to K similarly to the above case (discussed

in Chapter 3).

K{z,y,2}/(zy — cryz — B1, 22 — apzx — Pa, yz — )
This algebra is isomorphic to K similarly to the above two cases (dis-

cussed in Chapter 3).

K{z,y,2}/{zy — Pr, 22 — azzz — Ba,yz — Bs)
This algebra is isomorphic to K as follows. In this algebra, yz = [s.
Multiplying through by x on the left yields the equation xyz = 3z which
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implies that z = (3/0,z. Substituting Bs/F1x for z in 2z = ayzz + B,
yields B3/812% = apfB3/B12* + B2 This equation implies that G3/5:(1 —
ay)x? = . If g = 1 then (B = 0, contradicting that (3, is assumed to be
nonzero. Hence ay # 1 and = = [B2/81/(Ba(1 —a)]'/? is an element of K.
Thus, y = B1[6261/(Bs(1 — 02)] 7/ and z = Bs/61[Bafr /(Ba(1 — a2)]M2.
These equations imply that this algebra is isomorphic to K.

18. K{z,y,2}/{zy — b1, 22 — a2z, yz — P3)
This algebra is isomorphic to K[z, y]/(yz — 1) as follows. In this algebra,
yz = (3. Multiplying through by x on the left yields the equation zyz =
Bsz which implies that z = f3/F1z. Substituting B3/01z for z in yz = (G5
yields yz = ;. Hence this algebra is isomorphic to K|z, y]/{yx — 1).

19. K{xz,y,z}/{zy — B1,22 — B2, yz — 032y)
This algebra is isomorphic to K{z,y]/(yr — 1) similarly to the above

case.

20. K{l‘7 Y, Z}/(.’L’y — YT, TT — /82’ Yyz — ﬂ3>
This algebra is isomorphic to K[z, y|/(yx — 1) similarly to the above two

cases.

21. K{xz,y,z}/{xy — B1,2z — qazz,yz — aszy — Ps)

This algebra is isomorphic to K[z, y]/{yx— 1) as follows. In this algebra,
yz = azzy + P3. Multiplying through by z on the left yields zyz =
asxzy + F3x implying that 812 = asasfz+ Gsz. Hence 51(1 — azaq)z =
Baz. If az = a;', then 2 = 0 implying that §; = 0, which contradicts
the assumption that §; # 0. Hence a3 # a5 . Thus 22 = ay2? implying
that 2z = 0 or g = 1. If 2 = 0 then B3 = 0, which contradicts our
assumption that B3 is nonzero. Hence ag = 1 and z = (Gs/(F1(1 —
a3)))z. Substituting (8s/(61(1 — as)))z for z in yz = agzy + Ps yields
that yz = B;. This equation implies that this algebra is isomorphic to
Kz, y}/(yx —1).
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22. K{z,y,z}/(zy — 51,22 — aozx — [, yz — a32y)
This algebra is isomorphic to K[z,y]/(yx — 1) similarly to the above

case.

23. K{z,y,2}/{zy — aryz,xz — B2, yz — aszy — Bs)
This algebra is isomorphic to K|z, y]/(yx — 1) similarly to the above two

cases.

24. K{z,y,2}/(zy — anyz, t2 — apzx — B2, Y2 — Bs)
This algebra is isomorphic to K{z,y]/(yz — 1) similarly to the above

three cases.

25. K{x,y,z}/(zy — aayz — Br, 22 — [, yz — a3z2y)
This algebra is isomorphic to K|z, y]/(yz—1) similarly to the above four

cases.

26. K{z,y,2}/{xy — aryz — B1, 22 — apzz,yz — B3)
This algebra is isomorphic to K[z, y]/{yz — 1) similarly to the above five

cases.

27. K{xz,y,2}/(xy — onyz,xz — Ba,y2)
This algebra is isomorphic to K{z,y}/(yz—1) as follows. In this algebra,
xy = aqpyx. Multiplying through by 2z on the right yields zyz = ayyzz
which implies that 0 = ay8,y. Hence this algebra is isomorphic to

K{z,y}/{yx — 1) (see Theorem 2.2.14 and [11, section 3]).

28. K{z,y,2}/(zy — onyz, 2,92 — PBs)
This algebra is isomorphic to K{z,y}/{yx — 1) similarly to the above
case.

29. K{z,y,2}/(zy — B, x2,yz — aszy)

This algebra is isomorphic to K{z,y}/{yxz — 1) similarly to the above

two cases.
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30. K{z,y,2}/(zy, vz — B2, yz — cszy)
This algebra is isomorphic to K{z,y}/(yx — 1) similarly to the above

three cases.

31. K{z,y,z2}/(zy — b1, 22 — a2, y2)

This algebra is isomorphic to K{x,y}/(yz—1) as follows. In this algebra
zy = 1. Multiplying by z on the right yields zyz = ;2. Since yz =0
in this algebra, the equation ;2 = 0 also holds. Hence z = 0 and this
algebra is isomorphic to K{z,y}/{yx — 1).

32. K{z,y,2}/{zy,xz — anzx,yz — P3)
This algebra is isomorphic to K{z,y}/(yx — 1) similarly to the above

case.

33. K{z,y,z}/(zy — anyz — B, x2,y2)
This algebra is isomorphic to a quantized Weyl algebra as follows. In this
algebra, zy = ajyz + £;. Multiplying through by z on the right yields
the equation zyz = ayyxz + P12 which implies that ;2 = 0. Hence, this
algebra is isomorphic to a quantized Weyl algebra, which is discussed in
Chapter 2.

34. K{z,y,z}/{xy,xz — agzx — (o, yz)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above case (see Chapter 2).

35. K{xz,y,2}/(zy, vz, yz — aszy — Ps)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the
above two cases (see Chapter 2).

36. K{z,y,2}/(xy — aryz — Bh, 22 — qo2,y2)

This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above three cases.
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K{z,y,2}/{zy — anyz — b1, 22, yz — a32y)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above four cases.

K{z,y,z}/{zy — a1yz, 22 — g2z — B, y2)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above five cases.

K{z,y, 2} {zy — aryz, x2,yz — aszy — Bs)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above six cases.

K{z,y,z}/{zy, 2z — qozx — B2, yz — a3zy)

This algebra is isomorphic to a quantized Weyl algebra as follows. In
this algebra, yz = aszy. Multiplying through by z on the left yields
zyz = azxzy implying that 0 = ag(agzz + [2)y = aszazzy + asfy =
asfy. Hence this algebra is isomorphic to a quantized Weyl algebra,

which is discussed in Chapter 2.

K{z,y, 2}/ (vy, 22 — aaz@,yz — aszy — Bs)
This algebra is isomorphic to a quantized Weyl algebra, similarly to the

above case.

K{z,y,z}/(xy — cqyx — f1, 22 — cuxz — B2, Yz — azzy — B3)

This algebra is a noetherian Ore extension of a quantized Weyl algebra
(see [13]).

KA{z,y, z}/{xy — oqnyz,xz — apzx — Pa,yz — azzy — F3)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

(see [13]).

K{z,y,2}/{zy — aryz — Br, 22 — a2z, yz — a3zy — Ps)
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This algebra is a noetherian Ore extension of a quantized Weyl algebra
(see [13]).

K{z,y,z}/{xy — a1yz — B,z — oz — B2, yz — 032Y)

This algebra is a noetherian Ore extension of a quantized Weyl algebra
(see [13)).

K{z,y,z}/{zy — ayyz — p1, 22 — a2z, yz — 32y)

This algebra is a noetherian Ore extension of a quantized Weyl algebra,

and is discussed more in Chapter 3.

K{x,y, z}/{zy — a1yz, xz — o2z, yz — g2y — F3)
This algebra is a noetherian Ore extension of a quantized Weyl algebra

similar to the above case (see Chapter 3).

K{z,y,2}/{zy — aryz, 22 — agzx — o, yz — aszzy)

This algebra is a noetherian Ore extension of a quantized Weyl algebra

similar to the above two cases (see Chapter 3).

K{z,y,z}/(zy — aryz, £z — a2z, yz — a32y)

This algebra is multiparameter quantum three space (see [14]).

K{LE, Y, Z}/<£L‘y, Tz, Yz — (,Y32y>
The study of the prime ideal theory of this algebra reduces to known

cases and is discussed in Chapter 3.

K{z,y,z}/(xy, 2z — ag2z,y2)
The study of the prime ideal theory of this algebra reduces to known

cases similarly to the above case (discussed in Chapter 3).

K{xz,y,z}/{zy — oqyz,z2,y2)

The study of the prime ideal theory of this algebra reduces to known

cases similarly to the above two cases (discussed in Chapter 3).
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K{z,y,2}/{zy — c1yz, 32 — 0223, y2)

The study of the prime ideal theory of this algebra reduces to known

cases similarly to the above three cases (discussed in Chapter 3).

K{z,y,z}/{zy — onyz, x2,y2 — az2y)
The study of the prime ideal theory of this algebra reduces to known

cases similarly to the above four cases (discussed in Chapter 3).

K{z,y, 2}/ {xy, 22 — agzz,yz — azzy)
The study of the prime ideal theory of this algebra reduces to known

cases similarly to the above five cases (discussed in Chapter 3).

K{z,y,z}/({zy — B, 22,y2 — aszy — Bs)

This algebra is trivial as follows. In this algebra, yz = aszy 4+ 5. Mul-
tiplying through by x on the left yields zyz = aszzy + f3x implying
that 31z = Bsz. This equation implies that 3;/832? = 0 and hence that
2z =0. If 2 = 0 then (3 = 0, contradicting the assumption that g5 # 0.

K{x)y’ Z}/(.’Ey — YT — ﬂlax'z?y'z - /83>

This algebra is trivial similarly to the above case.

K{z,y,z}/{wy, vz — P2, yz — azzy — Ps)

This algebra is trivial similarly to the above two cases.

K{z,y, z}/(xy — aqyz — B1, 22 — Ba, y2)

This algebra is trivial similarly to the above three cases.

Kz, y, 2}/ {zy, 22 — agzx — Bo, y2 — 32y — [a)

This algebra is trivial similarly to the above four cases.

K{z,y,z}/{xy — aryz — B, x2,y2 — agzy — PBs)

This algebra is trivial similarly to the above five cases.
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62. K{z,y,2}/(zy — cnyz — P, 2z — awza — Pa, y2)

This algebra is trivial similarly to the above six cases.

63. K{z,y,z2}/(xy — b1, 72 — agzz — Pa, y2)
This algebra is trivial as follows. The equation zy = f; holds in this
algebra. Multiplying through by z on the right yields zyz = (2. Since
yz = 0 holds in this algebra, z = 0, implying that 2 = 0 contradicting
the assumption that Gs # 0.

64. K{z,y, z}/{zy, xz — agzx — B2, yz — F3)

This algebra is trivial similarly to the above case.
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