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ABSTRACT

Polynomial detection of matrix subalgebras

Alberto Daniel Birmajer 

DOCTOR OF PHILOSOPHY

Temple University, May, 2003

Professor Edward Letzter, Chair

In this dissertation we present some results on polynomial identities, along 

with their applications to algorithmic representation theory.

The Amitsur-Levitski theorem asserts that Mn{F) satisfies a polynomial 

identity of degree 2n. (Here, F  is a field and Mn{F) is the algebra o f n x n  

matrices over F). It is easy to give examples of subalgebras of Mn(F) that 

do satisfy an identity of lower degree and subalgebras of Mn(F) that satisfy 

no polynomial identity of degree < 2n — 1. In this dissertation we give a 

full classification of the subalgebras o f n x n  matrices that satisfy no nonzero 

polynomial of degree less that 2n.

Second, the double Capelli polynomial of total degree 21 is

^   ̂ {  ( s g  0 T ) Y r ( i )  Y (7(2 )F r(2) ' ' ■ I T  ^  <̂ 4 }  •

Formanek pointed out that the double Capelli polynomial of total degree An—2
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is not a polynomial identity for Mn(F). Later, Giambruno-Sehgal and Chang 

proved that the double Capelli polynomial of total degree 4n is a polynomial 

identity for Mn(F). We show that the double Capelli polynomial of total de

gree 4n — 2 is a polynomial identity for any proper F-subalgebra of Mn(F). 

Subsequently, we construct polynomial tests for nonsplit non-self extensions 

of full matrix algebras. Then we use these results to construct effective al

gorithmic procedures in representation theory of finitely presented algebras, 

expanding on ideas found in the work by Letzter [LeOl] and [Le02],

Finally, the algorithmic complexity of the proposed procedures leads to the 

so-called Paz conjecture. In the last chapter we study a specific example along 

these lines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v i

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Ed

ward Letzter, for his constant support and guidance throughout the prepa

ration of this thesis. I would also like to thank him for recommending this 

problem to me, and for being so generous with his time, insight, experience, 

and valuable suggestions.

Professor Boris Datskovsky has helped me in many ways. I have benefitted 

greatly from his expertise and encouragement during my studies at Temple 

University.

I am particularly indebted to Professor Martin Lorenz for all the algebra 

that I have learned from his insightful and profound lectures. He has been a 

source of good advice and mathematics.

I want to thank Professor Ching-Li Chai, from the University of Pennsyl

vania, for his time and courtesy.

At this time I would also like to acknowledge all of the other members of 

the Temple faculty who have made my time here productive and enjoyable. I 

am particularly grateful to Professor Weih Shih Yang, for helping me develop 

my interest in probability theory. I would also like to thank Professors Eric 

Grinberg and Jack Schiller who had a great impact on my early studies and 

first years of graduate work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In memory of my father, Boris Birmajer. 

He gave me courage and conviction.

To my mother, Ana Perla Trau de Birmajer. 

She gave life and gives me passion.

To my wife, Susana Hild de Birmajer. 

She gives me love and fulfillment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CO NTENTS

ABSTRACT iv

ACKNOWLEDGEMENTS vi

DEDICATION vii

1 INTRODUCTION 1

2 On subalgebras o f n x n  matrices not satisfying identities of 
degree 2n — 2. 9
2.1 Introduction.................................................................................... 10
2.2 Building B locks.............................................................................. 12

2.2.1   15
2.3 Main Theorem .............................................................................  22

2 .3.1   22

3 Polynomial detection of matrix subalgebras. 26
3.1 Introduction.................................................................................... 27
3.2 A polynomial test for the full matrix a lgeb ra ............................  32

3.2.1   32
3.3 A Polynomial test for E ^ m) ........................................................  38

4 Effective detection of n-dimensional representations. 41
4.1 Introduction.................................................................................... 42
4.2 Preliminaries ................................................................................. 42

4.2.1 N otation .............................................................................  43
4.3 Effective detection .......................................................................  44

4.3.1 Effective detection of full block upper triangular repre
sentations   44

4.3.2 Effective detection of irreducible representations . . . .  45
4.3.3 Effective detection of full upper triangular representations 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IX

4.3.4 Nonsplit (£, m)-extension of inequivalent irreducible rep
resentations te s t ..........................................   47

4.3.5 An exam ple .....................    49

5 The length of the Super-Diagonal and Sub-Diagonal matrices. 52
5.1 P re lim inaries.........................      53

REFERENCES 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

C H A PTER  1 

IN TRO D U C TIO N

This dissertation is concerned with the study of polynomial identity alge

bras (Pl-algebras) and algorithmic methods applicable to representation the

ory. The theory of multilinear polynomial identities has played a prominent 

role throughout modern noncommutative algebra, beginning with a 1948 ar

ticle of Kaplansky [Ka48] and the Amitsur-Levitski theorem in 1950 (see 

[AL50]).

Let F  be the underlying field of an algebra A and X i , . . .  , X t a set of non

commuting indeterminates. Consider a polynomial f ( X j , . . .  X t) over F, that 

is, an element of the free algebra F { X i , . . .  X t} generated by the indetermi

nates Xi over the field F. If this polynomial is not identically zero and if the 

equation

f ( r i , . . . , r t) = 0 (1.1)
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is satisfied by all choices of elements r i , . . . r t in A, then we say that the 

polynomial identity (1.1) holds in A. Such identities are satisfied, for example, 

by every commutative algebra, every algebraic algebra of bounded degree, and 

every finite dimensional algebra. The reader is referred to [Fo91] and [R0 8 O] 

for a comprehensive treatment of the subject.

Kaplansky (see [Ka48]) showed that if A satisfies a polynomial identity 

of degree d, then it satisfies a multilinear polynomial of degree d. This is 

true in any characteristic and reduces the study of polynomial identities to 

multilinear ones. Two of the most famous multilinear polynomials are the 

standard polynomials and the Capelli polynomials.

The standard polynomial of degree t is

st(X i , . ..  , X t) =  • • - X ^ t ),
aeSt

where St is the symmetric group on { l , . . . , t }  and (sger) is the sign of the 

permutation a € St- The standard polynomial st is homogeneous of degree t, 

multilinear and alternating.

Let Mn(F) denote the algebra o f n x n  matrices over a field F. The 

Amitsur-Levitski theorem asserts that Mn(F) satisfies any standard polyno

mial of degree 2n or higher. A short and elegant proof of this theorem was 

obtained by Rosset, using an exterior algebra over F  in an ingenious way 

[Ro76]. The standard polynomial S2n is a minimal identity for the n x n ma

trices, in the sense that Mn(F) satisfies no polynomial identity of degree less
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than 2n. More generally, if A  is a subalgebra of Mn(F) isomorphic to a full 

block upper triangular matrix algebra,

/ \

\

s

0

*

then A satisfies no polynomial identity of degree less than 2n. To prove this 

assertion, note that every full block upper triangular matrix algebra contains 

the “staircase sequence” of 2n — 1 matrix units

fill J Cl2, 2̂2) 2̂3) • • • > e(n-l)(n-l)> e(„-l)„, enn,

which gives a nonzero product, e\n, only when multiplied in the given order. It 

follows that any full block upper triangular matrix algebra of Mn(F) satisfies 

no multilinear polynomial of degree < 2n — 1.

When studying the class of finite dimensional algebras over a field, one 

encounters the following question: Suppose A is a subalgebra of Mn(F). Ob

viously A satisfies the standard identity of degree 2n, however, s2n does not 

need to be a minimal identity for A. For instance, the algebra of diagonal 

matrices is commutative, thus, satisfies the identity X \ X 2 — X 2X\.  Therefore, 

it is natural to ask whether one can give a full characterization of the subalge

bras o f n x n  matrices not satisfying an identity of degree 2n — 1. In Chapter
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4

2 we give a complete solution to this question by proving a theorem that can 

be viewed as a converse of the Amitsur-Levitski identity:

T heorem  1.0.1 If  a matrix subalgebra of Mn(F) does not satisfy the standard 

polynomial s2n_2, then it is isomorphic, as F-algebra, to a full block upper 

triangular matrix algebra.

In Chapter 3 we discuss polynomial tests (p-tests) for algebras. This definition 

is our own, but the idea of a “polynomial test” has already been noted, for 

example, in Rowen [Ro80]. A polynomial f ( X i , . . . ,  X t) £ F { X }  is a polyno

mial test for an F-algebra R  if it is not an identity for R, but is an identity 

for every proper F-subalgebra of R.

A consequence of Theorem 1.0.1 is that the standard polynomial s2n-2  is 

a polynomial test for the algebra Un(F) of upper triangular matrices, for each 

n, for all fields F.

The Capelli polynomials are defined by

C2 t~i (Xi , . . . ,  Xt, Yi,. . . ,  Yt-i) = (sgcr)X<T(i)YiXa.(2)Y2 • • •
a-eSt

and

c2t (X1, . . . , X t,Y1, . . . ,Yi) = c 2t- 1 (X1, . . . , X i,Y1, . . . ,Y t_1)Yt.

The Capelli polynomials were introduced by Razmylov in [Ra74] and have 

important applications in Pl-theory, in particular, the development of central

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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polynomials for Mn(F) by Razmylov [Ra74]. A polynomial of positive degree 

/  6  F{AT}, is central for a ring R  if it is not an identity for R, and if the values 

of f (R)  lie in the center of R. The original central polynomials for Mn(F) were 

discovered by Formanek in 1972 [Fo72]. Central polynomials provide a link 

between Pl-theory and commutative ring theory, and led to a revolution in 

the subject through the application of classical methods of commutative ring 

theory.

It is well known that c2n2 is a polynomial test for Mn(F) (cf. [Fo91], Propo

sition 29). Furthermore, central polynomials for Mn(F) are also polynomial 

tests for Mn(F) (cf. §§3.2.1). Polynomial tests may play a role in the algo

rithmic representation theory of finitely presented algebras over a computable 

field. Studies, from an algorithmic perspective, on matrix representations of 

finitely presented algebras appear in [LeOl] and [Le02]. In this setting, the 

question of efficiency and algorithmic complexity is crucial, and the question 

naturally arises of looking for a polynomial test of minimal degree for Mn(F). 

To lower the degree, we need to go from the Capelli polynomial to the double 

Capelli polynomial.

The double Capelli polynomials are defined by

= ^  ] ( s g C T T ) A < t ( 2)Ft(2) ‘ ' ' Ao-(t— 1)^<r(t)i
cZStiTGSt- 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

and

M * i Xu Yu . . . ,Yt)

=  (sgffr)x„(,)yT,1)x , (j )yT(2) • ■ ■
<r,reSt

Formanek pointed out that h4n_2 is not a polynomial identity for Mn(F) and 

asked for the least integer m  such that hm is a polynomial identity for Mn(F). 

Chang [CH8 8 ] proved that both double Capelli polynomials /i2(—1 and h2t are 

consequences of the standard polynomial st, implying that h4n_i and h4n are 

polynomial identities for Mn(F). That h4n is a polynomial identity for Mn(F) 

was also proved by Giambruno-Sehgal [GS89] using a variation of Rosset’s 

method.

The second basic result presented in this dissertation is the following.

T heorem  1.0.2 h4„_2 is an identity for any proper subalgebra of Mn(F).

It follows from this theorem that the double Capelli polynomial of total degree 

4n -  2 is a polynomial test for Mn(F). Following this Theorem, P-tests for 

nonsplit non-self extensions of full matrix algebras are explicitely constructed 

in § 3.3.

Chapter 4 contains a detailed discussion of the application of the results ob

tained in Chapter 2 and Chapter 3 to algorithmic representation theory. More 

precisely, algorithmic procedures are presented to determine the existence or 

not of certain types of finite dimensional representations of a finitely presented
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(but not necessarily finitely dimensional) associative algebra over a computable 

field. If R  =  F { X  i , . . . ,  X a} / ( f i , . . . , f t) is a finitely presented algebra over a 

filed F, then it is easy to see that the n-dimensional representations of R 

amount to solutions to a system of tv? commutative polynomial equations in 

sn2 variables. Moreover, n-dimensional irreducible representations and full 

block upper triangular representations of R can also be explicitely parame

terized by finite systems of commutative polynomial equations using P-tests. 

Consequently, the techniques of computational algebraic geometry (and in 

particular, Groebner basis methods) can be used to study the n-dimensional 

representation theory of R. When the desired n-dimensional representation 

exists, it is possible (in principle) to produce explicit constructions. Examples 

of these algorithmic procedures are implemented in §§4.3.5, using the computer 

algebra package Macaulay2.

Considerations of the complexity of these algorithms leads to another topic, 

presented in Chapter 5. Let F  be a field, and let A be a finite-dimensional F- 

algebra. Set d =  dimpA. Since A is finite-dimensional over F, it is obviously 

finitely generated. Let S  be a finite generating set for A as an F-algebra. We 

shall write A =  F{S}  to denote this. Writing S  =  {ai , . . . ,  a*} we shall adopt 

the convention that 1 is a word in S  of length zero, and write S l for the set 

of all words in S  of length < i. We have the obvious containment 5* C for 

i < j ,  also S*Sj =  S t+j. Writing F S l for the F-linear span of S \  we have the

permission of the copyright owner. Further reproduction prohibited without permission.



8

following chain of containments (noting that S° = 1, so FS° = F ):

F = FS° C  F S l C  • • • C  F Si C FS i+1 C  • • • C  F {S } =  A. (1.2)

Since >1 is assumed finite-dimensional over F, there is an integer k such that

F S k = F S k+l = F S k+2 =  • • • =  F{S}  = A. (1.3)

We define the length of the generating set, written C(S), to be the smallest k 

for which FSk =  A, and define i  = maxs^(5'), where the maximum is taken 

over all finite generating sets, to be the length of A. For the algebra o f n x n  

matrices over F, Pappacena ([Pa97]) has proved that i  is bounded above by 

a function in 0 (n 3/2) and Paz ([Paz84]) has conjectured that I < 2n — 2.

In our last result in this dissertation, it is demonstrated that the length of 

the set

S  = {SupDiagn, SubDiagn}

is n (it is easy to verify that S  generate Mn(F) as a F-algebra). I hope that 

the ideas presented in the proof of this result serve to continue to study other 

examples along these lines, gathering data on this difficult problem.

For the convenience of the reader, each chapter is self contained and starts 

with background material and preliminary results needed for the statements 

and proofs developed therein.
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C H A PTER  2 

On subalgebras o f n x n  matrices 

not satisfying identities of 

degree 2n  — 2.

The Amitsur-Levitski theorem asserts that Mn(F) satisfies a polynomial 

identity of degree 2 n. (Here, F  is a field and Mn(F) is the algebra o f n x n  

matrices over F). It is easy to give examples of subalgebras of Mn(F) that 

do satisfy an identity of lower degree and subalgebras of Mn(F) that satisfy 

no polynomial identity of degree < 2n — 1. In this chapter we give a full 

classification of the subalgebras of n x n matrices that satisfy no nonzero 

polynomial of degree less that 2n.
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2.1 In troduction

Let F  be a field, Mn(F) the algebra o f n x n  matrices over F, and F  {X} = 

F { X i , X 2, .. .  } the free associative algebra over F  in countably many vari

ables.

A nonzero polynomial f ( X i , . . .  X m) £ F  {X} is a polynomial identity for 

an F-algebra R  (or, R satisfies f )  if / ( r 3, . . . ,  rm) =  0 for all r i}. . . ,  rm € R.

It is well known that if R  satisfies a polynomial of degree d, then it satisfies 

a multilinear polynomial of degree d. The study of identities for R  therefore 

reduces to the multilinear case.

The standard polynomial of degree t is

St (Xj, . . . ,  X t ) ^   ̂(sgo’)X0- î)Xff(2) • • • Xc{t) i

where St is the symmetric group on {1, . . . ,  t} and (sgcr) is the sign of the per

mutation a £ S t. The standard polynomial st is homogeneous of degree t, mul

tilinear and alternating. If t is odd then st(l, X 2, . . . ,  Xt) =  s t_i(X2, . . . ,  Xt). 

Thus S2t is an identity of R  if and only if S2t+i is an identity of R.

The Amitsur-Levitski theorem asserts that Mn(F) satisfies any standard 

polynomial of degree 2n or higher. Moreover, if Mn(F) satisfies a polynomial 

of degree 2n, then it is a scalar multiple of s2n (cf- [AL50]).

The standard polynomial S2n is a minimal identity in the sense that Mn(F) 

satisfies no polynomial identity of degree less than 2n. More generally, if A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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is a subalgebra of Mn(F) isomorphic to a full block upper triangular matrix 

algebra,
/
0

\

\ 0

*

0
then A satisfies no polynomial identity of degree less than 2n. To prove this 

assertion, note that every full block upper triangular matrix algebra contains 

the “staircase sequence” en, e12, e22, e23, • • •, e(n_i)(n_i), e(n_i)n, enn, and

S2n-1 (ell> e12i ^22) e23, . . . , e(n_i)(n_i), l)n, ^nn) =  6 In, (2 .1)

where the are the standard matrix units.

The aim of this chapter is to present and prove a “converse” of the Amitsur- 

Levitski theorem:

Theorem : I f  a matrix subalgebra of Mn(F) does not satisfy a multilinear 

polynomial of degree 2n — 2, then it is isomorphic, as F-algebra, to a full block 

upper triangular matrix algebra.

In §2.2 we provide the building blocks for the main theorem of this chapter 

and its proof. This proof and some of its consequences are presented in §2.3.
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2.2 B uild ing Blocks

Lem m a 2.2.1 Let A be a simple F-subalgebra of Mn(F). Then either A = 

Mn{F) or A satisfies the identity S2n- 2(A) =  0.

Proof. By assumption, A is a a finite dimensional central simple algebra over 

its center k. Let K  denote the algebraic closure of k] then A®kK  is a simple K- 

algebra in a natural way (cf. [Ro80], §1.8), with dim*- (A ®k K) = dimfc(A). 

Also, A ® kK  — Mt(K) for some t < n. Suppose that A is a proper subalgebra 

of Mn(F). It follows that t < n. Hence, by the Amitsur-Levitski theorem, 

A ®k K  satisfies S2n-25 and the result follows since A is embedded as a k 

algebra in A ®k K. □

Let I, m  be positive integers such that i  + m  =  n and set

Me(F) Mexm(F)
E(e,m)(F) =

0 Mm(F)

an F-subalgebra of Mn(F).

(i) Associated to E ^ m)(F) are canonical F-algebra homomorphisms 

7T£: 2fy,m)(F) Mt(F) and 7rm: E ^ m){F) -> Mm(F). 

Further identify M^{F) and Mm(F) with

Me(F) 0 0 0

0 0 o Mm(F)

respectively.
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(ii) Associated to a subalgebra A of E ^ m)(F) are homomorphic image sub

algebras A{ and Am in M{(F) and Mm{F) respectively.

(iii) Set

0
T{e,m)(F) = 

the Jacobson radical of E(t,m)(F).

0 0

Lem m a 2 .2 .2  Let A be a subalgebra of E^,m)(F) such that At satisfies sq for 

some q < 2£ and Am satisfies sr for some r < 2m. Then A satisfies sq+r.

Proof. Let t =  q+r. As an F-vector space, E^,m){F) =  Mt{F)®T^m){F)@ 

Mm(F). Thus each matrix x  in A can be written as x  = a + b + c, with a E At, 

b E T(e,m) and c € Am. Using linearity, we expand completely st(xi, . . . , x t) 

and further use the following rules to simplify some of the terms:

1. T(fim)(F) is a nilpotent ideal of E(t<m)(F), with T ^ m^(F) =  0, and so 

each term in the expansion containing more than one entry in T(t,m)(F) 

equals 0.

2. M t ( F ) M m(F) =  M m( F ) M e( F ) =  0.

3. M m(F)T(e,m)(F) =  T[e,m)( F ) M e(F)  =  0 .

We obtain

t+1

1> • • • i ^ n )  =  ^ ] r ( s g£7)a a ( l )  • • • n<7(t—l)&<r(t)Ccr(t+l) • • • f'tr(f)* ( 2 . 2 )

t=0 cgSt
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Fixing i > q, and given r ,a  G £f, we say that r  is i-equivalent to a, if r  

restricted to the final interval [i,t] equals the restriction of a to the same 

domain. In symbols,

r  a =  oj[ift].

For each i > q, the relation ~ t- yields a partition of St into disjoint subsets 

Pf, k =  1, . . . ,  (TTijT- Then, we have

^   ̂(sgtrjflcfji) . . . Q-cr(i — l)ba(i)Ca î+\) ■ ■ • dcr(i) 
c€St

= ^  ^  ] (sg<7')G(r(]) . . . 0<7(i-l)̂ o-(i)C(7(i+l) • • • C<7(i)
k o£P?

= ^  ']l(sScrk)si-l (Q«7fc(l)) • • • ) °CTfc(i—l))̂ crfc(i)C(7/t(«+l) • • 1 c<Tk{t)i
k

where ak is a representative of the class Pk. The last equality follows from 

the fact that for any a G Pk, a = r  o <jjt for some r  G Si- 1 C 5t, and 

(sgcx) =  (sgr)(sg<7fc). By assumption, At satisfies s9, and since i — 1 > q we 

obtain

^  ] (sgG’j&o’tl) . . . Q-o{i-\)b<T(i)C<j(i+\) • • • C<r(t) 
creSt

This shows that 

t+ 1
^   ̂ y   ̂Sg(<r) Qit(1) • • • ®cr(t—l)̂ <T(i)Qr(i+l) • • • dr(<) 0- (^-3)

i=<7+l cr̂ t̂

For i < q we have that t — i > r. Applying a similar argument to the above,
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and using the fact that Am satisfies sr, we see that also

9

E E ( s g * ) °  <7(1) . . .  a<r(i—i)̂ <r(i)C<r(t+i).. .  c<7({) 0 .
i=0 <re5t

(2.4)

Together, Equations (2.3) and (2.4) ensure that st (xi , . . . ,  xn) = 0, given Equa

tion (2.2). □

2 .2.1

We now consider the case when A  contains a “repetition”. We will need

some more notation.

(i) Let Mi , . . .  Mt be matrices in A, with

Mk =

ak h  ck 

0 ek dk , ak € M^(F),efc E Mm(F),bk E MfXm(F),d/: E Mmxe(F).

0 0 ak

Given 1 < i < j  < t and cr E St, set

'ffl'tlh j\ = (sga) flff(l) • • • 0<T(i-l)5cr(i)Ccr(i+i) . . . ecr(j-i)dl7(j')Cla-(j+i') . . . Oa(i),

and denote by W  the set of all matrix products

{mf [i, j] : a E St and 1 < i < j  < t}.

(ii) The projection ur returns the I  x I upper right block of a matrix in A:

a b c

ur 0 e d

0 0 a
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(iii) Given n x n matrices M i , . . . ,  Mt, we say that a matrix product 

Mi • • • Mt formally contains the factor A\ • • ■ Aa if A\ = Mt, Ai — Mt+i, ■.., As ■ 

Me+s-i, for some 1 < I < t. This notation is to distinguish from the case when 

CAj • • • A3D = Mi • • • Mt as n x n matrices, for some matrices C and D. Fur

ther, if I = 1, we say that Mi • • • Mf formally contains A\ • • • As as a left factor.

This is a good place to record a Lemma extracted from [AL50], which will 

be used later.

Lem m a 2.2.3 [AL50, Lemma 1, 450-451] I f  for an odd positive integer r we 

put Y  = X,+i • • • X i+r, and if s' denotes the sum of all terms of sm(X ) con

taining the common factor Y, then

s — sm_r+i (Xi , . . . ,  X{, Y, Xi+r+i, • •., Am).

Lem m a 2.2.4 Set t = 2(£ + m), and let M i , . . .  ,M t be matrices in A such 

that for all 1 < k < t ,

M k =

ak bk 0

0 ek dk

0 0 ak

, for ak e Me(F),ek E Mm{F),bk E Mlxm{F),dk E Mmxt{F).

Then ur [st(Mi, . . . ,  Mt)\ = 0.

Proof. First we observe that

ur[M\ • • • Mt) — ^  ] ^ (i) • • • o,T(j_i)bCr(t)Ctr(j+i). . .  e(ry —i^dlj^j^ac^j^.i). . .  ac(i),
i< i< j< t
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which implies that

ur[st(M1, . . . , M t)] = '^2 ^T, (2-5)
<r€5 t l< i< j< t

To prove that ur [st(Mi , . . . ,  Mt)] =  0, we split the right hand side into two 

summands:

ur[st{Mu . . . , M t)\ =

Y  Y  + Y  ™z[ij] (2 .6 )
o e S i l < i < j < t  ( r e S t l< i< j< t

j - i —l> 2 m  j —i< 2m

Our goal is to show that each summand in (2.6) is zero. To handle the first 

summand we introduce the following new equivalence relation on St. Given 

fixed 1 < i < j  < t ,  such that j  -  i -  1 > 2m, and given t ,o 6 St, say that r  

is [i,j]-equivalent to a if r  restricted to the initial and final intervals [l,i] and 

[j, t] equals the restriction of a to the same domain. In symbols,

r  a  <=> r|[M] =  cr|{lii] and r |M  = a\UA

For each pair i, j ,  such that 1 < i < j  < t and j  — i — 1 > 2m, the relation ~[»j] 

yields a partition of St into disjoint subsets P ^ ,  k =  1, . . . ,  jjrTTiji- Then, 

we have

Bs = {Dn~s, UDn- s+1,D n~s+lU, U2Dn~s+2, Dn~s+lU2, ... 

. . . , U ^ D n- S- ^ , D n- ^ U S- ^ }
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J2 J2 mfM= Y1 J2 X) <m =
(7G5 ( l< i< j < t  l< K ; '< t  fc CT-e-Pĵ  j]

j - i - l > 2m  j - i - \ > 2m

^  ^   ̂ ^  ] (sgo-) fl(T(l) ' ■ ' a <r(i-l)fr<7(t)e £r(i+l) ' * '  e c (J - l )d 'c r ( j )a <7(j+l) ' ' ' a <r(t)

k  < r € P^ .  j

j —i —l > 2m

^  ^ ^ ( s g C f c )  aCTfc(l) • • • a<rfc(»-l)̂ <Tjb(i) s  <̂Tfct7)a<rt(i+l) ' ' ' a crk (t)i  

1 < i< j< l k 

j —i —l> 2m

where 5 =  5t_J+i(e0.fc(l+1) ,. . . ,  eak(j-i)) and ok is a representative of the class 

Pfcjy Since j  — i — 1 > 2m,

j+i(c<j-*(i+i)> • • • i ĉrk( j—1)) 0 for all k,

hence

2̂ X = °-
<7 est 1 <i<j<t

j —i —\ > 2m

This takes care of the first term in (2.6). We now turn to the second summand. 

For a given 9 , with 2 < 9 < £, denote by Rq the set of all 9-tuples r = 

( r i , . . . , r 9) of different elements from {1, . . . ,£} and by T(ru...,rq) the set of 

matrix products w formally containing the common factor 6r,er2 ■ • • erq_xdTq. 

Considering all possible q and 9-tuples, the sets T(rii...irij) form a partition of
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W.  We are interested in the case when q < 2m + 1. Observe that

2m + l

<r6St l< i< j< t  <7=2 r e f t ,  uieT( r i ......r<j)

Fix 9 odd, a 9-tuple (r i , . . . ,  rg), and the corresponding set of matrix products

containing the common factor y = bTleT2 • ■ ■ eTq_1 dTq. Each matrix product 

w € T(rii...)r ) corresponds uniquely to a permutation a £ St and a pair (i, j),  

such that the 9-tuple ( n , . . .  , r9) is the image under a of (i , . . . ,  j). Explicitly, 

the correspondence is w = mf[i,j]. We can now apply Lemma 2.2.3 and 

the alternating property of the standard polynomials. If <x0 G St is a fixed 

permutation such that ct0 : i —> rt, for 1 < i < q, we have

u,e 7 (r1.....r ,)

where y = brier2 • • • erq_xdrq. Since t — 9 + 1 > 21, and since all the arguments 

of st _g+i in the last equation are i  x t  matrices, it follows that

Suppose now that 9 is even, so 9 < 2m, and fix an arbitrary 9-tuple r  = 

(ri , . . . ,  rq). We will split further the sets Tr. First consider all w e T r formally

Then, ( w is the sum of all matrix products formally

w = 0, when 9 is odd and (r1?. . . ,  rq) is a fixed 9-tuple. (2.7)

Therefore
2m + l

w  =  0.
9 = 2   r„)
q odd
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containing in common the left factor y =  brieT2 • ■ • er<J_,drq, and call this subset 

Lt . Then, for each r0 £  {r1, . . . , r <J} consider the (q +  l)-tuple (r0,r) and 

the subset G(ro>r) of w € Tr formally containing in common the factor y — 

a,To bri er2 • • • eTq_xdTq. The sum of all matrix products in the set Tr can be split 

as

Y,w=12w + S  w-
uieTr w eLr rn-.rn^T\,...,rq vie  <?(r0,r)

For the terms in Lr we have

'y  ̂ W = (sgtTo) y Si—q . . . , Q<r0(t)) ) (2 -8 )
," e L ( n  r ,)

where y =  brier2 ■ ■ ■ eTq_1drq, and where a0 6 St is a fixed permutation such 

that ao : i —» r*, for 1 < i < q.

Since t — q > 2£, we obtain

Y , •» =  0. (2.9)
VieLr

Finally, for a suitable fixed r0, the sequence (r0,r) has odd length, so we 

can argue as in (2.7) to obtain

y  ]  w  —  ( s §  ° o )  s t - q + 1 (j/> G(7o(g+2 )i • • • ) °<7o(t)) =  0 )

U'GG(r0,>-)

where y =  arobrier2 • • • erq_ldTq, and where cr0 6  St is a fixed permutation such 

that

1 -> r0>
0 o =

i ->• r,_i, for 2 < i < q +  1.

This finishes the proof of Lemma 2.2.4. □
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Proposition 2.2.5 Let 
r r

a b c

A =  0 e d

0 0 a 

Then, A satisfies S2(M-m)-

Proof. For any t and matrices Mk £ A, k =  1. . .  t, set 

bk Ck

M k=  0 ek dk , ak £  Me(F) , ek  £  M m(F) ,bk £  Mexm( F) ,dk  £  M mXe(F).

0 0 ak

By direct calculations, we obtain

ur[st(Mi , . . . ,  Mt)\ =
t

—  ^   ̂S t  ( a i , . . . , f l i—1, "f" E E
i = l  a e S t  1 < i< j< t

Now set t = 2(£ + m). It follows from (2.5) that

^ 2  ' H  =  u r  [s t ( M i .  • • • i K ) \  =  °>
cr(-St l< i< j< t

where M'k is the matrix in A obtained by replacing the upper right corner c* 

of Mk by 0 £ Me(F). Suitable applications of the Amitsur-Levitski identity 

give us

ur[st(Mu . . . , M t)\ = 0,

st

/
ai bi at bt

\

V0 ei
) * * * )

0 et
/

=  0 ,
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/
e\ d\ e< dt \

V
0 ai

? • • * 7
0 at

/
Combining the three equations, it follows that st (M1?. . . ,  Mt) =  0. □

2.3 Main Theorem

In this section we prove that if a matrix subalgebra of Mn(F) does not 

satisfy the standard polynomial s2n- 2 , then it is isomorphic as F-algebra to a 

full block upper triangular matrix algebra.

2.3.1

We first introduce our notation and review some necessary background (cf. 

[Le02]).

(i) Let t be a positive integer, let fy, C2, • • • > U be positive integers summing 

up to n, and set

 -

Mti(F) Mtlxti(F) 

0 Mh {F)

MelXtt(F) 

MiiXet-i(F) MeiXtt(F)

Mtt^i(F) Mlt_ ^ t{F) 

0 Mti{F)

a full block upper triangular matrix subalgebra of Mn(F).
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(ii) Recall that every F-algebra automorphism r  of Mn(F) is inner (i.e., 

there exists an invertible Q in M„(F) such that r(a) =  QaQ-1 for all a e 

Mn(F)). We will say that two F-subalgebras A, A' of Mn(F) are equivalent 

provided there exists an automorphism r  of Mn(F) such that t (A) = A1.

(iii) Associated to E(£u£l tt){E) are canonical F-algebra homomorphisms

*ij : E(tuh,...%it){F) -> E(tiA+l {j){F), for 1 < i < j  < t.

When i =  j  we write tt* for 71̂ . For a subalgebra A of E ^ue2,...,et){F), we have 

the homomorphic images:

Ajj := 7Tjj (A),

embedded in

(iv) We will say that a subalgebra A of E(tui2 et)(F) is an (£1, ■ • •, £»)-

extension of simple blocks if the restrictions 7Tj : A —► M£i(F), for 1 < i < t, 

are all irreducible representations (when F  is algebraically closed, of course, 

the representation 7T* is irreducible if and only if ^(A) = M£i). Note that 

every F-subalgebra A of Mn(F) is equivalent to an (£1, £2, • • •, £j)-extension of 

simple blocks A for some suitable (£i,£2i ■ • •, £()•

(v) Further, we will say that A contains a repetition when tt* : A —¥ M£i 

and 7Tj : A —> M£j are equivalent representations, for some 1 < i < j  < t 

(and so li = tj). Also, A is uniserial when Aj(i+i) is not semisimple, for all 

! < » < ( £  — !)•
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Lem m a 2.3.1 If  an extension of simple blocks A contains a repetition, then 

the standard identity s2„_2 = 0 holds for A.

Proof. Assume 7T; : A —>■ M(x and nj : A -* are equivalent representa

tions for some 1 < i < j  < t. Then we can choose an F-algebra automorphism 

r  of Mn(F) such that 7r,j(r(A)) is a subalgebra of

The result now follows from Lemma 2.2.2 and Proposition 2.2.5. □

Lem m a 2.3.2 If  an extension of simple blocks A is not uniserial, then the 

standard identity S2n - 2  = 0 holds for A.

Proof. Follows immediately from Lemma 2.2.2. □

The main theorem in this chapter is:

T heorem  2.3.3 Let F be a field and let A be an F-subalgebra of Mn(F). If 

A does not satisfy the standard polynomial S2n-2> then A is equivalent to a full 

block upper triangular matrix algebra.

Proof. It suffices to show that the only (£1,^2, • • • ,^ ) _extensi°n °f simple 

blocks A for which the standard polynomial S2n-2 is not an identity is the

full block upper triangular matrix algebra E^i,e2 et)(F)- By Lemma 2.2.1,

Ai = M t {( F ) for 1 < i < t. By Lemma 2.3.2 and Lemma 2.3.1, A,(i+i)(F) is
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not semisimple and does not contain a repetition, for each 1 < i < t — 1. We 

conclude (cf. [Le02], Lemma 3.6) that

Ai(i+1)(F) =  Meixei+l(F), for each 1 < i < t -  1 .

Therefore, A contains the staircase unit matrices (c.f. (2.1)), and every unit 

matrix e^ , for j  > i can be expressed as a product of those. The Theorem 

now follows. □

C orollary 2.3.4 The standard polynomial s2n- 2 Is an identity for any proper 

subalgebra ofUn{F), the algebra of upper triangular matrices over the field F.

Proof. Immediate from Theorem 2.3.3. □

Rem ark. The standard polynomial of degree 2n — 2 is not necessarily an 

identity for any proper subalgebra of Un(C) when C is a commutative ring: 

Let /  be a nonzero ideal of C, and consider the C-subalgebra B of Un(C) 

defined by the property that the (l,2)-entry of matrices in B  lie in I. A 

staircase argument shows that s2n- 2 {B) 7  ̂0 .
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C H A PT E R  3 

Polynom ial detection of m atrix  

subalgebras.

In this chapter we develop the concept of polynomial test, along with some 

applications to algorithmic representation theory. The definition of “polyno

mial test” is our own, but this notion has previously appeared, e.g. in Rowen 

[R0 8 O]. First, the double Capelli polynomial of total degree 21 is

^  { (sg O T ) X a ( \)YT[i) ACT(2)Fi-(2) ‘ ’ ' Pi-(t) | O, T G S t } .

It was proved by Giambruno-Sehgal and Chang that the double Capelli poly

nomial of total degree 4n is a polynomial identity for Mn(F). (Here, F  is a 

field and M„(F) is the algebra o f n x n  matrices over F). In this chapter we 

show that the double Capelli polynomial of total degree 4n — 2 is a polyno

mial identity for any proper F-subalgebra of Mn(F). Subsequently, we present
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polynomial tests for nonsplit non-self extensions of full matrix algebras.

3.1 Introduction

Let F  be a field and M n( F ) the algebra of n x n matrices over F. F  {X} = 

F  { Xi , X2, . . .  } denotes the free associative algebra over F  in countably many

variables Xi, X 2,  Sometimes we will use other variables X,  Y,  Z, X Y i

for notational simplicity. A nonzero polynomial f ( X  G F {X}  is a

polynomial identity for an F-algebra R  if / ( r i , . . . ,  rm) =  0 for all r i , . . . ,  rm G 

R. A T-ideal is an ideal of F {X}  which is closed under endomorphisms of 

F  {X}. If / i , . . . ,  ft are polynomial identities for R, so is every polynomial /  

in the T-ideal generated by / i , . . . ,  f t. In this case we say that the identity 

/  =  0 in R is a consequence of the identities fc =  0, for 1 < i < t.

Two of the most important multilinear polynomials in the theory of asso

ciative algebras with polynomial identities are the standard polynomials and 

the Capelli polynomials. The standard polynomial of degree t has the form

where St is the symmetric group on { l , . . . , t }  and (sger) is the sign of the 

permutation a G St. The standard polynomial st is homogeneous of degree f, 

multilinear and alternating.

Recall that the Amitsur-Levitski identity asserts that Mn(F) satisfies any

&€St
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standard polynomial of degree 2n or higher. A short and elegant proof of 

this theorem was obtained by Rosset [Ro76]. Rosset’s proof uses an exterior 

algebra over F  in an ingenious way. The standard polynomial s2n is a minimal 

identity in the sense that Mn(F) satisfies no polynomial identity of degree less 

than 2n.

The Capelli polynomials are

C2t_! (X t , . . . ,  X t, Yu . . . ,  yt_0 =  ] T  (sg<r)Xff(1)YiX„(2)Y2 • • • X . w Y t - i X . u ,
<7 GSt

and

C2t (Xi, • • • ,X t ,Y u . . . ,  Yt) = c2i~i (Xi , . . .  , Xt, Yi, . . . ,  Y(_i) Yt ;

c2f_i and C2t are multilinear and alternating as a function of X i , . . . ,  X t.

We will say that a multilinear polynomial / ( X i , . . . , X t) € ^{X } is a 

polynomial test for an F-algebra R  if it is not a polynomial identity for R  but 

it is an identity for every proper F-subalgebra of R.

A polynomial / ( X l t . . . , X t) € F{X} is a central polynomial for an F- 

algebra R  if (1) for any r j , . . .  ,r t G R , f ( r \ , . .. ,r t) lies in the center of R,

(2) /  is not a polynomial identity for R , and (3) the constant term of /  is 

zero. Central polynomials for Mn(F) are also polynomial tests for Mn(F), as 

is discussed in Section § 3.2.

The Capelli polynomial was introduced by Razmylov in [Ra74] and has 

important applications in PI- theory, in particular, the development of central
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polynomials for Mn(F) by Razmylov [Ra73] and Amitsur [Am78]. The orig

inal central polynomials for Mn(F) were discovered by Formanek in [Fo72]. 

The following proposition (extracted from [Fo91]) shows that the Capelli poly

nomial c2n2 is a polynomial test for Mn(F).

Proposition  3.1.1 (a) The Capelli polynomial c2n2+1 is a PI for Mn(F).

(b) The Capelli polynomial c2n 2 is a PI for any proper F-subalgebra ofMn(F).

(c) The Capelli polynomial c2n2 is not a PI for Mn(F).

Proof, (a) and (b) hold because Mn(F) has dimension n2 over F.

(c) Evaluate c2n2 (xi, . . . ,  x n 2 , yx, . . .  yni ) with

(xi, x2, . . . ,  xn, Xjj-f-i, . . .  xn2_j , xn2  ̂ (fin, ei2, . . . ,  eifj, e2j , . . .  en(n_i), enrfj ,

(2 / l) • • • 1 2/ni • • • J/n2 —1 1 Vn2 ) (*-11) • • • i ^n2 i • • • ^ ( n —l)n> ^ n l )  •

Here y\ = eu , yn2 = eni, and y2, - - - 2/n2- i are the unique choices of matrix 

units such that the monomial with a  =  1 is nonzero, so c2n2 takes on the value 

eu 7  ̂0 . □

In Corollary 2.3.4, it is proved that the standard polynomial of degree 

2n — 2 is a polynomial test for the subalgebra of upper triangular matrices of 

Mn{F).
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Define the double Capelli polynomials by

h 2 t - \ { X \ ,  ■ • • , x t , Y i , . . .  , y _  i )

= 2̂ (sgcrr)X(T(i)yT(i)X<T(2)yT(2) • • •
<r€St,T€Si- 1

and

h2t(Xu . . . , X t,Yu . . . , Y t)

= ^  ( s g o T j ^ D n d jx ^ n p ,  • • •
tr ,r€St

Note that /i2f_i and h2l are multilinear and alternating in the X,- and also in 

the Yj.

Formanek pointed out that h4n- 2 is not a polynomial identity for Mn(F) 

and asked for the least integer m  such that hm is a polynomial identity for 

Mn(F). Chang [CH8 8 ] proved that both double Capelli polynomials h2t~\ 

and h2t are consequences of the standard polynomial st, implying that h4n- 1 

and h4n are polynomial identities for Mn(F). A different proof that h4n is a 

polynomial identity for Mn(F), that uses a variation of Rosset’s method, was 

given by Giambruno-Sehgal [GS89]. To see that /i4n_2 is not a polynomial

identity for Mn(F), consider the substitution (double staircase)

x\ = en> 2/i = ei2> ^2 =  e22, y2 — e23, . . . , xn = enn

2in =  ^ n n i  %n+l =  ^ n ( n —1)> 2/n+l ^ ( n —l) (n —1)> • • • > ^ 2 n —1 ^ 2 1 j 2/2n—1 ®11
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where the e,j are the standard matrix units. The only nonzero monomials in 

/i4n_2(a\, Vi) are the 2n — 1 even cyclic permutations of X\y \ . . .  £ 2„ - i 2/2n - i ,  and 

they all have positive sign. Thus

h 4n —2 ("El) • • • t *^2n— 11 V li • • • 1 V2n—1) C l l  •

We finish this section with some useful properties of the double Capelli poly

nomials:

P roposition  3.1.2 Let t be a positive integer.

(a) h2t lies in the T-ideal of h2t- 1-

(b) h2t+1 lies in the T-ideal of h2t.

(c) The identity hq is a consequence of the identity hr for any q > r .  

P roof. For (a) and (b) we can give an explicit relation

t

i= l

where Yi means that Yi does not participate in the expression, and 

h2l+1(Xu . . . , X t,Yl , . . . , Y t, X t+l)
t

= ■ • •, Xi, • • •, Xu Y,  Yt)Xt.
i= 1

(c) is immediate from (a) and (b). □
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3.2 A polynomial test for the full m atrix alge

bra

The main goal of this section is to prove that h4n_2 is a polynomial test 

for M n(F).  Before proceeding to the proof of this theorem we need some 

preliminaries. First, we fix our notation.

3.2.1

Let £, m  be positive integers such that £ + m — n and set

Mc(F)  Mfxm(F) 
Ey,m)(F)  =  

0 M m(F)

an F-subalgebra of M n(F).

(i) Associated to E ^ m)(F) are canonical F-algebra homomorphisms 

7Tf : —v M e(F)  and nm : E {itTn)(F)  -> M m{F).

Further identify Me(F)  and M m(F)  with

M e(F)  0 0 0

0 0
J

0 Mm(F)

respectively.

(ii) Associated to a subalgebra A  of E ^ <m)(F)  are homomorphic image sub

algebras A t and A m of M e(F)  and M m(F)  respectively.
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(iii) Set

T(l,m)(F) = 

the Jacobson radical of E ^<m)(F).

0 A W F )  

0 0

(iv) Recall that every F-algebra automorphism r  of M„(F) is inner (i.e., 

there exists an invertible Q in Mn(F) such that r(a) = QaQ~l for all 

a e Mn(F)). Two F-subalgebras A, A' of Mn(F) are equivalent (or iso

morphic) provided there exists an automorphism r  of Mn(F) such that 

t (A) =  A'.

(v) F(f>m)(F) has no central polynomials: Let c(ri , . . . , r*) =  a>In, where 

a e  F, ri : . .. , r t € E ^<m)(F). Notice that a en , . . . ,  a e ee depend on the 

first £ rows and columns of r\ , . . . ,  rt only, and do not depend on the 

m  x m  lower-right block. If

ai b{

0 C{

let r ' the matrix obtained from r{ by replacing the block c, by the 0 

block. From the evaluation of the polynomial c in r[ , . . . ,  r't we conclude 

that a = 0 .

Lem m a 3.2.1 Let A be a subalgebra of E ^ m)(F) such that Ag satisfies h2q~\ 

for some 1 < q < 2i and Am satisfies h^r-x for some 1 < r < 2m. Then A 

satisfies —2*

ri
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Proof. Let t =  q + r. Then Mn(F) = Mt(F) © T(etTn)(F) © Mm(F) as F- 

vector space, and so each matrix x (resp. y) in A can be written as x = a+b+c 

with a E Ae,b  E and c E Am (resp. y = a + b + c). Using linearity, we 

expand completely h2t-i(xi ,  . . . , x t,y i , . . . ,yt-i) and further use the following 

rules to simplify some of the terms:

1- T{itm)[F) is a nilpotent ideal of E(iirn)(F), with T ^ my{F) = (0), and we 

see that each term in the expansion containing more than one entry in 

T(t,m){F) equals 0.

2. Me(F)Mm(F) =  Mm(F)Me(F) = 0.

3. Mm(F)T[e,m)(F) = T{e>m)(F)Mt(F) = 0.

We obtain

^21- 2(^11 • • • tx t~i,yi , . . . ,  j/t-i) =  (3.1)
(-i
E E (sg<7T) a<T(i)ar(i) . . . l)Or(i—l)̂ <T(t)̂ r(i)̂ -<r(i+l) ' * ' Ca(t—l)Cr(i—1)
i=0 a ,T& St-1 

I
+ E E (sg<jt) d<7(i)OT(i) * ■' dT(i_i)a(T(i)6r(i)C<T(i+i) • • • cc t̂—\)^T{t—i)

•=1 t r ,reS t- i

We want to show that h2t- 2(xi, • • • , x t- \ ,yi ,  • ■ •, Ut-i) = 0- To do so, we 

will examine the above summands for each fixed value of i.

Case 1: i > q. In this case we partition the pairs of permutations (cr,r) E 

St-i  x St- 1 by the equivalence relation:

(<Ti,n) (cr2, r 2) iff Cilft,(t-i)j =  cr2 |[i,(t_i)] and n|[i,(t-i)] =
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For each i > q, the relation ~ j  yields a partition o f S t- 1 x  S t- j, into disjoint 

subsets P / \  Then, we have

^  ] (sgfTT) 0 (7(1) • • • OT(t-l)^£7(i)0r(i)C(7(t+l) • • • CT(i_l)
£7,reSt-i

+  ^  ] (sgox) 0 ,7(i)aT(j) . . . da(i)bT{i)ccr(i+l) • • • ^r(t-l)
<reSt-urGSt-i

= E E (sgor) o0-(i)Or( i ) . . .  aT(j_1)6<7(,)CT(i)C(7(i+i ) . . .  cT(t—i)
k (<r,r)€^

+ y :  5 3  (sgOT) 0 (7(i)OT(i) . . . Or(i_i)0(r(i)5r(i)C(7(i-(-i) . . . CT(i_i) 
k {a,r)eP,k

— }  (̂sgO'fc'rA:) h.2i-2 (Ocrfc(l)) • • • )®Tfc(i-l)) ô-fc(t)0Tfc(t)C(7fc(i+l) • • • CTfc((_i)
k

+  ^  " (Sg(TfcTfc) h 2i-2 (o^ fl)) • • • ) T̂fc(t-1)) a<Tk(i)̂ Tk(i)cak(i+l) • • • CTfc(t-l),
k

where ((Tfc,rfc) is a representative o f the class

B y assum ption, ^  satisfies h 2q- 1- It follows that h2t-2  is an identity for 

>1* for all q < i < t, and hence each sum  in Equation (3 .1), corresponding to 

the case i > q, equals 0.

C a se  2: i < q.

In this case (t  — 1) — i >  r, so we partition the pairs o f perm utations 

(<t, r ) €  S t~i x  S t-1  by the equivalence relation:

( a i , n )  ~ t- (o2,r 2) iff <Ti|[i,fj =  £T2|[i,t) and t i |[ M] =  T2|[i,i].
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For each i < q, the relation yields a partition of St~ 1 x St-\  into disjoint 

subsets Ptk. Then, we have

where (crfc, r^) is a representative of the class P k.

By assumption, Am satisfies h2r-i- It follows that h2(t-i~i) is an identity 

for Am for all 0 < i < q, and hence each summand in (3.1), corresponding to 

the case i < q, equals 0 .

Case 3: i = q.

In this case we need to examine two summands:

(sg(XT) ®(7(1) ' ' ' Or(i—l) f̂f(i)^T(»)̂ '0'(i+l) " ‘ ’ Cr(t — 1)
tr ,re S t-i

— ^  ] (sgO fcT k) 0<7fc(l)  • • • O r/t(t-l)^(7fc(i)O r)t(t) ^ 2 ( t - l - i )  (o<7fc( t '+ l) , • • • > ^ r k ( l - l ) )

k

“I” ^   ̂(sgOfcTfc) 0<7fc(l) • " • CLT(i-l)a<rk(i)bTk{i)h2{t-l-i) (0(7fc(i+l)> • • • , T̂k(t—1)) i
k

(sg<Tt ) Oo-(l) ‘ ‘ ‘ Or(g-l)̂ o-(q)Cr(q)C(7(9+l) • • • CT((_l)"F
<r6S (- i ,r 6S t-l

(sgCT7") 0 (j(l) ‘ ' ' 0T(q-l)0(7(g)6T(Q)C0-(9+i) • • • CT((_l).
<reSt-i,reSt-i
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For the first summand we consider the equivalence relation:

( f f2, r 2) i f f  c ri|[i,g] =  <72|[i,g] a n d  T i_ [ l ,g  -  1] =  t 2|[ ii<7_ i] .

The relation yields a partition of St- i  x 5t_i, into disjoint subsets P*. 

Then, we have

Since h2r-i  is an identity in Am the first summand equals 0. For the second 

summand we consider the equivalence relation:

(tfi,Tt ) ~ g (<t2, r 2) iff 0 i|[,+i,t] =  o2|[9+1i<] and nlfe.e] =  ^ I m -

The relation yields a partition of St-1 x St_i, into disjoint subsets P*. 

Then, we have

(sg(7t) 0(t(1) * ' • Or(g—l)̂ <T(g)Cr(g)C(T(g+l) ’ ‘ • CT(t_i)
(TeSf-itTSSi-i

fc (cr,r)ePgk

—  ^  ]  (sg ^ fcT fc ) a <Tfc(l)arfc(l) ■ '  ’ ^<7fc(g) ^ 2 r - l  ( c r fc(g)> Ccrfc(g+ 1 ))  > ^ r * ( t - l ) )

fe

where (o*, 7*) is a representative of the class P*.

(sgCTT") ' ' ‘ a T(9 _ i ) d 0r(g) 6 r(q)^O'(i7+ l )  ’ ' * ^ r ( t - l )

=  J 2  J 2  (® s *r ) a<r(l) ’ ' ' d r (g- l ) a <r(g)^ r(g)C(r(ij+l) ' ' ' C r ( t - l)

— ^  ] (sgOfcTfc) h 2q - \  {P‘t7ic( 1), • • • ) a r ( q - l ) )  ^ ( g ) )  hr(g)Qr(g+l) ' ' ' Ct((—1)
A:
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where (cr*, t*) is a representative of the class Pq.

Since h29-i is an identity in At, we conclude that the second summand 

equals 0. This finishes the proof of the lemma. □

Theorem 3.2.2 h4n_2 is an identity for any proper subalgebra of Mn(F).

Proof. Let A be a proper subalgebra of Mn(F). If A is simple, then A 

satisfies the standard polynomial <s2n_2 (cf. Lemma 2.2.1), hence A satisfies 

h4n-5- Otherwise, A  can be embedded as F-algebra in E^>m)(F) for some 

suitable positive integers £ and m. Since /i4*_j and /i4m_i are identities for 

Mi(F) and Mm(F) respectively, we apply Lemma 3.2.1 to obtain that /i4n_2 

is an identity for A. □

3.3 A Polynomial test for E^m)

In this section we show that the double Capelli polynomial /1471-3 is a 

polynomial test for the subalgebra E ^ m) of Mn(F) for any positive integers 

£, m  such that £ + m = n.

Lemma 3.3.1 Let A be a subalgebra of E(etTn)(F) such that Ae satisfies hq for 

some 1 < q < 4£, and A m satisfies hr for some 1 < r < Am. then A satisfies

h ( q + T ) -

Proof. It follows by a combinatorial argument similar to that in the proof 

of Lemma 3.2.1. □
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Proposition  3.3.2 /i4n_3 is an identity for every proper subalgebra of

Proof. We consider all possible proper subalgebras of E ^ m)(F).

Let us first consider a subalgebra A of E ^ m) such that At is a proper 

subalgebra of Mt(F). Then hu - 2 is an identity for At as established in The

orem 3.2.2, and h4m_ 1 is an identity for Mm(F). Hence ft4n_3 is an identity 

for

hence an identity for A.

Similarly, /i4„_3 is an identity for every subalgebra of E ^ m) such that Am is 

a proper subalgebra of Mm(F). Clearly, h4„_4 is an identity for the semisimple 

case

In Proposition 2.2.5, it is proved that the standard polynomial s2e is an identity 

for the self-extension of irreducible representations:

hence, h4n_4 is an identity for A. □

R em ark  In general, h4n_3 is not an identity for E ^ m). For instance, if 

n = 3 and A =  f?( 1,2), we have

At Mtxm(F)

0 Mm(F)

Me(F) 0

0 Mm(F)

h9 ( e i l , e U , 6 1 2 , 6 2 2 ,6 2 2 )6 2 3 ) ^ 3 3 )  6 3 3 , 6 3 2 ) =  2 e i 2 -
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C H A PTER  4 

Effective detection of 

n-dim ensional representations.

In this chapter, we describe several algorithmic procedures, using polyno

mial tests (and elementary computational commutative algebra), for determing 

the existence of certain types of n-dimensional representations of finitely pre

sented algebras. This approach is largely influenced by Letzter’s papers [LeOl] 

and [Le02], and extends the results therein. The basic strategy is to reduce 

each of the considered representation theoretic decision problems to the prob

lem of deciding whether a particular finite set of commutative polynomials has 

a common zero. Standard methods of computational algebraic geometry can 

then be applied (in principle).
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Let R  = F { X i , . . . ,  X a} / ( f i , . . . , f t ) be a finitely presented algebra over 

the field F. Assume that F  is computable and K  is the algebraic closure of 

F. It is easy to see that the n-dimensional representations of R  amount to so

lutions to a system of tn2 commutative polynomial equations in sn2 variables. 

Moreover, n-dimensional irreducible representations and full block upper tri

angular representations of R can also be explicitely parameterized by finite sys

tems of commutative polynomial equations using P-tests. Consequently, the 

techniques of computational algebraic geometry (and in particular, Groebner 

basis methods) can be used to study the n-dimensional representation theory 

of R. When the desired n-dimensional representation exists, it is possible (in 

principle) to produce explicit constructions. An example of these algorith

mic procedures is implemented in §§4.3.5, using the computer algebra package 

Macaulay 2.

4.2 Preliminaries

In this section we develop our notation (which will remain fixed for the 

remainder) and quickly review some necessary background.
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4.2.1 Notation

(i) We will use the expression (n-dimensional) representation of R  only to 

refer to F-algebra homomorphisms p : R —► Mn(A); the representation is 

irreducible when KP{R) = Mn(K). This approach allows us to consider 

the .^'-representation theory of R  while restricting our calculations to F; 

in our algorithmic procedures below we will assume that F  is computable 

and that K  is the algebraic closure of F

(ii) Let V{n) denote the minimum positive integer with the following prop

erty: For all positive integers q, and for all a \ , . . .  ,aq E Mn(K), the K- 

algebra K {a \ , . . . ,  aq} is A'-linearly spanned by products of the a \ , . . .  ,aq 

having length no greater that V(n) (the identity matrix is the prod

uct of length zero). It is easy to check that V{n) < n2 — 1, and

in [Pa97] it is proved that V(n) is bounded above by the function 

/(n ) = nyj2n2/(n — 1) +  \  + n j  2 — 2 .

(iii) Let p : R  —» Mn{K) be a representation, and set A = KP(R). It follows

from (i) that A is A'-linearly spanned by the images of the monomials (in 

the Xi) having length no greater that V(n). Also, the Cayley-Hamilton 

Theorem tells us that the nth power of an n x n matrix is a linear 

combination of its lower powers. Therefore, A is A'-linearly spanned by
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the image under p of

{ * ;; • " x t : *»>• • • .* *  e ( * i . - • • .* .} ; *i +  ■ • ■ + v  < ?(» );

0 <  *i, •.. ,ip < n)

(iv) For 1 < p, < s, let denote the generic n x n matrix (xij(p)) (i.e, 

the n x n matrix whose i j th entry is the indeterminate x^ (/u)), and set 

x =  ( x i , . . . , x g). Note that R  has an n-dimensional representation if 

and only if the entries of / i (x ) , . . . ,  f t(x) have a common zero.

4.3 Effective detection

4.3.1 Effective detection of full block upper triangular

representations

Ingredient: A subalgebra of Mn(K) does not satisfy the standard identity 

s2n- 2 if and only if it is equivalent to a full block upper triangular matrix 

algebra. (See Theorem 2.3.3).

Application: Decide whether or not a finitely presented algebra has a full 

block upper triangular representation of size n.
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(i) Let W  =

{%j\ ' ' '  •zfj, • %ji > • • ■» Ejp ^ {*̂ i > • • ■ > } j d* ■ ■ ■ "H ip ^  i

0 < *i, • • • , iP < n}

(ii) Let w be an indeterminate. For each choice of Wi, . . . ,  tu2n_2 € IF- we 

can construct a subtest that returns “true” if the entries of

f \  ( ^ l l  • • • 1 •£«)> 1 f t  ( - ^ l )  • • • ! X s )

W  [s2n- 2(wi, . . . , W2„ -2)]l„ “  1

have a common zero. The subtest returns “false” if no common zero 

exist. It is easy to check that the following are equivalent: (1) at least 

one of the possible choices of W \ , . . . ,  u>2n_2 produces a “true” in the 

subtest, (2) there exists a representation for R  —> Mn(K ) for which 

the polynomial s2n- 2 is not satisfied, (3) there exists a full block upper 

triangular representation R  —> Mn{I<).

4.3.2 Effective detection of irreducible representations

This algorithm provides an alternate approach to that found in [LeOl].

Ingredient: /i4n_2 is a polynomial test for Mn(K). (See Theorem 3.2.2).

Application: Decide whether or not a finitely presented algebra has an irre

ducible n-dimensional representation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



46

(i) Let W  =

{XjJ • • • xj’p Xjj, . . . ,  Xjp G {xj, . . . ,  x4}, ii +  • • • +  ip < V(n),

0 < *i, • • • Jp < n}

(ii) Let u,v be indeterminates. For each choice of w\ , . . . ,  w2 n - 2  £ W  and 

ui , . . . ,  V2n- 2  £ W, we can construct a subtest that returns “true” if the 

entries of

f l  (•£ 1 > • • • i i • • • ) ft (*^11 • ■ • > Xa)

U [h4n- 2(Wu . . . ,W2n-l,Vi, . . . ,V2n~l)}n  ~  1

have a common zero. The subtest returns “false” if no common zero 

exists. It is easy to check that the following are equivalent: (1) at least 

one of the possible choices of wi, v \ . . . ,  w2n-i,  v2n-i  produces a “true” in 

the subtest, (2) there exists an irreducible n-dimensional representation 

of R.

4.3.3 Effective detection of full upper triangular repre

sentations

Ingredient: s2„ - 2 is a polynomial test for the algebra of upper triangular 

matrices. (See Corollary 2.3.4).

Application: Devise an algorithmic test for deciding whether R  has a full 

upper triangular n-dimensional representation.
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(i) For 1 < n < s, let denote the n x n matrix whose

the indeterminate Xij(fi) if 1 < i < j  < n,(’zjth entry =

0 otherwise.

(ii) Let U(n) =

{ X j x ■ ■ ■ • Xj i  j • • • j Xjp € { x i ,  • • • i x s] , i i  -)-••• -f- ip ^

0 < i'i,. . .  , ip < n}

(iii) Choose twi,. . . ,  itf2n-2 £ ^ ( n) Let u be an indeterminate, we can con

struct a test that returns “true” if the entries of

f l  (*El ) • • • ) *̂ s)) • • ■ ! ftfal  ) • • • ) x„) 

«[a2n-2(Wl,---»t«2n-2)]ln ~ 1

have a common zero. The subtest returns “false” if no common zero ex

ists. It is easy to check that the following are equivalent: (1) at least one 

of the possible choices of W i , . . .  w 2n- 2  produces a “true” in the subtest,

(2 ) there exists a full upper triangular n-dimensional representation of 

R.

4.3.4 Nonsplit (£, m)-extension of inequivalent irreducible 

representations test

This algorithm provides an alternate approach to that found in [Le02].
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Ingredient: /i4n_3 is a polynomial test for the nonsplit (£, m)-extension of 

inequivalent irreducible representations. (See Lemma 3.3.2)

A pplication: Device an algorithmic test for deciding whether R has a non

split, n-dimensional, (£, m)-extension of inequivalent irreducible representa

tions, for fixed £ and m, with £ + m = n.

(i) For 1 <  fi < s, let x^ denote the n x n matrix whose

the indeterminate Xij(fi) if i < £ or j  > m,
i j  th entry = <

0 otherwise.

(ii) Let U(£ + m ) =

■ ■ ■ Ej’p • t • • • t %jp £ {2:1 j •••) •£»}■) *1 “b - * • —(— < V{n ) ,

0 < ii, • • • , iP < n}

(iii) Let u be an indeterminate. For each choice of W\ , . . . ,  W2n- i , V\ , . . . ,  V2n ~ 2  £ 

U(£ +  m) we can construct a subtest that returns “true” if the entries of

f l  ( ^ 1 1 • • • , %s ) , . . • ,  f t  (*^1, • • •  , -^s)

U [h4n- 3(Wi, . . . ,U)2n-l,Vi, . . . ,V2n-2)\ij ~  1

have a common zero. The subtest returns “false” if no common zero 

exists. It is easy to check that the following are equivalent: (1) at least 

one of the possible choices of (i,j) and Wi,Vi.. .  , produces
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a “true” in the subtest, (2 ) there exists a nonsplit (£,m)-extension of 

distinct irreducible representations R  —» E ^<m){K)

4.3.5 An example

Determine algorithmically whether a given finitely presented algebra has a 

representation of a particular type.

Ingredients: P-test and elementary computational commutative algebra. 

Example: A three-dimensional representation.

Set

R = Q { X , Y } / ( X \ Y 2),

Can we find a full block upper triangular 3 x 3  representation for R ?

A Macaulay2 Session 

F=qq
R=F[a. .z]

M = R“3

14 : X = matrix{a*M_0, b*M_0+c*K_l, d*M_0+e*M_l+f*M_2>

o4 = | a  b d I
I 0 c e I
I 0 0 f  I

3 3
04 : Matrix R < R

15 : Y = matrix{g*M_0+h*M_l+i*M_2, j*M_l+k*M_2, 1*M_2}

05 = I g 0 0 I
I h j  0 I
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I i  k 1 I

3 3
o5 : Matrix R < R

length2=(X*X, X*Y,Y*X) 
length3=(X“2*Y, X*Y*X, Y*X“2, Y*X*Y)

s l= (x )->  x
s2=(x ,y)->x*s1(y )-y * s l(x )  
s3 = (x ,y ,z )-> x*s2 (y ,z )-y*s2 (x ,z )+ z*s2 (x ,y )
s4=(x ,y ,z ,w )-> x*s3 (y ,z ,w )-y*s3 (xJz,w)+z*s3(x,y,w)-w *s3(x,y,z)

f l  = X~3 
f 2 = Y“2
MatrixRel = f 1 1 f  2

wl=X
w2=Y
w3=length2#0 
w4=length2#l 
W=s4(wl,w2,w3,w4)
r  =u*( l a s t  f l a t t e n  e n t r ie s  W~{0})-1 
Rel = ap p e n d (f la t te n  e n t r ie s  M atrixR el,r)
R e lldea l  = id ea l(R e l)

i23 : 1 '/, R e lldea l

o23 = 1

o23 : R

—There e x i s t s  a f u l l  block upper t r i a n g u la r  r e p re s e n ta t io n  

S =transpose gens gb R elldea l 

i30 : — we found the  so lu t io n

X = su b s t i tu te (X , {a=>0,b=>l, c=>0,d=>0, e=> l, f=>0» 

o30 = I 0 1 0 I
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I 0 0 1 I 
I 0 0 0 I

3 3
030 : Matrix R <----  R

131 : Y =substitute(Y ,{g=>0,h=>0,i=>0,j=>0,k=>l,l=>0})

031 = I 0 0 0 I
I 0 0 0 I
I 0 1 0 I

3 3
o31 : Matrix R <----  R

132 :
-------------------------------------------END-------------------------

It is easy to verify that X  and Y  generates a full ( l ,2)-block upper triangular 

matrix algebra.
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C H A PT E R  5 

The length of the 

Super-Diagonal and 

Sub-Diagonal matrices.

The length of an algebra generating set was studied by Paz [Paz84] and 

by Pappacena [Pa97]. In §§4.2.1 we saw an application of this notion. In this 

chapter we study the length of the sub-diagonal and super-diagonal matrices.

Let F  be a field, and let A be a finite-dimensional F-algebra. Set d = 

dimpA. Since A is finite-dimensional over F, it is obviously finitely generated. 

Let S  be a finite generating set for A as an F-algebra. We shall write A = 

F{S}  to denote this. Writing S  = {ai , . . .  , a*} we shall adopt the convention 

that 1 is a word in S' of length zero, and write S l for the set of all words in
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S  of length < i. We have the obvious containment S'  C S* for i < j ,  also 

S'Sj = S i+j. Writing FS'  for the F-linear span of S', we have the following 

chain of containments (noting that 5° = 1, so FS° — F ):

Since A is assumed finite-dimensional over F, there is an integer k such that

We define the length of the generating set, written £(S), to be the smallest k 

for which F Sk — A, and define £ = maxs £(S), where the maximum is taken 

over all finite generating sets, to be the length of A. For the algebra of n x n 

matrices over F, Pappacena ([Pa97]) has proved that i  is bounded above by 

a function in 0 (n 3/2) and Paz ([Paz84]) has conjectured that £ < 2 n - 2 .

5.1 Prelim inaries

N otation: Henceforth we consider Mn(F), the algebra of n x n matrices 

over F, and S  the subset of Mn(F) consisting of the following two particular 

matrices: The super-diagonal matrix U is defined by the law:

F  =  FS° C F S 1 C • • • C FS'  C F S i+1 C • • • C F{S} = A. (5.1)

F S k = F S k+1 = F Sk+2 = ■■■ = F{5} =  A. (5.2)

0 otherwise;
\
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and the lower-diagonal matrix D = Ul is defined by the law:

1 if i = j  + 1,
dij = <

0 otherwise; 

for 1 < i, j  < n.

Given a matrix A E Mn(F), we shall call the 5-diagonal of .4 to the set of 

entries

{aij, i = j  + n -  8, j  = 1.. .8}, for <5 =  1 . . . n,

{a,j, j  = i + 5 — n, i = 1 .. .  2n — 5}, for 8 — n . . .  2n — 1.

If all but the 5-diagonal entries of A are equal to 0, we call it a 5-diagonal

matrix. If 5 is out of the range 1. . .  2n — 1, we adopt the convention that a

5 diagonal matrix is the zero matrix. The F-subspace of Mn(F) consisting of 

all 5-diagonal matrix is denoted A^. Clearly,

if 5 =  1. . .  n, 

dim/p A($ = < 2n — 5 if 5 =  n . . .  2n — 1,

0 otherwise.

The 5-diagonal matrix with l ’s in all of the diagonal entries is called the 

8-identity. The 5-diagonal matrix with l ’s in the first i entries (starting from 

the left) of the 5-diagonal and 0’s in the final 8 — i entries of the 5-diagonal is 

called the i-initial segment of the 5-diagonal, for 1 < i < 8. The 5-diagonal
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matrix with 0 in the initial (5 — i) entries (starting from the left) of the 5- 

diagonal and l ’s in the final i entries of the (5-diagonal is called the i-terminal 

segment of the (5-diagonal, for 1 < i < 5. Notice that the 5-identity is the 

5-initial and 5-terminal segment of the 5-diagonal.

In order to understand 5 ‘, the sets of words in S  of length up to i, it is 

useful to have in mind what exactly is the action of multiplying U and D on 

the left and on the right of any matrix A.

(a) UA is the matrix whose ith row equals the (i + l ) th row of A, and its last 

row is zero (left multiplication by U “pushes up” one row)

(b) AU is the matrix whose (j  + l)th row equals the j th column of A, and 

its first column is zero (right multiplication by U “pushes right” one 

column)

t

(c) DA  is the matrix whose (i + l ) th row equals the ith row of A and its first 

row is zero (left multiplication by D “pushes down” one row)

y-w-
(d) AD  is the matrix whose j th column equals the (j +  l)th column of A 

and its last column is zero (right multiplication by D “pushes left” one 

column)

Notice that is the matrix whose (In) entry is 1 and all other entries

are zero. With this elementary matrix in hand, and with the help of rules
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(a) - (d), we can produce any other elementary matrix. This shows (the well 

known fact) that S' is a generating set for Mn(F).

Let

Bi = {£>n-1},

B2 = {UDn~ \ D n~lU},

B3 = {D n~3, UDn~2, Dn~2U},

In general, for 6 = 1. . .  n, we define:

Bs = {Dn~s, UDn~s+\  Dn~s+1U, U2Dn~s+2, Dn~s+lU2, .. .

S+ 1  6+1 _ _ S - 1  ^
. . . ,  U ~ D n- * , D n~ i U ~ }

if 8 is odd, and

Bs = {UDn~s+\  Dn~s+1U, U2Dn~s+2, Dn~s+lU2, . . . ,  If5Dn~*, Dn~^U*} 

if 8 is even.

P roposition  5.1.1 The set Bs is a basis of the subspace As , for 8 =  1. . .  n.

Proof. Assume for the moment that 8 is even. Notice that, for i =  1. . .  | , 

the matrix UiDn~s+i is the (<5 — i)-initial segment of the (5-diagonal. Similarly, 

for i =  1 . . .  | ,  the matrix Dn- s+%Ul is the (8 — i)-terminal segment of the 

5-diagonal. These matrices form a basis for Aj. The argument is similar when 

8 is an odd number. □
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Proposition  5.1.2 The length of S is n.

Proof. Since U = Dl, we can apply Proposition 5.1.1 to show that for 

1 < i < n, the set B\, consisting of the transpose of each matrix in Bi, is a 

basis for the F-subspace of (2n — i)-diagonal matrices. Since each matrix in 

Mn(F) is a linear combination of ̂ -diagonal matrices, we conclude that n is an 

upper bound for l(S). For n > 2 , in order to generate the 2-diagonal, words 

of length at least n are required, namely UDn~l and Dn~lU. This completes 

the result. □
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