1 Part I: do 3 of 4

- 1. Consider a possibly non-uniform cable with linear density $\rho(x)$ moving in the threedimensional space. Let $r(x, t)$ be the position vector of the material point $x \in [0, L]$ of the cable at time t.
	- (a) Give a definition of the tension vector $\mathbf{T}(x,t)$;
	- (b) Apply Newton's law of motion $\mathbf{F} = m\mathbf{a}$ to each segment $[x, x + \Delta x]$ of the cable to derive the equation of motion of the cable relating functions $\rho(x)$, $r(x,t)$ and $\boldsymbol{T}(x,t)$.

 $-$ K ρ c_+ K ρ

 $c - \kappa - \rho$

2. Consider the heat propagating in a bimetal strip: \mathbf{f} To the left of the junction at $x = 0$ the temperature $T(x, t)$ solves the heat equation

$$
c_{-}\rho_{-}\frac{\partial T}{\partial t} = \kappa_{-}\frac{\partial^2 T}{\partial x^2}.
$$

To the right of the junction it satisfies

$$
c_{+}\rho_{+}\frac{\partial T}{\partial t} = \kappa_{+}\frac{\partial^2 T}{\partial x^2},
$$

where c_{\pm} are the specific heats of the two materials, ρ_{\pm} are the densities and κ_{\pm} are heat conductivities. What are the conditions that the temperature field $T(x, t)$ has to satisfy at the junction $x = 0$?

3. Consider the Maxwell system of equations governing propagation of electromagnetic waves in vacuum.

$$
\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}, \quad \nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}, \quad \nabla \cdot \boldsymbol{E} = 0.
$$

Show that each component of the electric field \boldsymbol{E} solves a wave equation with the the speed of propagation c.

4. The "motion" of the electron in a hydrogen atom is governed by Schrödinger's equation

$$
i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m_e}\Delta\psi+V(\boldsymbol{x})\psi,\qquad V(\boldsymbol{x})=-\frac{e^2}{4\pi\varepsilon_0|\boldsymbol{x}|},\qquad \boldsymbol{x}\in\mathbb{R}^3,\,\,t>0.
$$

where \hbar is the Planck constant, m_e is the mass of the electron, e is its electrical charge and ε_0 is the dielectric permittivity of the vacuum. Express solutions $\psi(\mathbf{x}, t)$ of the Schrödinger's equation in terms of the solutions $\phi(\xi, \tau)$ of

$$
i\frac{\partial \phi}{\partial \tau} = -\frac{1}{2}\Delta \phi - \frac{\phi}{|\xi|}, \qquad \zeta \in \mathbb{R}^3, \ \tau > 0.
$$

Give expressions of the characteristic time and length scales in terms of the physical parameters \hbar , e, m_e and ε_0 .

2 Part II: do 2 of 3

1. Find all possible speeds of propagation of acoustic waves in an elastic solid by examining plane wave solutions of

$$
\mu \Delta \mathbf{u} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) = \rho \frac{\partial^2 \mathbf{u}}{\partial t^2}.
$$

Note that plane wave solutions take the form $u(x, t) = u_0(x \cdot k - \omega t) a$, where u_0 is smooth scalar function of one variable, **a** and **k** are constant vectors in \mathbb{R}^3 and ω is a constant scalar.

2. Apply the Poincaré-Linstedt method to compute the correct asymptotics of the period of the solution of the differential equation

$$
y'' + y = A(1 + \epsilon y^2), \quad y(0) = 1, \ y'(0) = 0
$$

to first order in ϵ .

FYI, this is a rescaled version of the relativistic correction to the equation of motion of Mercury, where $y(\theta) = a/r(\theta)$, $A = GM/av^2$, $\epsilon = 3v^2/c^2$. Here a is the perihelion (smallest distance from the sun), v the speed of Mercury at perihelion, $r(\theta)$ —the distance from the sun when Mercury is θ radians along its orbit starting from the perihelion.

3. Consider a dynamical system (coming from a model of a fishery)

$$
\dot{x} = x(1-x) - \frac{rx}{x+1}, \qquad x > -1.
$$

- (a) Identify all equilibria on the half-line $x > -1$ and determine their stability.
- (b) Sketch the bifurcation diagram. Make sure to indicate stable and unstable branches clearly.
- (c) According to your bifurcation diagram, what is the bifurcation point and what is its type?