Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2024

Part I. Solve three of the following problems.

I.1 Let $D_4 = \langle r, s | r^4 = s^2 = s r s r = e \rangle$ denote the dihedral group of order 8 and $Q_8 =$ $\langle a, b | a^4 = b^2 a^2 = b^{-1}aba = e \rangle$ the group of quaternions, also of order 8.

(a) Show that D_4 and Q_8 are not isomorphic as groups.

(b) Show that any nonabelian group of order 8 must be isomorphic to one of D_4 or Q_8 .

I.2 Let $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \in M_3(\mathbb{F}_3)$, where \mathbb{F}_3 denotes the field of three elements.

(a) Calculate the characteristic polynomial of A.

(b) Find the eigenvalues and eigenspaces (in \mathbb{F}_3^3) of A.

- (c) What is the minimal polynomial of A? Justify your answer.
- (d) Is A diagonalizable over \mathbb{F}_3 ? Over an algebraic closure $\overline{\mathbb{F}}_3$? Justify your answer.

I.3 From the definition of noetherian, show that every principal ideal domain is a noetherian ring. (In particular, you may NOT appeal to the fact that a ring is noetherian if and only if all of its ideals are finitely generated.)

I.4 Let $f = x^4 + 4x^2 + 2 \in \mathbb{Q}[x]$.

- (a) Show that f is irreducible over $\mathbb Q$.
- (b) Calculate the Galois group of the splitting field of f over $\mathbb Q$ (up to isomorphism).

Part II. Solve two of the following problems.

II.1 Let p be a prime number, \mathbb{F}_p be the field of p elements, and $G = GL_2(\mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in \mathbb{F}_p .

- (a) Prove that the order of G is $(p^2-1)(p^2-p)$. (Hint: the columns of any element of G form a basis for \mathbb{F}_p^2 .)
- (b) Let $g_0 \in G$ such that the characteristic polynomial $f \in \mathbb{F}_p[x]$ of g_0 is equal to $(x-\alpha)^2$ for some $\alpha \in \mathbb{F}_p^{\times}$. Write down the possible Jordan forms for such a g_0 ; justify your answer.
- (c) For g_0 as above, calculate the size of the conjugacy class of g_0 in G; justify your answer. (It may be necessary to break your answer into cases.)

II.2 Let $R = \mathbb{Z}[i]$, where i is a root of the polynomial $x^2 + 1$. We recall that R is a principal ideal domain; you do not need to prove this.

- (a) Find the units in R and justify your answer. (You may use standard facts about norms without proof.)
- (b) Show that both $1 + i$ and 7 are prime in R.
- (c) Consider the finitely generated R-module $M = R/\langle 28 \rangle \oplus R^2/\langle (1+i, 1-i) \rangle$. Find the rank, invariant factors, and elementary divisors of M; justify your answers.

II.3 Let $K = \mathbb{F}_{11}(x)$, where \mathbb{F}_{11} denotes the field with 11 elements. Let $f = t^{10} - x \in K[t]$, and let F be the splitting field of f over K .

- (a) Does K contain a primitive 10-th root of unity? Explain your answer.
- (b) Calculate $[F: K]$. Justify your answer.
- (c) Explain why F/K is Galois, and calculate its Galois group, up to isomorphism.
- (d) Calculate all of the intermediate fields between F and K . Your answers should be given as simple extensions of K , not as fixed fields of subgroups of the Galois group, though you may use Galois theory to justify that you have found all intermediate fields.