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ABSTRACT

A MEAN VALUE THEOREM FOR CLASS NUMBERS OF QUADRATIC
EXTENSIONS OF FUNCTION FIELDS

Ibrahim Al-Rasasi
DOCTOR OF PHILOSOPHY

Temple University, August, 2001

Professor Boris Datskovsky, Chair

In this thesis we study a zeta function associated with the space of binary
quadratic forms with coefficients in a function field of characteristic differ-
ent from two. We establish the convergence, analytic continuation, and the
functional equation for this zeta function. The method we use is that of T.
Shintani as illustrated in the work of B. Datskovsky and D. J. Wright using
adelic analysis.

As an application of studying this adelic zeta function, we obtain a mean
value theorem for class numbers of quadratic extensions of a function field.
This will be achieved by first conducting some local analysis. This local anal-
ysis amounts to studying certain integrals, which we call orbital zeta functions,
that appear in a natural way as local factors of the adelic zeta function we
started with. Next we put together the global and local information we ob-
tained to construct a sequence of Dirichlet series. Studying some analytic
properties of this sequence of Dirichlet series will yield the mean value theo-

rem.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

The study of integral binary quadratic forms goes back to Gauss. Gauss
[9] conjectured mean value formulas for the number hy of SL2(Z)—equivalence
classes of primitive integral binary quadratic forms of discriminant d. Gauss’s
formulas were first proved by Lipschitz [15] for d < 0 and by Siegel [22] for
d > 0. Currently, the best result for d < 0 is due to Vinogradov [24] and that

for d > 0 is due to Shintani [21]. Their respective formulas are as follows: For

any € > 0,
4
> ha=giget ~ 5o+ 06F,
0<—d<z C( )
Z halogeq = i TI— 1 zlogz+ ——(1— log(27r)+ (2)):L'+O(:1:3+‘)
o T IRE)T 2¢() 2C(2)
where €; = “"“/- and t and u are the smallest positive integral solutions of

12 —du® =4. _
As Gauss noted, integral binary quadratic forms are closely connected to

quadratic extensions of Q. Hence similar asymptotic formulas for class num-

bers of quadratic fields were obtained. In 1985, Goldfeld and Hoffstein [10]
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gave the following formula: If R(s) > 1, then for any € > 0,

Y- L(s,xm) = C(s)z+O(z5%),
0<tm<z | _
where C(s) = 3¢(2s)(1 —27%) [ .,(1 —p 2 - p~2-1 + p~272%), m is square-
free, and xm is the real primitive Dirichlet character satisfying (g /m)(s) =
C(s)L(s, Xm)- When s = 1, the above formula gives an asyx_hptotic formula
for class numbers of quadratic fields. In 1993, Datskovsky [2] gave a general

mean value theorem for class numbers of quadratic extensions of a number

field, namely

1 Res,—1Ck(s)? 2
lim = Z Res,—1(L(s) = 21’1(1()1-5:((1(3 CL(2)Rxs, H(l—qf—q,, S+q ).

00 T
Dp/x<z,L~Xs vgS

This formula, in turn, can then be translated into a mean value theorem
for hy Ry as Ress—1{z(s) is given in terms of hyR;, where h; and R are
respectively the class number and the regulator of L.

Our ultimate goal in this thesis is to prove similar results to what Datskovsky
did but in the case of quadratic extensions of a function field. Namely, we
would like to obtain asymptotic formulas for Z[L:,(]:z’ Dijx<s Res;—1((s),
where L/K is a quadratic extension of a fixed function field K, Dy k is the
norm of the relative discriminant of L over K, (r(s) is the Dedekind zeta
function of L. We achieve this via the theory of zeta functions associated with
the space of binary quadratic forms with coefficients in a function field. The
basic tool we use is adelic analysis in the spirit of Tate’s thesis [23].

At this point, it is worth mentioning that the zeta function we will work
with, see (1.1) below, is due originally to Shintani [20]. In his study of inte-
gral binary cubic forms, Shintani introduced and investigated certain integrals,
which he called zeta functions, which enabled him to obtain some density re-
sults about the class number of primitive integral binary cubic forms. The
results he obtained are improvements of ptevious results obtained by Daven-
port [5]. Shintani’s work was over C. The adelic version of Shintani’s zeta
function was later studied by Wright [27], Datskovsky [1] (for binary cubic
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forms with coefficients in a number field and a function field, respectively),
Yukie (28], and Datskovsky [2] (for binary quadratic forms with coefficients in
a number field). By further analysis of these zeta functions, Datskovsky and
Wright were able to obtain density results for discriminants of cubic extensions
of any global field of characteristic other than 2 or 3 (see [3] and [4]). The first
main objective of this thesis is to study the adelic zeta function associated
with the space of binary quadratic forms with coefficients in a function field.
The second objective is to obtain a mean value theorem for class numbers of
quadratic extensions of a function field. We give next a brief description of
the content of this thesis. '

Let K be a function field in one variable over a finite field of constants F,
g # 2". Let V be the 3-dimensional affine space. Identify V' with the space of

binary quadratic forms by means of the correspondence
z = (71, Tz, T3) > Fr(u,v) = 11u% + zouv + T30°.
Set G =Gly x Gly. Let G act on V as follows:

Fyz(u,v) = tF(au + cv, bu + dv)

b
for g = (¢, ( @ 4 )) € G and z € V. Now Vj is a 3-dimensional vector space
c

over K. Then this action of G on V gives rise to a representation
0:G — GI(V)

defined over K. Set H = o(G).

For z € V, let P(x) = 13 — 4,13 denote the discriminant of z. A form z is
called nonsingular if P(z) # 0 and singular otherwise. Denote by Vi the set of
nonsingular forms with coefficients in K. Set Vi = {z € Vi : [K; : K] = 2},
where K is the splitting field of F;(u, 1) over K. Let A be the ring of adeles of
K and A* be its group of ideles. We adelize G, V', and H so that Ha becomes
a subgroup of GI(Va) and Hx becomes a discrete subgroup of Ha. Let Q be
the space of quasicharacters on A* that are trivial on K*, and let S(V,) be
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the space of locally constant complex-valued functions with compact support

defined on V. Then for w € Q@ and f € §(V}), define

Z(w, f) = / w(det(h)) 3 f(h-z)dh, NeRY
Ha/Hk zeVy
where dh is a left Haar measure on Hs. This is the adelic zeta function
associated with the space of binary quadratic forms with coefficients in K.

In Chapter 2, we discuss some aspects of the action of Gx on V. In
particular, we show how binary quadratic forms are related to quadratic ex-
tensions. We also describe the stabilizer group of a nonsingular form and the
connected component of the identity inside it. In Chapter 3, we define and
establish the convergence of the adelic zeta function Z(w, f). Here we show
that Z(w, f) converges absolutely and locally uniformly for ®(w) > 1. A ma-
jor part of this thesis will be contained in Chapter 4. Here we obtain the
analytic continuation and derive the functional equation of Z(w, f). This will
be achieved by first using an adelic version of the Poisson summation formula.
This will reduce finding the analytic continuation of Z(w, f) to finding the
analytic continuation of a singular integral, denoted by I'(w, f). The idea of
analytically continuing I(w, f) is to decompose it into a sum of three integrals
depending on the singular G-orbits in Vi. For this decomposition to be
possible, we use Shintani’s idea [20] of first introducing an Eisenstein series
in I(w, f) to obtain another integral, denoted by I(w, f;w, ). Next we de-
compose I(w, f;w, $) into a sum of three integrals I'(w, f; w, ¢) for i = 0,1, 2,
analytically continue each one of them, and then convert this analytic con-
tinuation to that of I(w, f) and hence Z(w, f). In the process we introduce
some distributions in terms of which some residues of Z(w, f) are given. We
summarize the work in this chapter in Theorem 4.1.

As a consequence of our study of Z(w, f), we shall obtain the mean value
theorem we are after. This will be done in three steps. The first step is to

note that Z(w, f) in (1.1) can be written in its region of absolute convergence
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as a sum

Z(w, ) =-;- ) / w(det(h))f(h - z) dh (1.2)

IGHK\V;é HA/(HQ)K

where the sum is over a complete set of representatives of all Hg-orbits in
Vk. Also H? is the connected component of the identity in H,, the stabilizer
group of z in H. One important point to note here is that due to the nature
of the action of Hg on Vg, the sum in (1.2) is in fact a sum over all quadratic

extensions of K. Each integral in (1.2) can be written as a product

czp(x) w(det(h')) f(H' - z) d A (1.3)
Ha/(HZ)A
where
u(z) = / d'h", (1.4)
(H2)A/(H2) K

d,.h' and d?h” are measures on Hp/(HZ)a and (HZ)a/(HZ)k respectively,
and ¢, is a constant given by dh = c.d_h'd]h"”. What makes the sum in (1.2)
interesting is that for a suitable choice of the measure d’h", u(z) will be given
in terms of the divisor class number of the quadratic extension K, of K.

For f = [Lemu fu, the integral in (1.3) can be written as a product of

local integrals

[ et £k - o) i, (15)
Hy, /(H?) Ky

veM(K)
Each local integral in (1.5) will be denoted by Z.(w,, fy) and will be called an
orbital zeta function. In Chapter 5, we study some properties of Z,(wy, fv)-
The second step toward the mean value theorem is to put together the
global and local information obtained in Chapters 4 and 5 and construct a
Dirichlet series & (w) whose value at w = w; is given by

_hok ho,k. Cx,s(3s — 1)Ck,s(3s)?
Exs (s) ~ 9 Z Dz%s | CKz,S(3s)

[Kz:K]=2,x~xs

where ho x and hg k., are respectively the divisor class numbers of K and K,,;
Cr,s(s) = [Togs( — a5 *)~1 is the truncated Dedekind zeta function of K, D,
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is the absolute norm of the relative discriminant of Kz over K , and finally
the symbol = ~ x5 specifies some local conditions of K, at the places of S. In
Section 6.1 we will study some analytic properties of &, (w).

Finally, from & (s) we construct a sequence of Dirichlet series &, 7.(s)
where {T;}2, is an increasing sequnce of finite subsets of M(K), the set of
all places of K, such that S C T; and lim;_,o, T; = M(K). Denote the residue
of &s1.(s) at s = 1 by Ry, ;. The important point here is that the limit
lim; ;o Rxs1; = Ry exists and nonzero. We can now state the mean value

theorem.

Theorem 1.1 We have

1
lim — Z ho k. = 3logq - Rxs

n—oo g3n

T~XgS, i'_qSu
where x(2) B2
2 Ck 0,K -2
Ry = oo va 1- + v
s 3(q—1)10gqg g( & %)
and
—11’—1_2-2 _ if (Ko)x, = Ky
Ry, = _(1_qz;l - if [(Ku)x, : Ko] =2, unramified

0.71(1—(1‘7;)2(1+q:1) if [(Ku)xu . Kv] — 2, Tamiﬁed, Qv # on_

For a proof, see the proof of Theorem 6.1 in Section 6.2.

1.2 Notations

For any set A, we let |A| denote the cardinality of A. We denote by Z, R, C
the ring of integers, the field of real numbers, and the ﬁeld of complex numbers,
respectively. For a ring R, we denote by R* the group of invertible elements
of R. We use the symbol | | to indicate disjoint union. For two expressions E;
and E,, we write Fy < E, to mean E; < cE; for some consfant c. For z € C,

we denote by R(2) and ¥(z) respectively the real and imaginary parts of 2.
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Suppose G is a locally compact topological group. Let I' be a discrete
subgroup of G contained in the maximal unimodular subgroup of G. Then for
any left invariant measure dg on G, there exists a left invariant measure dg on
G/T such that if f is an integrable function on G, then

/Gf(g) dg =/G/sz(g7) dg.

~er

In what follows, we will denote both measures on G and on G/T by the same
symbol, namely dg.

Throughout this thesis, K will denote a function field in one variable over
a finite field of constants Fy, g # 2". The genus of K will be denoted by g.
Let M(K) denote the set of all places (equivalence classes of absolute values)
of K. For v € M(K), let K, be the completion of K at v, O, be the ring
of integers in K,, O} be the group of invertible elements in O,, m, be a fixed
uniformizer of K,, ¢, be the cardinality of the residue field O,/w,0,, and
| - |» be the absolute value of K, normalized so that |m,|, = ¢;*. The ring of
adeles of K will be denoted by A; explicitly, A = {z = (z,) € HHGM(K) K,:
z, € K, and z, € O, for all but finitely many v}. The group of ideles of K
will be denoted by A*; explicitly, A* = {z = (z) € [Liemu K> : 2w €
K and z, € O] for all but finitely many v}. Endowed with the restricted
product topology, A and A* become a locally compact topological ring and
group, respectively. We denote by | - s the adelic absolute value on A* given
by [z]a = [k |%ulv for z = (z,) € A*. Weset Al = {z € A" : |z]a =1}.

Let P be a finite subset of M(K). We set Ap = [[,cp Kuv[[,gp Ov and

p = Il,ep K [Togp O5- We also define A(0) = [T,eprk)Ov» and A*(0) =
HuEM(K) 0;.

Let G be a locally compact topological group. A quasicharacter of G is a
continuous homomorphism of G into C*. We let Q@ = Q(A*/K*) denote the
group of quasicharacters of A*/K*, which will be identified with the group of
quasicharacters of A* that are trivial on K*. The priricipal quasicharacters
are those given by w,(z) = ||} for s € C. For w € 2, define the symbol §(w)
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as follows:

1 Fw(t)=1Vte Al
dw) =
0 otherwise.

V will denote the 3-dimensional affine space. We let G = Gl; x Gly,

B={geG=g=(t,(‘: Z))},amd:r={gec;:g=(t,(:)z 3))}-The

following notations will be used to denote some particular elements of G:

ti 0 _ Loy, oo 10
d(t,t1)=(t,(0 tl)),a(r)—(l,(o T)), () (L(u 1))-

If X is an algebraic variety and R is a ring, then we let X be the set of
points of X with coordinates in R. If G is a group acting on X on the right,
we let G\ X denote the orbit space of this action. For z € X, the stabilizer
group of z will be denoted by G, and the connected component of the identity
in G; will be denoted by G3.

Other notations will be mentioned as the need arises.
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CHAPTER 2

THE SPACE OF BINARY
QUADRATIC FORMS WITH
COEFFICIENTS IN A
FUNCTION FIELD

2.1 Binary Quadratic Forms |

Let K be a function field in one variable having as constants the finite field
F,, where g # 2". Let V be the 3-dimensional affine space. Identify V with

the space of binary quadratic forms by means of the correspondence
z = (T}, Tz, T3) «— Fy(u,v) = z,u® + Touv + z30°. (2.1)
Set G = Gl; x Gl,. Let GG act on V as follows:

Fg.,(u, v) = tF(au + cv, bu + dv), (2.2)

' b
for g = (¢, ( N J )) € G and z € V. Now Vk is a 3-dimensional vector space
c

over K. Then this action of G on V gives rise to a representation

0:G — GI(V) (23)
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10

: t 0
defined over K. The kernel of g is the 1-dimensional torus T, = {(t 2, ( 0 ) )}
t

lying in the center of G. Set H = g(G). Then H is a closed subgroup of GI(V).
For z € V, denote by P(z) the discriminant of z : P(z) = 73 — 4z,z3. For

g = (t, ( Z Z )) € G, set x(g9) = t(ad — bc). Then P(g-z) = x(9)%P(z).-

We call z € V nonsingular if P(z) # 0, and singular if P(z) = 0. The
set of all nonsingular forms in Vi will be denoted by V. By the splitting
field of a form =z € Vi we shall mean the splitting field of the polynomial
F:(u,1) = z;u® + Zou + 73 over K and will be denoted by K.

Proposition 2.1 Two nonsingular forms in Vi are G-equivalent (i.e, they
lie in the same Gg-orbit) if and only if their splitting fields over K are the

same.

Proof : Let z,y € Vg be such that y = g -z for some g € Gg. As the
splitting field of y is K, = K(1/P(y)) and that of z is K, = K(/P(z)) and
Py = x(y)zP(x)‘, then K, = K, (x(y) € K). Conversely, suppose z,y € Vg
have the same splitting field over K. If this splitting field is K, then z and
y are Gg-equivalent to the form uv and hence z and y are Gg-equivalent.

Suppose this splitting field is quadratic. Write

Fp(u,v) = 11u® + Touv + z3v° = 1, (u + 0v)(u + 6'v)

F,(u,v) = y1u? + youv + y30% = y1(u + av) (v + a'v)

where 6’ and o’ are the Galois conjugates of 6 and «, respectively, and K, =
K(#) and K, = K(«). Since the splitting field of z and y is quadratic, then
z, # 0 and y; # 0. Now if K; = K, then a = e + bf for some a,b € K.

10
Suppose first b # 0. Then Fy(u,v) = Fy,(u,v), where g = (g{, ( ; )).
a '
This implies y = ¢ - = and hence z and y lie in the same orbit. -
Next suppose b = 0. Then o € K and hence § € K too. So if we put

' 10
a = cf for some c € K*, then Fy(u,v) = Fy(u,v), where g = (¥, ( 0 ))
_ | ‘ c
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11

This implies ¥y = g - = and hence z and y lie in the same orbit. This completes

the proof. @

Corollary 2.1 Nonsingular Gg-orbits are in one-to-one correspondence with

extensions of K of degree less than or equal to 2.

Corollary 2.1 is the reason why studying the space of binary quadratic
forms over K and the zeta function associated with it will lead to information

about the quadratic extensions of K.

2.2 The Stabilizer of a Nonsingular Form

In this section we will describe the stabilizer group G, of a nonsingular
form z € V) and the connected component of the identity G2 in G.. This
information will be useful to us in Chapters 5 and 6. Without loss of generality,
we assume z is monic, i.e, z = (1, T2, Z3), and consider two cases.

Assume first that z splits over K. By Proposition 2.1, z is Gk-equivalent
to the form uv and hence G, is conjugate to G,. Straightforward calculations
yield

Gy = {((ad)7H, ( Z 3 )), ((bc)7t, ( 0 Z )) €G:a,bc,de K*}.

c

Now G, is a closed subgroup of the linear algebraic group G, and hence
Guy is also an algebraic group. Note that N = {((ad)™!, ( g 3 )) €G:
a,d € K*} is a closed subgroup of G, and the cosets of N in G, are N
and (1, ( (1) (1) ))N . Thus N is a closed normal subgroup of G, of index
2 and hence N D Gg,, the connected component of the identity in Gy,. As
{( * 3 ) :a,d € K*} =2 K* x K* as groups and varieties and the ‘variet’y

0
K* x K* is connected (irreducible), then N is an irreducible subset of G,,.

Thus N is contained in some connected component of G,,. But as the identity
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12

isin N, then we must have N C G, (every element of G, belongs to exactly
one irreducible component). Hence N = G, and |G, /Gy, | = 2.

Next we assume z does not split over K, i.e, the splitting field K, of =
is a quadratic extension of K. If we write F;(u,v) = (u + 6v)(u + @'v), then
K, = K(#) and # is the Galois conjugate of § over K. Thus we can also write
F:(u,v) = Ng_/x(u+6v), where Nk, k(-) stands for the norm function in K,

b
over K. Let us describe G,. For g = (¢, ( N 4 )) € G, we have
c

Fg'I(UY 'U) = tNK::/K(a + bo)NK::/K(u + av)

where o = ii—‘,fg. If F,.(u,v) = Fy(u,v), then on comparing the coefficient of
u?, we get tNk,/kx(a+b0) =1 and hence o = @ or 0 = #'. Thus we have found

that

b
Gzz{(t,(a d))eG:tNKz/K(a+b0)=1 and o =6 or#}.
c

As in the splitting case, G is algebraic group. To describe G3, we utilize
Proposition 2.1. Let K be an algebraic closure of K. Then the two forms
uv and Fp(u,v) = (u + 6v)(u + @'v) both split in K and hence they are
G z-equivalent and consequently their stablizer groups are conjugate: i.e, there
exists g € Gg such that G2 = ¢G3,g9™". Since for h € G2, we have x(h) =1,
then we may describe G2 as G2 = {g € G, : x(g) = 1}. It turns out that
G; = {9 € G : tNk,/k(a + b0) =1 and o = 0}. Furthermore, |G,/GZ| = 2

01
since the cosets of G} in G, are given by G2 and (3, ( 0 ))G; where
n

n= NK:/K(a).
Consider the map ¢ : G3(K) — Gl,(K;) given by ¢(g) = a + b8, for

b
g = (¢ ( “ J )) € G2(K). Then ¢ is a morphism of linear algebraic
c

groups defined over K,. Further, since ¢ is one-to-one and onto, then we have
G:(K) =2 Gl;(K,) as groups. This in turn implies that G2(K) is isomorphic
to the base restriction Rg, /x(Gl,) of Gl, from K, to K.{ For given G|,(K;),
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we find the base restriction G'(K) = Rg,/k(Gl;) so that G'(K) = Gl (K,)
as groups. But since ¢ implies G3(K) = Gl;(K,) as groups, then we have
G3(K) = G'(K) = Rk,/k(Gl1).] For more information about base restric-
tion, see [18] and [25]. We summarize the above discussion in the following

proposition.

Proposition 2.2 Let ¢ € V.. Then
1. |G</Gg| =2.
2. If [K; : K| =2, then G3(K) = Rk, /k(Gl).-
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CHAPTER 3

THE ADELIC ZETA
FUNCTION: DEFINITION
AND CONVERGENCE

3.1 Definition of the Adelic Zeta Function

In this section we will define the adelic zeta function that we will work
with. For this, we first introduce some notations. As in Chapter 2, let K be a
function field in one variable with field of constants Fj, where g # 2". Denote
by M(K) the complete set of absolute values defined on K. For v € M(K),
let K, be the completion of K at 1), O, be the ring of integers in K,, O,
be the group of invertible elements in O,, 7, be a fixed uniformizer of K,,
g» be the cardinality of the residue field O,/n,0,, and | - |, be the absolute
value of K, normalized so that |m,|, = ¢;!. Denote by A and A* the ring of
adeles and the group of ideles of K, respectively. K can be identified with a
discrete subgroup of A by the diagonal embedding. Let V, be the space of
binary quadratic forms with coefficients in A. Then Vi is discrete in V3. Set
Vik={zeVL:[K,:K]|=2}.

In Chapter 2, we set H = g(G) C GI(V). We adelize H and so Ha becomes
a subgroup of GI(V,) and Hg becomes a discrete subgroup of Hy. We observe
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here that Vi is Hg-invariant as any two Hg-equivalent forms have the same
splitting field.

Let © be the space of quasicharacters on A*/K* , which will be identified
in a natural way with the space of quasicharacters on A* that are trivial on
K*. Let S(Va) be the space of locally constant complex-valued functions with
compact support defined on V. For w € Q and f € S(V,), define

Z(w, f) = / w(det(h)) 3 f(h-z)dh (3.1)
Ha/Hg sevy
where dh is a left invariant Haar measure on H,. This is the adelic zeta
function associated with the space of binary quadratic forms. Of course, the
definition makes sense provided the integral converges. Our first objective in
this work is to study the convergence and analytic continuation of Z(w, f)-

Denote by |-| o the adelic absolute value on A* given by [z|5 = HueM( K) |Zy v
for z = (z,) € A*. Let A' = {z € A* : |z|]a = 1}. Then K* C A!, by the
product formula. Further, A!/K* is compact. Since A*/K* = Al'/K* x Z,
then every quasicharacter w on A*/K* can be written as a product Gws, s € C,
where w; is the principal quasicharacter, w;(z) = |z|4, and @ is a character
on A!/K*. In the decomposition w = @ws, s is unique modulo %g—le. To
be more precise, the morphism s — w; of C onto the subgroup of principal
quasicharacters has kernel l—i%%Z. We also note that while s in the decompo-
sition w = @w; is not unique, RN(s) is unique. So we set R(w) = R(s). Thus
the decomposition w = @w, implies that  is isomorphic to the direct product
of the dual of A'/K* and C*. Since A!/K™ is compact, and so its dual is
discrete, we may view (2 as a discrete union of copies of C*. So by analytic
continuation of a function on (2, we shall mean its analytic continuation on

each copy of C*. For proofs of the above facts, see [26].

3.2 Description of the Haar‘Measures

To study the convergence of Z(w, f), we need three things: (i) a description
of a Haar measure dh on Hy, (ii) a description of a fundamental domain for
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Hg in Hp or a slightly bigger set that contains a fundamental domain, and
(iii) a bound for the integrand. We start first with (i).

To describe a Haar measure on Hy, we make use of the Iwasawa de-
composition Go = KBa, where K = HveM(K) K,, K, = Go,, and By =

0
{@, ( Z 4 )) € Ga}. K is the maximal compact subgroup of Ga. To prove

this decomposition, it is enough to prove it locally, i.e, Gx, = K,Bkg, for
v € M(K). Let |- [, be the absolute value on K,. Let (¢, ( « ? )) € Gk, -
Y

If =0, then we are done. So suppose 8 # 0. If |8, < ||y, then § # 0 and
I%Iv <1,ie, £ €0, and we have

=B *
(1,(; : ))(t,(j fj))=<t,(* 2))631(.,

If |B]y > |6]y, then |g—|,, <1,i.e, % € O, and we have

=4 o *
(11(i ;))(ta(7 ?))=(ta(* 2))631(1:

For uniqueness, suppose x1b; = k3be, where k; € K, and b; € Bg,. Then
Ky k1 =bob]! € K,N By, = Bo, . Thus k; € k2Bo,, i.e, k; is unique modulo
By
modulo Bp,. Thus the decomposition is locally unique modulo \Bo,/. ( So if
we write k1 = kob and b, = b'by, b,b € Bo,, then kb, = Kobb'be, b € Bo,).
We also note that every element b of B, can be written uniquely as

b = d(t, t1)n(w)a(r), where d(t, 1) = (t, ( 1:)1 Z )), n(u) = (1, ( 114 g ))’

Also biby' = (bby1)~! € By, implies b; € Bp, b, and so b; is unique

v

10
a(t) =(1, ( 0 )) and u € A, t,t;,7 € A*. This follows from the following
T

(32)pmuz (2

identity:
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The uniqueness part is trivial.
Now we are ready to describe a Haar measure on Hs. Let du and d*t be
respectively an additive and multiplicative Haar measures on A and A*. Let

d't be a Haar measure on A!. Normalize du and d't so that
Jajx du=1and [y, (. d't=1

By the Iwasawa decomposition, the map p : Xx By — Ga, given by p(k, b) =
kb, is surjective. We define a Haar measure dg on G5 by setting dg = dkdb,
where db is a Haar measure on B, and dk is a Haar measure on K normalized

so that
f)c de =1.

Since, as we pointed out above, every element b of B, can be written uniquely
as b = d(t,t1)n(u)a(r), where u € A, t,t;, 7 € A* then it follows that the

0
map ¢ : A* X A* X A x A* — By, given by ¢(t,0,7,9) = (¢, ( @ 5 )), is
4

surjective. We define a Haar measure db on By by setting db = d*td*t;dud"T.

At this point we will mention one observation that we will use later.
Note that b can also be written uniquely as b = d(t,¢1)a(r)n(u). If we
write b this way, then the measure db takes a slightly different form. Since
a(t)n(u) = n(ut)a(r), then b = d(t, t;)n(ur)a(r) and the measure becomes
db = |T|ad*td*t,dud*T.

Finally, since H & G/T,, where T, = {d(t{%t) € G}, then we de-
fine a measure dh on H by setting dg = d*t;dh. Explicitly, if we write
h = o(kd(t,1)n(u)a(r)) then dh = drd*tdud*r. While if we write h =
o(kd(t, 1)a(T)n(u)) then dh = |T|adrd*tdud*T.

We close this section by an observation about the uniqueness of the Iwasawa
decomposition. When we write g = rd(t, t,)n(u)a(r) or g = kd(t, t;)a(r)n(u),
then in both cases k is unique modulo Bo,, as we observed above, and‘t, t1,
and 7 are unique up to multiplication by A*(0) = [[,car(x) O;- However, u
is unique up to multiplication by A*(@) followed by a translation by A (@) =
ITuerrx) Ov in the first, while it is unique modulo 1A (@) in the second.
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3.3 Convergence of the Adelic Zeta Function

We start by quoting a result that describes a set that contains a funda-
mental domain for Hg in Ha. Namely, we summarize Lemma 2.1 and Lemma

2.2 of [1], modified to fit our situation, in the following lemma:

Lemma 3.1 Every element of Hp is right Hg-equivalent to an element of the

set
S = U, Uk o(kn(u)d(t, 1)a(T))

where t and T run over a set of representatives of A*/K*A*(0) in A*, |T]|a <

q°8, and u runs over a finite set in A. (Here, g is the genus of K and A*(0) =
[Moermex) O3)-

Next we give a bound for the integrand of Z(w, f).

Lemma 3.2 Let h = g(kn(u)d(t,1)a(r)) € S. Then
1. There exists an integer ¢ such that Ezev;g |[f(h-x)| =0 if |t|]a > ¢°.
2. For any h with |t|a < q°, we have }_ . |f(h-z)| = O(|tr|2Y)-

Proof : Let A be as in the lemma. Let z € V§. Then
h -z = o(kn(u)d(t,1)a(7)) - £ = kn(u)d(t, )a(r) -

Now h -z € Supp(f) iff d(t,1)a(r) -z € n(—u)k™! o Supp(f) C n(—uw)Ko
Supp(f)- Let S(f) = U, n(—u)KoSupp(f) C Va. As Ko Supp(f) is compact
and the number of u'® is finite, then S(f) is compact.

For z = (x1, z2, z3), we have
d(t,1)a(T) - z = (tz1, t1Z,, t7273).

Since d(t,1)a(r) - z € S(f), then the adelic absolute value of the first and the -
second coordinate of d(¢,1)a(7) - z are bounded, i.e, there exists an integer

¢ > 0 such that

max(|tzy|a, [tTT2]A) < ¢°.
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Since z is nonsingular, then z; and z, cannot both simultaneously be zero.
Since [K; : K] = 2, then certainly z; # 0. If z; = 0, then the above inequality
reduces to |t < ¢°. If zo # 0, then the above inequality implies [t[a <
[t|a max(1, |7|a) < ¢°. Thus we have shown if h -z € Supp(f), then [t|s < ¢°
This proves (1) of the lemma.

To prove (2), note first that there exists M > 0 such that |f(z)| < M for

all z € V5. So we have

2 zevic [f(h-7)| < M|{z € Vi : h-z € Supp(f)}
< M|{z € Vg : d(t,1)a(r) -z € S(f)}|
Since S(f) is compact, then there is & € A* such that S(f) C (aA(0))3, where
A(0) = [I,emx) Ov- So we need to find a bound for the cardinality of the set

R={z € Vg :d(t,1)a(7) -z € (cA(D))3}.

But z € R iff z; € t71aA®), z2 € t 177 'aA(D), and z3 € t 7 2aA (D).
We estimate the number of such z;*. By Riemann-Roch theorem, see [14], we
deduce |K N BA(®)] = O(max(1,|8]a)) for any 8 € A*. Thus the number of
z*, i = 1,2, 3, are respectively O(max(|t~|a,1)), O(max(Jt"'7—1|a, 1)), and
O(max([t™'772|s,1)). Note that |a|a is constant. But O(max([t7*|a,1)) =
O(Jt~'|a max(1, [t|a)) = O(|t7!|A), since |t|a < ¢°. Similarly we have
O(max(jt~177 4, 1)) = O(|t71771a) and O(max([t1772|4, 1)) = O([t~1772|A)-
This implies the cardinality of R is O(|t7|{*) and hence the lemma follows. B

We are now ready to state and prove the main theorem of this chapter.

Theorem 3.1 The integral defining Z(w, f) converges absolutely and locally
uniformly in w for R(w) > 1. Thus Z(w, f) is analytic in the region N(w) > 1.

Proof : Let w = @w, and R(s) = 0. Then for h = g(kd(t, 1)n(u)a(r)), we
have
1Z(w, O < Jup/ng lw(det(h)] ey | f(h - z)| dh
< fsa(det(h)) Xpeyy | (k- )] dh
<K Dltia<es 2 irla<e® Lzav¢lzdre

= Yiase X 7 Eprjacere [T
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Here we have used the fact that the number of u* is finite and that [, dx = 1.
Also t and 7 run over a complete set of representatives of A*/K*A*(0).
Since the set {t € A*/K*A*(0) : |tl]a = ¢~ ™} is finite, its cardinality is
|Al/K*A*(0)|, say N, then we have

Pitia<e R 2 priacge TR =N . S DN RS

and both series converge absolutely and locally uniformly for ¢ > 1. The

theorem now follows. I

34 Z_(w,f) and Z,(w, f)

For analytic continuation purposes, we make some definitions. Set

Hy = {h € Ha : |det(h)|a < 1},

and
Hf ={h € Hp : |[det(h)|a > 1}
Set ‘
(1 If|det(h)|a < 1
A(h)={ i If|det(h)|la =1
| 0 I [det(h)]a > 1
and
(0 If|det(h)|a < 1
Ai(h)=q i If|det(h)a=1.
| 1 If[det(h)[a>1
Define :
Z_(w, f) = det(h))\_(h h - ) dh, 3.2
@, f) /Wﬂxw(e( ) ()g‘;’éf( z) (3.2)
- h - ) dh. .
Zo(w, f) [H AR ZVK f(h-2) (3.3)

Proposition 3.1 Z, (w, f) is an entire function of w. Further, it is a polyno-

mial in ¢°, w = Qws.
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Proof :Let St={h €S : |det(h)|a > 1}. Then S* contains a fundamental
domain of Hg in Hf. Let c be the constant found in Lemma 3.2. Set S*(c) =
{h € S* : |[t(h)|]a < ¢°}. Then the integral Z, (w, f) is an integral over a
subset of S*(c). We describe S*(c) and show that it is compact. Observe
that S*(c) = Uy U+ o(kn(u)d(t, 1)a(T)), where the number of «'* is finite,
t and 7 run over a complete set of representatives of A*/K*A*(}) such that
|tla < ¢° and [T]a < ¢%, and |det(h)|a = [t7|} > 1. The inequality [tr[} >1
implies
L. [t} > |r|2® > ¢ % and hence ¢728 < |t|5 < ¢ and

2. |7} 2 It3° 2 ¢ and hence ¢~ < |r|a < g%

This shows that the number of £ * and 7'¢ is finite, and hence S*(c) is cbmpact.

So we have

|Ze(w, I < fs+(c) wo(det(h)) Z;ev,’é |f(h-z)|dh
< Zq—z‘SItIAStI‘ |tl?:_3 z:ll“SIT la<q?® I'rlaAa—3
Since the two sums on the right are finite, they converge absolutely and locally
uniformly for all 0. Thus Z,(w, f) is entire.
Let H = {h € Hj : |det(h)[a = ¢"}. Then Hi = | [o-, Ha. Also for
h € H}, w(det(h)) = @(det(h))|det(h)|} = g**w(det(h)). So we may write

Zi(w,f) =3 Jug/m, @(det(h)) ooy f(h-z) dh
+ 3o d™ IHR/HK w(det(h)) Zzev;é f(h-z)dh
Let S® = {h € S : |det(h)|a = ¢"}. Then S™ contains a fundamental domain
of Hx in HE. Again for c as above, let S*(c) = {h € 8" : [t(h)|a < ¢°}.
Then each integral over Hj /Hg is an integral over a subset of S™(c). As
above, it is easy to show that for A € S™(¢), we have g3 7% < |t(h)|a < ¢°and
¢3¢ < |r(h)|a < ¢*8. So the number of t'* and 7'* is finite and hence S™(c)
is compact. Observe also that S* = || 8™ and S*(c) = .;“":08"(c). By
the finiteness of the number of ¢* and 7 in S*(c) and S™(c), it follows that
S*(c) = U, S™(c), a finite union. Thus the above sum is in fact finite. As
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above, each of the integrals converges absolutely and hence converges. Also

each integral is independent of s. This completes the proof of the proposition.
|

Remark 3.1 1. As Z_(w, f) is dominated by Z(w, f), then Z_(w, f) con-
verges absolutely and locally uniformly for ?R(w) > 1, and hence it is analytic
in this region.

2. We also note that Z(w, f) = Z+(w, f) + Z_(w, f)-
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CHAPTER 4

THE ADELIC ZETA
FUNCTION: ANALYTIC
CONTINUATION AND
FUNCTIONAL EQUATION

4.1 Poisson Summation Formula

Our goal in this chapter is to obtain the analytic continuation and the func-
tional equation of Z(w, f). To achieve this, we first use the Poisson summation
formula. v

Let 1 : A — C* be a nontrivial additive character of A which is trivial on
K. Identify A with its dual by means of the correspondence y — 3, where
¥y (z) = ¥(zy). Under this identification, K becomes self-dual.

Define a symmetric bilinear form [*, *] on V3 by

[z, 4] = Z1y3 — 32292 + T3y

Identify Vj with its dual by means of the correspondence y — 1, where
¥y (z) = ¥([z,y]). Again, Vi is self-dual under this identification. We remark
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here that the bilinear form [+, ] is chosen so that [z,y] = [g - z, ¢' - y], where

a b b
gz(t:(c d))andg":(t‘l,adibc(z d))‘

For an additive self-dual Haar measure dy on Vj, we take dy = dy;dy.dys,
where dy; is the additive normalized Haar measure on A given in Chapter 3.
For f € S(Va), the Fourier transform f of f is defined by

f@) = f, F@b(e y]) dy.

It follows that f € S(Va) and f: = f. Applying the Poisson summation
formula to the lattice Vi yields
@)= fla) (41)
eV z€Vk
For our purposes, we use a different version of the Poisson summation formula
from that given by equation (4.1). Let h = o(g). Set fu(z) = f(h-z) and
B = o(g'). It is easy to show that f, = |det(h)|3} fr- With this, equation

(4.1) becomes

> f(h-z) =w_i(det(h)) D F(H - ) (42)

TEVK z€VK
Let Sx = Vkx — Vk. By Remark (3.1), we have

Z(w!f) =Z+(w!f) +Z—(w1f)
Let us apply equation (4.2) to the sum in Z_(w, f):

Z (w,f) = fH’A/HK w(det(h))A_(h) Zzev;é f(h-z)dh
= fHA/HK a;(det(h))/\_(h) [EzeVK f(h-z)— EzESK f(h-z)]dh
= [t/ @ (det(R))A_(h) -1 (det(R)) v, F(H - 2)
= zes f(h- z)] dh '
= fHA/‘HK A (h)w(det(h))w-,(det(h)) EzeV;(' f (A" - )
+e(det(h))A—(h) T,es, [w-1(det(R) F (R - ) — F(h- )] dh

Now consider the integral

Jan e A-(Rw(det(h))w_(det(h)) 3 zevy f(W -z)dh
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Making the change of variable h —» h’, we get dh — dh' = dh. Since

10
R o= o((t72, ( 01 ))h, then det(h') = det(h)™!. So if |[det(h)|a < 1,

then |det(h')}|a > 1. So the last integral reduces to
Sin e A+ (R (det(R))wi (det(R)) vy £(B' - 2) dW

which is nothing but Z(w,w™, f). We summarize all of this in the following

proposition.
Proposition 4.1 We have
Z(w, f) = Z+(w, f) + Zi(wrw™, f) + I(w, ),
where
I(w, f) = [gu n, @(det(R)A-(h) T cs, [w-1(det(R)) f (' - z) — f(h - z)] dh

We note that by Theorem 3.1 and Proposition 3.1, it follows that I(w, f)
converges absolutely and locally uniformly in the region R(w) > 1. Further,
since Z, (w, f) and Zy(wiw™, f) are entire functions of w, then finding the
analytic continuation of Z(w, f) amounts to finding the analytic continuation
of I(w, f). For this, we first describe the set Sk.

Every element of Sk is Hg-equivalent to one of the following forms: 0, v?,

uv. We describe the stabilizers of the sets |J,cx-(0,0,a) and J,cx- (0, a,0).

b .
. )) It is easy to show that F  (u,v) =

Let z = (21,22, z3) and g = (¢, ( ¢

F;(u,v) if and only if

z1 = t(a®z; + abz, + b?z3),
z2 = t(2acz; + (ad + bc)zo + 2bdzs),
I3 = t(62$1 + cdzy + d2$3)

If z = (0,0, z3), z3 # 0, then gz has the same form as z if and only if b = 0.
So the set stabilizer of | J,cx.(0,0,a) is Bx. If z = (0,72,0), z; # 0, then
g - = has the same form as z if and only if either a =d =0 or b=c = 0. Let
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0
Tk ={9€Gk:9= (¢, ( Z 4 ))} Then the group 7k generated by Tk and

01 '
the involution 7 = (1, ( Lo ) ) is the set stabilizer of the set | J,cx- (0, a,0).

We also note that, by definition of the action of H on V, if h = p(g) for
some g € G, then h -z = z if and only if g - z = z. We summarize the above

discussion in the following proposition.

Proposition 4.2 We have Sk = |2, Sk, where

1. 8% = {0}

2. Sk = Userre/Bxe Uaek- 7 - (0,0, a), where Bx = o(Bk)

3. 5% = U,ea, T Ueek- 7 - (0,a,0), where Tk is the subgroup generated by

o(Tx) and o(3) = o((1, ( ‘1’ ; ))

Proposition 4.2 hints that to analytically continue (w, f), we first break
up the sum in I(w, f) into sums over each Si and then analytically continue
each resulting integral. Unfortunately, the resulting integrals do not converge.
To remedy this problém, we use Shintani’s idea of introducing an Eisenstein
series to make each integral of the sum over S% converge. So our next task
is to describe the Eisenstein series introduced by Shintani and show how to
use it to recover the convergence we want. This will be done in the next two
sections.

Later in this chapter we will need to integrate over Ha /Bx, Ha /0(Tk), and
Hy/ Tk. Such integrals are given explicitly as follows: For f; € L!(Ha/Bk)
and f, € L'(Ha/0(Tx)), we have

/HA/BK Silh) dh = /x: /;‘/K' /A'/m A/K fi(xd(t, 1)a(T)n(u)) |7|adrd td rdu,

L’A/Q(TK) foh) dh = /; /; JKe ‘/;\. )K. ,/; fa(kd(t, )a(T)n(u)) |7|adrd™td 7du.

For the integral over H, A/"f'x, we first describe GA/'T}( For u = (u,) €A,
define a(u) = [[,epr(k)sup(l,; [tv]y). Then for g = xd(t, )n(u)a(r) € Ga, we

v
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have |7(gi)[a = a(u)?|T(g)lx'- To prove this, we need to find the Iwasawa
decomposition of gi. Note that a(r)i = id(1,7)a(T™!) and n(u): = in(u)f,
where n(u)t is the transpose of n(u). Then we get gi = kd(t, 1)n(u)a(r)i =
& d(tT, 1)n(u)ta(r™1), where £ = xi. If u € A(0), then n(u) € K and hence
gt = Kk d(tT,1)a(r™"), where K = kn(u)t. This implies that a(u) = 1
and 7(gi) = 7(g)"L. If u ¢ A(0), then there is a finite subset P of M(K)

1
Such that Uy ¢ O‘U ifand Only if v € P- Wl‘ite n(u)t = (1: ( O 1: )) =

1 uy, 1 uy
HveM(K)(l,(O ul )).vaqéP, then (1,(O ul ))GIC,, If v € P, then

1 )] O 1 -1 0
1, ( 0 1; )) = (1, ( ! ))(1, ( u; y )). In this decompsition,

the first factor lies in KC,, and the r—part of the second factor (in its local
Iwasawa decomposition) is == u2. Thus 7(g¢) = wr(g)~!, where w = (w,)
and w, =u2 if v € P and 1 otherwise. Since |w|a = a(u)?, the result follows.

Since |T(g7)|a|T(9)]a = a(u)?, then either [T(g)|a < a(u) or |7(gi)|a <
a(u). Set F = {g = kd(t,1)n(u)a(r) € Ga : |7(9)|a < a(u)}. Then Fi =
{9 € Ga : |7(g)|a > a(u)}. Note that G = F|JFi and F(NFi={g €Ga:
IT(9)|a = a(u)}. Set F* = {g = rd(t,1)n(u)a(r) € Ga : |T(g)la <* a(u)};
more precisely, F'* consists of all elements g € G4 such that [7(g9)|a < a(u)
and "half’ the elements in F'[] Fi. (For our purposes, we really only need half
the measure of F'() Fi.) Thus F*/Tk is a fundamental domain of 7Tk in Ga.
So for any f € L}*(Ha/Tk), we have

/HA/?K f(h) dh = /;c /A- /K* /A [A.-/K-,[ms-a(u) f(e(xd(t, 1)n(v)a(r)) drd"tdud"r.

4.2 Shintani’s Eisenstein Series

In this section we collect the basic properties of Eisenstein series that are

relevant to our work. We first define the Eisenstein series as given in [1] as

—z_1
2

E(9,2) = Xoreon/mic IT(97) 1A’
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for g € G5 and z € C. E(g, z) converges absolutely and locally uniformly for
R(z) > 1, and it is a rational function in g*. Note that E(g,z) is invariant
under multiplication by KZ(G) on the left and by G on the right (Z(G) is
the center of G). Also the summand is right Bx-invariant, so the sum over
Gk /Bg is well-defined. For our purposes, we modify E(g,z). Let h = o(g)
for some g € G5. Define 7(h) = 7(g). This definition is well-defined since
Ker(o) C Z(G). We define

Ehz)= Y |+ (43)
YEHK /B
Note that essentially E(h, z) = E(g,z). So E(h,z) converges absolutely and
locally uniformly for (z) > 1.

Write h = o(xd(t, 1)a(t)n(u)). Since E(h, z) is right Hg-invariant, then
in particular E(ho(n(a)),z) = E(h,z), i.e, E(o(kd(t,1)a(m)n(u + a)),z) =
E(o(xd(t,1)a(m)n(u)), z) for all a € K. So thinking of E(h, z) as a function of
u, we see that it is invariant under the map u — u + a for all @ € K. Thus

E(h, z) has a Fourier expansion:

E(h,z) = Co(r,2) + Y _ Ca(r, 2)t(an) (4.4)
rd |

For the properties of this Fourier expansion, we quote Proposition 3.2 of

[1] in the following lemma.

Lemma 4.1 For E(h, z) given in (3.4), we have

1. Cy(r,2) = ITIX%-% + lfli_%ql‘ga%%%, where (x(z) is the Dedekind zeta
function of the field K.

2. Let [r] = 3., cpk)(ordu(7))v denote the divisor of T and let [{] stand for
the canonical divisor associated with the character 1. Then C,(1,z) = 0 for
alla & L([yp]—[7]), the linear system of the divisor [¢]—[7]. Ifa € L([v)]—[7]),
a # 0, then | ‘ -

‘ z_1
22 Fa(m, !
Ca‘(Ta z) = |Tli : (K((z:-zl) ?
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where P, (T, z) is a polynomial in ¢~*. In particular, C,(T, z) is a holomorphic

function of =% in the half-plane R(z) > —1.

Let ¢ be an entire function on C such that for any ¢;, ¢ € R and any
N >0,

Supc1<ﬁ(w)<c2(1 + I’IUI)NI¢(’UJ)! < 0.

The Smoothed Eisenstein series of Shintani [20] is defined by
1 E(h, z)

2mi R(z)=z0,1<ro<R(w) W — 2

E(w,d,h) = ———¢(z) dz. (4.5)

Here the orientation of the contour R(z) = z, is taken from z¢ —i00 to z¢+ioco.
Like E(h, z), £(w, ¢, k) has a Fourier expansion

E(w,¢,h) =Y _ Ca(w, $, )¢)(au) (4.6)
acK
h,
o Calw, 1) = 5 [ el (2 de. 17)
GO o 1<R(z)=zo<R(w) W — .

It follows from Lemma 4.1 that for all but finitely many a'*, C,(w, ¢, 7) = 0
and for a # 0, C,(w, #, T) is an analytic function of w in the region R(w) > —1.
Set

£"(w, 6, h) = | T ey a3 ot 6, 7o)

27rz 1<R(z)=zo<R(w) W — Z =
(4.8)
We summarize the properties of £(w, ¢, k) in the following lemma.

Lemma 4.2 We have

1. £(w, @, h) is an analytic function of w in the half-plane R(w) > 1

2. Forh €8, E(w,é,h) = O(Ir(B)[, 7).

3. limy ;1 (1 — ¢ )E(w, ¢, h) = ¢(1)q1’35:—:‘z2%‘, where Res,(x = limy,,;(1 —
q¢'™%)Ck(w). The limit converges uniformly in h, h € S—.

4. For any F € L'(H, /Hk),
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limy1(1 ~¢"*) [y n, F(R)E(w, é, h) dh = ¢(1)ql—s%§t(§-)& Jaz e F(R) dh

5. £"(w, ¢, h) is an analytic function of w in the region R(w) > —3. Moreover,

for all h € Hy and w with R(w) > 0,
E"(w, ¢, h) = O(Ir(R)).

Proof : The first four statements form the content of Lemma 3.2 of [1]. The
last statement follows by first explicitly evaluating C,(7,z2), a # 0, of the
previous lemma and then applying the Riemann-Roch theoren:. B

4.3 The Integral I(w, f;w, ¢) |

Recall the integral I(w, f) of Proposition 4.1 in Section 4.1. We pointed
out in that section that the analytic continuation of Z(w, f) is equivalent to
to the analytic continuation of I(w, f). Due to the structure of the set Sk,
see Proposition 4.2, we pointed out that to analytically continue I(w, f), it is
natural first to decompose I(w, f) into a sum of three similar integrals each
over Sk, i = 0,1,2, and then analytically continue each resulting integral.
But unfortunately, each of the resulting integrals does not converge. And this
is what brought us to Shintani’s Eisenstein series in the previous section. In
this section we show how we can use Shintani’s Eisenstein series to recover the
convergence of the integrals over Sk for z =0,1,2.

Let S~ = SN H,. Let I(S™) be the space of functions defined on S~.
Define a seminorm N,, on I(S~) as follows: For F € I(S8™),

Noa(F) = [5- det(h)|ZIF(B)]|r(R)]% dh.

Set I(8~,0,0) = {F € I(87) : N,o(F) < co}. Then we have the following

lemmas:

Lemma 4.3 Iff € S(Va), thenboth 3o\, f(h-z) and w_1(det(h)) 3 v, F(R-
z) are in I(8~,0,a) foranyo > 1 and a > 0.
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Proof : In the proof of Lemma 3.2(2), we have found that for any h € S,
> 1f(h- )| < max(|t[3}, 1) max(|¢r[z", 1) max([tr®[3}, 1). (4.9)
zEV

But for h € S, we have |det(h)|a = [tr]X < 1, ie, [t7]a < 1. So we get

max(|t7]3", 1) = |t7|xt and max([tr?[3}, 1) = [¢t7%[3} max(L, [tr2|a) < [t72(3),

as we also have |7|5 < ¢%® for h € S~. Thus we get the following bound

> cevic [F (k- 2)| < max([t]}}, D)jer] g2 r[x"
With h = g(kd(t, 1)a(7)n(u)), this bound implies

Noaof Z f(h-D)) <K / [tr{3¢ max (|3}, 1)|trR2|7|% d*td T

€V lt“'lASIrITIAqu'
We break up this integral into two integrals: the first is over [t7]a < 1, |T|a <
¢°8, |[t|a < 1; and the second is over |tT|a < 1, |7|a < ¢°8, [tj]a > 1. The
first integral is dominated by
[o ] o0
/ ltrlid—sl T|aA.+1 dtd*r = Z q—n(36—3) Z q-—m(3a'+a—2)
[Tla<q?s,[t|a<1 n=0 m=-2g

which converges provided o > 1 and 30 +a > 2.
The second integral is equal to

(o o] o0
[ [ prgtiridar =3 (a3 g
[trla<1 Jir[a<ltr]a ‘

n=0 m=n

oo —
. E —n(30—2) q — 1 1
- q 1—q© 1— g 1-— q—(3o'+a—2)

n=0

provided a > 0 and 30 + a > 2. This proves the lemma for Exevx f(h-x).

For the second part of the lemma, note that, as in (4.9), we also have

(h' € S)
P evic [F (B - )| < max(|t'[3", 1) max(|t'r’ l;‘; 1) max(|¢'T2|3", 1).

Since det(R') = (det(h))~, then |¢T'|a = [tr|zl. Since |tr{a < 1, then
max([t'T'|;},1) = 1. Also since 7(h) = 7(h'), then 7 = 7’. So [t'T'|a = |tr|3"
implies [¢/|3} = |t72|a < ¢*& and [t'72|' = |t|a. All this yield the bound
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Y cevic [F (W - 7)| < max(jt|a, 1)

So with h = g(kd(t, 1)a(T)n(u)), this bound implies

Nya (w_L(det(h)) Z f(r'o) < / [t7]5 72 max([t|a, 1)| 7|5 d*td*T
zeVk [tr|a<L|T[a<q%®
= [tr 33 st dhtd T+ [tr 372 |r|4 d7td T
[tria<1,IT[a<g¢%8,|tla <1 [tria <L,|T|A <g?8,[t|a>1

But these integrals are exactly the ones we considered in the proof of the first
part of the lemma. So the proof of the lemma is complete.

Now Lemma 4.3 and Lemma 4.2(2) imply

w(det(h)) D f(h-2)E(w, ¢, h) € L'(Hx/Hk) (4.10)
TESK :
and
w(det(h))w_y(det(h)) Y _ f(h' -z)E(w,¢,h) € L'(Hy/Hx).- (4.11)
TESK '

provided R(w) > 1 and R(w) > 1.

Set
I, fiw9) | (4.12)
= /H pu w(det(h))A-(h) Z [w—1(det(R)) (K’ - ) — f(h - T)]E(w, $, k) dh
A/Hk 2€5x

Then by (4.10) and (4.11), I(w, f;w, @) is well-defined provided R(w) > 1
and R(w) > 1. We may thus write

Iw, fiw,¢) = 32 I(w, f;w, ¢)

where

. fiw ) | | | (4.13)
= /H p w(det(R))A_(h) Y [w_i(det(h)) (W - z) — f(h - z)E(w, ¢, h) dh

z€S},

and again, by (4.10) and (4.11), each I'(w, f;w, @) is well-defined provided
R(w) > 1 and R(w) > 1.
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We point out here that by Lemma 4.2(4), we have

Res,Cx

Ck(2)

Since we are interested in computing lim,,—;(1 — ¢'~*)I(w, f; w, ¢), we intro-

duce the following notation:

lim(1 - ¢') (@, fiw, ) = S¢S w, f).

Notation 4.1 For two meromorphic functions f(w) and g(w), we say f(w)

s equivalent to g(w), denoted
f(w) ~ g(w),

if f(w) — g(w) is analytic in a region oy < R(w) < o3 for some o1 and oy

satisfying o3 < 1 < 09.

The objective of the following three sections is to evaluate I'(w, f;w, ¢),
fori =0, 1, 2. Before we start the computation, we give one more definition.

For w € , define the symbols n(w) and é(w) by

1 If w(t) = 1Vt € A*(0)
n(w) = :
otherwise;

1 fw(t) =1Vte Al
d(w) = )
otherwise.

Since A*(0) C Al, then n(w)d(w) = d(w).-

4.4 Evaluation of I°(w, f;w, ¢)

Proposition 4.3 We have

-(25Y) £(0 0 0) — f(0),
Io(waf;w, ¢) ~ 6(w3)¢(w)1 3 q_(wT—l) (1 _{1(—(1)53-3) - 1 _{(qz&s + f( ) 2 f( ))

Proof : We first consider the integral

S @(det(W)A_(R) FO)E (w, 6, h) dh =
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| . Seny sy TONIRE
fHA/HK w(det(h))/\_(h)f(()) 2mi fl(?ﬂ(z):xo <R(w) w—z ¢(z)
dzdh
(4.14)
As w is trivial on K*, we have w(det(y)) =1 for all vy € Hg. Also by absolute
convergence of (4.14), integral (4.14) reduces to

=_1

1 [T(R)|A* 2
det(h)A_(h —_ —_— dzdh
/(HA/HK)'YW( et( NA-(BF(0) 2me /1<sz(z)=zo<st(w) o(z) dz

w—2z
YEHK [Bi

As Bg is a subgroup of Hgk, we have Hx = | |vBk, a coset decomposition.
Let F' be a fundamental domain for Hg in H,; so Hy, = FHg. This gives
Hy = (U e/ F7)Bx- Thus ||y, /5, F7 is a fundamental domain for

By in H, . So the last integral becomes

1 [r()lx*
/ o ldet )-S5 / I OLZ

With h = o(kd(t, 1)a(T)n(u)), dh = |T|adkd*tdud*r and det(h) = (det(x) t7)3.

So the last integral reduces to

FoE+E
Jew?(det(x)) dic [ 5 f(0) du /A./K. /A./K‘ W () 507 Srezy=zo Irla® = lw-z ¢(z)
ez
dz d*td*r
(4.15)

where <* signifies that when equality is satisfied, we multiply the integral by
the factor of . Making the change of variable t — £, integral (4.15) becomes

—5+3
W3 (t) d‘t/ 1 I—ZI—A———-qﬁ(Z) dzd'T

Ak~ 2T 1 cR(z)=zo<R(w) W — 2
| (4.16)

10 [

A*/K*tla<"1

Now the first integral in (4.16) equals (|7|a = q)
$ Sy @@ d't +3°0 [ay/ k. WP(r ) die
=30 + 302, 7R Jax /K* @3(t) d't
= 10(?) + 5(?) 52, 4

= 6(%)(~} + =)
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Also since §(w?®)n(w?®) = §(w?), then (4.16) becomes

6(w?) F(0)(—3 + === ) (Ja- k- +fA+/K‘)(2m S <(a)=zo <sitw) Lz‘}:T¢(Z)

where A~ ={r € A* :|7|a <1} and A+ ={r € A" : |7|a > 1}.
Next we consider the integrals over A—/K* and .E*"/ K* in (4.17) sepa-
rately. The integral over A~/K™* in (4.17) equals
=1
0 <R(z)=z0<R(w)
But the integral in the above sum is entire and it is of order O(¢g™"™) for any
m > 3: Just shift the contour of integration to the left to R(z) = —a =
1 — 2m < 0. This implies the above sum is an entire function of w and hence
we can disregard its contribution to I° (w, f;w, P)-
For the integral over K_*"/ K™ in (4.17), it equals
_z4l
z 2me / = 9_’;(]_?;_)_(;3(2) dz
el 1<R(z)=To<R(w)
By shifting the contour of integration to the right to R(z) = a > R(w), the

integral in the above sum equals
7302

gz "’)¢(w) - — &(z) dz

27t JR(z)=a>R@w) W 2

So the integral over A+ /K* equals

_(w—l) 2(1-2)
q gz
— <w)+2 7 /. 8(2) dz

(z)=a>Rw) W —2

But the complex integral in the above sum is entire and it is of order O(¢g~"™)
for any m > 0. Hence the above series is an entire function of w and so
its contribution to I°(w, f;w, ) can be disregarded. Combining the above

calculations gives

Jitas @ (det(R))A-(R) £ (0)€ (w, 6,h) dh ~ 6(w?)p(w) f(o)_s_L__w__,_

)

(=3 + =) |
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Similarly, we get

Saa s, @(det(h))w_1(det(R)A_(R) F(0)E(w, 8, k) dh ~ §()p(w) F0)
;5%,-—)17(—% + )

This completes the proof of the proposition. Il

4.5 Evaluation of I'(w, f;w, ¢)

In this section we compute I'(w, f;w, ¢). But first, following Wright [27],
we introduce a certain distribution that will come up in the course of comput-
ing I'(w, f;w, §).

For f € §(Va) and w € 2, define M, (f) by

M,(f)(@) = /x w(det(r)) f (- ) dr.

Since K is compact, then M, (f) € ‘S(VA) . The following lemma states some
of the properties of M, (f), see [27].

Lemma 4.4 For f € S(VA) and w € Q, we have

1. Mw(f) = Ma’:(f)

2. For any k € K, we have M,(f)(k - z) = w™t(det(r)) M, (f)
3. Mu(Mu(f)) = M.(f)

4 J\Z(?) = M;(f)

Because of Lemma 4.4(1), when @ = 1, we write M (f) for M, (f)-
We also need to recall Tate’s zeta functin, first introduced by Tate in his
thesis [23]. For F € S(A), w € Q, Tate’s zeta function is defined by

(w,F) = /A_w(t)F(t) 't

We collect its basic properties in the following lemma. ‘For proofs, See [23] or
[26]. | ‘ |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

Lemma 4.5 ((w, F) satisfies the following

1. {(w, F) converges absolutely and locally uniformly for R(w) > 1.

2. ((w, F) can be analytically continued to a meromorphic function defined on
all of Q. Further, it satisfies the functional equation ((w, F) = {(wiw™, F),
where F is the Fourier transform of F'.

3. ((w, F) is analytic everywhere in Q ezcept for simple poles at wy and w;

with respective residues ——Lll T and —ui; <

For f € S(Va), define T1(f) € S(A) by T1(f)(¢t) = £(0,0,t). Define
Bz ) = Cn M) = [ HRTOLE O

When & = 1, we write £,(z, f) for £, (z,w, f). Lemma 4.5 implies the following

proposition.

Proposition 4.4 X,(z,w, f) satisfies the following

1. Zi(z,w, f) converges absolutely and locally uniformly for R(z) > 1, for all
w €N and f € S(Va).

2. %i(z,w, f) has a meromorphic continuation to all of C. Further, it is

analytic everywhere in C ezcept for simple poles at z = 0 and z = 1, with re-

spective residues _T‘(ll‘g‘;f{ DO gnd T‘(M;’g(‘;)) @ where T1(M,(f))(0) = f(0)6(w),

and Ty (Mo, (£))(0) = [ M. (£)(0,0,2)dt

Now we are ready to state the main result of this section.

Proposition 4.5

I'w, f;w, ¢) ~ é(ws)c";.f:fuq £ (w)

[ T2 ) (%L, f) () 21(%&,}')]
e -5 -(aa—s+!g+§) 2 2

Proof : We first consider the integral

/ w(det(R))A— (h) > f(h z)€(w, ¢, h) dh (4.18)
Hp/Hg

zeSk
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Since Sk = U, emc/Bx Uaek-7 - (0,0,a) and w(det(y)) = 1 for all v € Hk,
then reasoning as in the proof of Propsitin 4.3, the integral (4.18) becomes

/H IO S f(h-(0,0,a)E(w, 6, h) dh (4.19)

acK*
With & = g(kd(t, 1)a(T)n(u)), we have dh = |T|adrd*td*Tdu, det(h) = (det(rx)tr)?,
and k- (0,0,a) = o(x) - (0,0, tr%a) = k- (0,0, tr2a). So integral (4.19) becomes

/ / W) Xaek- ficw?(det(x)) f (5 - (0,0,t7%a) dk [, E(w, &, h) du
Ja-/k- Ja-/k-

jtr|<=1

|7la d*Td*t
(4.20)

Using the Fourier expansion of £(w, ¢, h) and the fact that A/K is compact,
we conclude that the integral over A/K in (4.20) is Co(w, d,h). So integral
(4.20) reduces to

/ / W3 (t1) Ypex Mus(£)(0,0, tra) ’2% f1<sz(z)=xo<n(w)
JAT/K-JAC /K ‘

[tr]a<"1

[ﬂ;i_&*‘h’lz-& C}C( :(:_)1 ql—®

w—z

o(2) dz |T|ad*Td*t

Making the change of variables 7 — 7 and t — 5:—, we get

fA‘/K‘,ItIAS'l Ja- /K* W (t) Coex- Mos(£)(0,0,7a) 5 J; 1<R(z)=T0<R(w)

=5+ E+E () 1—
ML oL " $(2) dz d*rd*t

w—z<

By absorbing the sum over K* with the integral over 7, we get

fA‘ /K |tjla<"1 fA' w? (t)M“’s (f) (0’ 0, T) 2+n f1<9(2)=x0<32(w)
r —i'+i z i*’i’ Sk (z)
[Fla® “+IFla

1—
Wt 2 o) do drrdet

w—z

(4.21)
We break up the integral (4.21) into two parts. The first one is
/ ) NS o
w*(t)M,3(f)(0,0,7 —/ ~==—é(z)dzd"rd"t
A'/K',ltlAg'l«/ . ® ) )2m 1<R(z)=zo<R(w) W — 2 (=)
(4.22)
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To evaluate (4.22), we need to switch the order of integration. For this, it
turns out that we need first to shift the contour of integration in the complex
integral in (4.22) to the line R(z) = z; < —1. This is possible as we did
in the calculation of I°(w, f; w,®) . Then it follows that the integral (4.22)
converges absolutely provided 3R(s) > —Z + 1. Thus by Fubini-Tonelli’s
theorem, integral (4.22) equals

[} z) -"+ =
2ri ffR(z)—1:1<—L R(z)<R(w) w—2z fA‘ wd (f) (O 0 T){Tl ’d TfA‘/K‘ (t[A< ].w (t)
[tli Tdtdz

= 37 JR()=e1 < 1.20) <ROw) SaTI(—5 +5,0% O[3 + m]
dz
This last integral is analytic in the region ®(w) > —1, and so its contribution
can be disregarded.
Next we consider the second part of integral (4.21), namely

Iz 5+% ae)

Ja- /e jacer Jar @2 (@) Mus (£)(0,0,7) 5 f, L<R(z)=z0<R(w) A SKEED g8
o(z)dzd*rd*t
(4.23)
Again, to evaluate (4.23), we need to switch the order of integration. It turns
out that integral (4.23) convetges absolutely provided 3R(s) > n—gfl + 1. So
under this assumption, by Fubini-Tonelli’s theorem, integral (4.23) equals

- riftE
fAO Mw3 (f) (01 01 7)92_;:‘ fl*(R(Z):Io(R(W) wiz = ¢(Z) ‘I‘A./K.jltlfs.l ws (t)
tia? 2d°tdzd*T

which in turn equals

+ (z)
it s

6(“-’3) f A* M. (f ) (O 0, ) 21;: f1<82(z)=z0<91(w) ——w:lg__ (4.24)
¢(Z) [—% + m] dzd*r

Because of §(w?®), we may replace M_s(f) by M ( f)- Also, in the complex
integral in (4.24), we shift the contour to the right to R(z) = z, so that
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zo < R(w) < z; < 6R(s) — 1. Then the complex integral in (4.24) is equal to

%t Cr(w) 1-g _l 1
ITIA CK(’UI + l)q ¢(w)[ 2 + 1— q-(ss—%‘_%)] +
+1 / A k(D) ¢(z)[_l + 1 ldz
2mi Jr)=m>R@) W2 2t 14 G5 D

So integral (4.24) reduces to

—6(w*)T1(% + 5, ) g S p(w) -5 + e o]

8(u3 M O 0 I‘rlz-{b&% l1-g 1 1
+2%) 1 M(£)(0,0,7) Jr—eonw) — o4 ¢(z)[‘§+1_q_(T§_§]

dzd*t

(4.25)
We show the second term of (4.25) is analytic in the region R(w) < 6R(s) —1
and hence its contribution can be disregarded as 6R(s) — 1 > 5 for R(s) > 1.
First note that the integral over R(z) = z, is O(|7[3) for any & > R(w) + 1.(
Just push the contour to the right to R(z) = 2a — 1 where 2R(w) < 2a—-1 <
6R(s) — 1.) It follows that the absolute value of the integral in (4.25) is
majorized by 3, (a, f), which is convergent since & > 1. So the double integral
in (4.25) converges absolutely, and hence we can interchange the order of the

integrals to get

) @) 1 1,

w—2z C(x(z+1) +

z 1
21(§'+§: f) 2 1— q_(33_%_.2.

/5;(2)=21,m(w)<z1<682(s)—1
This last integral is analytic in the region R(w) < 6R(s) — 1. So we have

Jita i w(det(B))A—(h) Fooesy f(h-T)E(w, 6, h) dh ~ —6(w*)To (45, f)

[ (w) - 1 1
CKI((w+1)q1 g¢(w)[—§ + l_q-(as—lf—;)] .

Similarly, we get

St 1 @(det(R))w_1(det(R))A_(h) X pcsp. F(H - 2)E(w, 6, h) dh ~ —5(w?) |
Ti (2, f) S gl (w)[—5 + L ]

Cxc(w+1) l_q—(3.-3+§+})
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Basically, we make the change of variable h — h’, then A_(h) — A, (Rh'). We
proceed exactly as above, and at one point we need to calculate the following
integral

-3 —z-1 3 1 ) 1
w Dws(t)t[a® 2 =& w?)[—= _
/A /K" Jta 21 (thea(®)lela @IN=3+1 —q“(33-3+§+%)]

This completes the proof of the proposition. ll
Because of (x(w) and X,(¥% + 3, f), it follows that I'(w, f;w,¢) has a
double pole at w = 1. We calculate some Laurent expansions at w = 1. Let

the first two terms in the Laurent expansion of £;(w, *) be R(') £ +T'(*). Then

w 2R . 2R(f
4t = 2D rp, m@+lp =D g,
We also have
1 1 . 1 1 o ,
[ geEp 3 AtBlTb s o ey A B
where
A= 1 1 pB— (3loggq)g~G=—1)

T 1—q—@s=1) Y 1—¢—Gs—DJZ
_ (logq)g~B—2

r 1 1 ’
A - 32 1_q—z3-'-27’ B' = f1—q— 3.'—2)]2 .

The first two terms of the Laurent expansion of &, (¥+3, ) [3— N _(3,_13 D 1+
-q
21(% + %: f)[l_q..(s}.li&_;) - %] are

24R(f) + 24'R(f) | [AT(f) + 2BR(f) + A'T(f) + 2B'R(f)].

w—1
Thus we get
I'w, f;w,8) ~ 6(w®) 2y q' 8 p(w) ARLEAED)
+6(w?) 725 q' 8¢ (w)[AL(f) + 2BR(f) + AT f) +2B'R(f)].

We note here that by Proposition 4.4, we have

1 .1 .
R(f) = EEAM(f)(O,O,t)dtand R() = Eg—q/AM(f)(O,O,t)dt.
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4.6 Evaluation of I’(w, f; w, ¢)

In this section we compute I?(w, f;w, ¢). But first, we introduce another
distribution that will come up in the course of computing I?(w, f; w, @)-

Let v be an absolute value of K, ¥, € S(K?), and ¥ € S(A?). For w € Q
and w € C, define

Ty (wy, w, ¥,) = f / Wy () Wy (s, uu)a,;(uvttj'l)w du, d*t,

T(w,w, ) = / _ /A W(E)B(E, w)a(ut—N)" dud't
T (w,w, ¥) =/A"m‘Kq/;w(t)\ll(t,y)a(ut‘l)"’ dud*t

T (w,w, ¥) =/ / w(t)¥(t, u)a(ut™) dud*t
“itla ->1JA
where

aw)= [] sup(1,|uwls) and on(uy) = sup(l, [uyly)-
veM(K)

Also the star in the mequahtles <* and > 51gmﬁes that when equality occurs,
the integral will be multiplied by the factor of 1. |

U =[] cpck) Vo, then T'(w,w, ¥) has the decomposition:

T(w,w, ¥) = ¢ ¥(T— = I T(wnw ),
ho,x vEM(K)

where w, is the restriction of w to K, and hg x is the divisor class number of
K.

We point out here that the above distributions are special cases of those
given in Definition 2.7 of [28]. We state some properties of the above distri-

butions in the following lemmas.

Lemma 4.6 1. If w,(t,) = |t,|} and ¥, is the characteristic function of O2,

then "
1— q;'(s w+

(1 —(8+1)) (1— —(S—W))
2. T,(wy, w,¥,) is a rational function in q—° and ¢~ which is analytic in the
region R(w,) — R(w) > 0 and R(w,) > —1.

Tu(wm w, \pv) =
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Proof : The proof is a special case of the proof of Propositions 2.8 and 2.9 of
(28].

Suppose ¥ = [,cary ¥o- Write w = @| - |3 = [Learci) @ol - I3, where
@ =[l,e M(K) Wy IS @ character on A'/K*, and hence @, is trivial on O, for all
but finitely many v. Let P be a finite set of places of K such that if v ¢ P,
then @, is trivial on O, and ¥, is the characteristic function of O2. Write

Tp(w, w, ¥) = [ [ T (ws, w, ¥,)-

veP

Then Lemma 4.6(1) gives

g—1 Ckp(s+1) Cxp(s —w)
ho,x JTp(w, w, ¥) Ckp(s —w+1)

where (i p(2z) = [I,¢p(1 — ¢;%) ™" is the truncated Dedekind zeta function.

The above observation and Lemma 4.6 now imply the following lemma.

T(w,w,¥) =q"7%(

Lemma 4.7 1. T(w,w,¥) is a rational function in q~° and ¢~ which is
analytic in the region R(w) — R(w) > 1 and R(w) > 0.
2. The derivative of T'(w, w, ¥) at w =0 is given by

%T(&), w, ‘I’) |w=0 = ql—g('q—_l) %TP(‘U! w, ‘p) lw:OCK,P(s)

ho,x
—g( 4= (k. P(8)k, p(s+1)
+q1 g(ho';)TP(wa 0, W)[C;(,P(s) - sz_pg;.t],) ]

This lemma, in turn, implies the following lemma.
Lemma 4.8 TV (w, w, ¥) is an entire function of w and w.
For f € S(V4), define To(f)(¢,v) = f(0,t,u). Then T>(f) € S(A2). Define
Yo (w, w, f) = T(w, w, T2(Mu(f)))

23 (w,w, f) =T*(w,w, To(M.(f)))
5 (ww, f) =T (w, w, To(M,(f)))-
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We now state and prove the main result of this section.

Proposition 4.6

P, fiw,¢) ~ 2K8)-q' 8¢ (w)

-(¥-% - w - w 3
[ + il @ 3 — 5. f) - EF (@™ we, § =5, f))
Proof : We first consider the integral
/ w(det(t)A_(h) S F(h - 2)E(w, 6, h) dh (4.26)
Ha/Hk zeSE

Since S} = U, cuy/7ic Uack- 7-(0; @, 0), then reasoning as in 9 and I, integral
(4.26) can be rewritten as |
[ widet®s-(w) 3 £(k-(0,,0)Ew, 6, k) dh
HA/Tk acK*
or, equivalently, with h = g(xd(t, 1)n(u)a(1)),
Jc Ja- /K- Ja- /K~ [T|a<"a(u) Ja w(det(h))A_(h) 3 _.ck- f(h - (0,a,0))E(w, ¢, h)

dud*rd*tds
(4.27)

Now for the above given h, det(h) = (det(x) tr)3, f(h - 0, a, 0) = f(x-

(0, att, atTu)), and
/ w3 (det(k)) f(k - (0, atr, atTu)) de = M_3(f)(0, atr, atru).
;c _
So integral (4.27) becomes

A'/K- /A. /K- /A_ w(tr) Z M_s(f)(0, aiT, afru)é' (w, ¢, h) dud*rd*t

acK*

[trla<LiT|a<"a(u)

(4.28)
Since
1 i s
= Lis & dz + &"(w, ¢, h),
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then by integral (4.28), we are led to two integrals:

/A K / k- Ja @PUT) Y ek Moz (£)(0, atr, atTu) 5= [, <R(2)=z0<R(w)

[trla<LlT]a<a(u)

-4 ¢
VA ™ S5 1-6 () dduderd+t

o (4.29)

/ / / w3 (tr) Z M_:(f)(0, atr, atTu)E" (w, @, h) dud*rd*t
A-/k- JA< k- JA

acK*

[trla<t LiTla<"a(u)

(4.30)
We first consider integral (4.30). Making the change of variables ¢t — £ and
u — X, then d*t — d*t and du — |tr|;'du. So integral (4.30) becomes

fA'/K‘,[tIAS'l fA‘/K‘,['rIAS‘a(ut“l) fA w3w—1(t) ZaGK‘ Mw3 (f) (Oa at, a'u)
E"(w, @, h)dud*rd*t

By absorbing the sum with the integral over ¢, the last integral becomes

/ / / a1 () M () (0, £, w)E" (w, 6, h) dud’rd"t
A-t{a<*1 JA* /K" |T[a<*a(ut~1) JA

By Lemma 4.2(5), £"(w, ¢, h) is a holomorphic function of w in the region
R(w) > —3 and it is of order O(|7¥?) in the region R(w) > 0. So in this
region, R(w) > 0, the last integral is dominated in absolute value by

/ / / wasisy—1 (8) | Mos (£) (0, 8, w)|[7[¥/2 dud*rd"t
A jtla< 1 JA* /K= |rla<a(ut-1) JA

-
~to+ gl [ e @00t )] atut) duat
l1—g¢g 2" Ja-tiac1 /A :

But the last double integral is T~ (wag(s)—1, 3, [T2(Mos(f))|) which converges
provided R(s) > Z by Lemma 4.7. So the integral (4.30) converges absolutely |

and locally uniformly in w in the region R(w) > 0, and so it is analytic there
and hence its contribution to I*(w, f; w, ) can be disregarded.
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Next, we consider integral (4.29). As we did with integral (4.30), by making
the change of variables t —> —f: and u — ;%, and absorbing the sum with the

integral over ¢, integral (4.29) reduces to

fA',[t[ A<l Ja @Pwoi(t) Mos (£)(0, 2, u) (# fA' JK* IT|a< a(ut—1) f1<sz(z)=zo<sz(w)
lflﬁ— S (=)
T E‘*‘”cll‘ﬁ‘(ﬁ(z) dzd*r)dud*t
(4.31)
By shifting the complex integral to R(z) = z; = 2I+1 > 2, 1 > zo, 1 > R(w),
this complex integral equals

=_1
w 1 1 7272 _Sxc(2)
e ) ey 4 A_GeCrD 16 () dz
Cx(w+1) 2% JR(zy=z >Rw) W T2 '

As in I° and I*, the integral over R(z) = z; is an entire function of w and it
is of order O(|r[}) for any I > 1. So its contribution to integral (4.31) is an

entire function of w. Thus integral (4.31) is equivalent to

_ql—g'(%((%.)f)"ﬁ(w) fA':I‘IAS‘ 1 fA w3w_1 (t)jxlw‘: (f) (Oa t, u)
(fi,[ A< a(ut-1) [r|2 2d*T)dud*t

— w '"(Jf"i)
= —'ql s(f(’((u(l-{-)l) é('ll)) [Izq_@f—}) + %} fAt JHa<1 fA w3w—1 (t) Mw3 (f) (07 t’ 'U,)
a(ut-1)¥~7 dud*t

g Cxlw —%-p - -
=—q' gé%¢(w)[l—iq__(xg.—_5 + 3185 W1, ¥ — 3, f)
Similarly

Jaa i w(det(R))w_1(det(R)A-(h) Coesz f(H - 2)E(w, ¢, h) dh ~ —¢'~®

-,

w _(¥-}) — w
g%&;%‘ﬁ(w)[#@:g + 3155 (wiwe, § — 5, f)

Basically, we make the change of variable h —s h’, then A_(h) — A (k')
and proceed exactly as above, and make use of Lemma 4.8. This completes

the proof of the proposition. ll
—-(%-5 1
Because of {x(w) and [f-q-q-_(’!‘:f)_ + 3], PP(w, f‘,w, ¢) has a double pole at
w = 1. As we did with I''(w, f; w, ¢), we calculate some Laurent expansions.
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Let the first two terms of the Laurent expansion of ¥,(*, w, *) at w = 0 be

T2(*,0, %) + £ 5y (*, w, *)|u=ow. Then we have

_ w 1 _ d __ w—1
22 (wsw—h 5—5, f) = 22 (w3w-h 0, f)‘*‘%zz (waw-—h w, f)|w=o( 5 )+‘ cT

_ w 1 : _ ~ d _ s w—1
E-2*-(6“'] 3(:)2, 5—51 f) = 2-2*.(&1 3w21 O’ f)+%2-2*-(w 3“}2) w, f) Iw=0( )+' T .
We also have
q“(%"-z) 1 lo2
s =—-+0+
1-¢ (-2 2 -1

. _ —(%-%)
So the first two terms of the Laurent expaxklsxol; at w = 1 of (;Eq_-(’é‘_-’:_) +
%) (22—(',")3(‘)—11 22,' - %1 f) - E;(w_3w21 !2‘i - %s f)) are

2 (2;(wsw—l101f)"82+(w7-3w2701f)) %

logq w—1l
g (Z7 (@1, w, f) = Bf (@ ws, w, f))lumo-
Thus we get
5 . —e Ci(w) 2 (25 (WBw—1,0,f)—5F (w—3w2,0,f)) 1—-g_Ck(w)
I ((.d, f1 w, ¢) ~ ql g('KI((u::‘:-l) ¢(’ll)) loggq 2 - w—12 . +4q gCKI((w'H-)
¢(’ll)) [Eﬁ};%(zz—(‘”aw—h w, f) - 2;(“}-30‘121 w, f))IW=0]'

4.7 Cancellation of the Double Pole

We pointed out after the proofs of Proposition 4.5 and Proposition 4.6
that both I'(w, f; w, ¢) and I*(w, f;w, ) have a double pole at w = 1. In this
section we will show how the double pole of Iz(w, f;w, ¢) cancels the double

pole of I''(w, f; w, @).
For f € §(Va), define

T.(1)®) = [ £0.t,0)du.
We first prove the following lemma.

Lemma 4.9 For f € S(Va), T5(f)(t) = T3(f)(-2¢).
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Proof : First we have

TH@®) = [o To(f)@)w(at) dz
= fA L\ f(0, z, w)y(zt) dudz

Set Fy(y) = [, Ja f(y, T, u)p(zt) dudz. Then ﬂ(?)(t) = F;(0). Since

F(v) =[x Fe(y)yd(vy) dy
= [a Ja Ja f(y, 2, 0)Y(zt)Y(vy) dudzdy
= Jv. f(, 7, u)y([(0, —2t,v), (y, 7, u)]) dudzdy
= f(0, —2t,v),

then by the Fourier inversion formula, we have
Fiw) = [ Ry do

and hence

F,(0) = /A Fiw)dv = /A £(0, —2t,v) dv = T5(f)(—2¢).

This completes the proof of the lemma. Bl

Now it is easy to see that
Zz_(wsw——la 01 f) = C_(waw—17T3(Mw3 (f)))a

2-2'_((-‘-’—3“}27 07 f) = C—'-(w-sw27 T3(MG'J3 (f)));
where ( is Tate’s zeta function. Thus the double pole term of I?*(w, f; w, ¢)

equals

1-g_ Sk (w) $(w) 2 (" (wWiwo1, Ti(Mus(f))) — ¢ (w3ws, Ts(Mas (f)))
Cx(w+1) logq w—1

(4.32)
Applying the Poisson summation formula (as in Tate’s thesis) to (~ and using

Lemma 4.9, we can show

¢ (@wor, Ts(Mos (£))) — € (W™, Ts(Mas (£))

= 5(w3){T3(M(f)(0)(~i——_—‘—l—f(3,:;,- - %) — T(M( f))(O)(I-:;f(T_T) - %)].
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By the note at the end of Section 4.5, we have

OO = [ MP©0.0,u)du=logq R(P),

Ty(M(£))(0) = [A M(£)(0,0,u) du = logq R(f).

So we get

= = o) logdlR() (gt — 1) ~ R (=rtmmn = D 44
= §(w®) log q[—A' R(f) — AR(f)]

where A and A  are as defined at the end of Section 4.5. Now plugging 4.33
in 4.32 and comparing with the double pole term of I'(w, f; w, $), we see at

once that these terms cancel out.

4.8 The Functional Equation
Now the work in the previous four sections gives the following proposition.

Proposition 4.7

~#-b o) 10 4 [O-/©
I(w, f;w, (b_)*_ > 6(w:)1?£1£2 ")q_(,& pliorems — e + ]
SO ) e $(w)[AT(f) + 2BR(f) + AT(f) + 2B'R(f)]
+—(‘Lci'((w"in'ql_‘¢(w) .
[logq dw (22 (w W-1, W, f) z:-2*-(“)“3"‘)21 w, f))lw=0]'
As we pointed out in Section 4.3, we have, by Lemma 4.2(4),

Res,(k
Cx(2)

So equipped with this observation, Proposition 4.1, and Proposition 4.7, we

Lim(1 ~ ¢ ") (w, f;w,9) = ¢(1)g" & — =1 (w, f).

get the main theorem of this chapter.
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Theorem 4.1 We have
1. Z(w, f) = Zy(w, f)+Z+(@iw™, f)+I(w, f), where Z,(w, f) and Z,(wiw ™, f)

are entire functions of w, and for w = @w,

25(w3 2 f(0 0 0)—f(0
I(w,f) = R = — ol + 18]

+8(w*)[AT(f) + 2BR(f) + AT(f) +2B'R(f)]

e & (55 (WPwor, w, f) — 5F (w 3wz, , £)) lu=o,

where ) sect)
A= 1 _1 p=Glen™
- I_—q:tﬁ‘—"ﬂ 29 1—q— 3s—1 ]2
A =1_ 1 B =4 logg)g—G+—2
- 2 l_q-(3.1—2) ] - [l_q—(3:—-2)]2

2. Let Z(w, f) = Z(w, f) — ey aw22(@’w—1,w, f)lu=o- Then we have

Z(w, f) = Zww™, ).

We now describe the poles of Z(w, f). By Lemma 4.7(2), Lemma 4.8, and

Theorem 4.1, we conclude that the poles of Z(w, f) occur at s = 0+%, 1+

3—211’;?"‘;, 3+ 32["')';‘,,, 2+ 323;;‘4 (n € Z) and at the poles of £ (wiw_1,0, f). The
exact poles of &5 (w3w_1,0, f) depend on the choice of f. For example, if we
choose f so that its support lies in V}, then all the f—terms in I(w, f) will
disappear. Hence the only poles of Z(w, f) in this case are simple poles at

— 2nin — 2 2nin
s=1+ 3logg and double poles at s = § + 3logg"
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CHAPTER 5

SOME LOCAL ANALYSIS

5.1 Decomposition of Z(w, f) and the Orbital
Zeta Functions

In this chapter we conduct some local analysis that will be crucial to obtain
the mean value theorem we are after. The local analysis amounts to studying
certain integrals, which we will call orbital zeta functions, that appear in a
natural way as local factors of the adelic zeta function Z(w, f). In this section
we introduce these orbital zeta functions.

By the absolute convergence of Z(w, f) in the region R(w) > 1, we may

interchange the sum and the integral and rearrange the sum orbitwise to get

2, F) = [y @(det(h) Sy (- z) dh
=3 cema\v 2aretx/ (B i Ja i W(det(R)) f(hy - z) dh 5.1)
= ZIGHK\V,’(’ fHA/(Hz)K w(det(h))f(h - z) dh |
=3 2 zeHK\VY fHA/(Hg)K w(det(h)) f(h - z) dh,
where the sum is over a complete set of representatives of all Hg-orbits in
V. Also note that the last equality follows from the fact that H_ is of index
2 in H;, by Proposition 2.2, and the invariance of the measure dh. Since
Ha/(H)k = Ha/(HZ)A x (H3)A/(H2) Kk, then every h € Hpa /(HZ)k can be
written as a product h = h'h", where h' € Hp /(H2)a and " € (H)a/(H2) k-
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Then we get the following:

/ w(det(h)) f(h - z) dh = ¢ p(z) / w(det(R)) (I - 7) L,
Ha /(H2)K Hp/(H2)A
(5.2)
where
ulz) = / g (5.3)
(H2)A/(H2) K

d.h' and dh" are measures on Hp /(HZ)a and (HZ)a /(HZ)k respectively, and
¢z 1s a constant given by dh = c.d_h'dh". |

We also note that for f = [],car(x) fu: We have the decomposition

[ etewnswnar= T [ wo(det(h,)) f, (R, -z) dyh,
Ha/(H2)A Hg

veM(K) o/ (H2) Ky

(5.4)
where w, is the restriction of w to K,. So combining all of the above equations

yields the decomposition

Zwh=3 ¥ en@) I1 [ wo(det) b -z) s

T€HK\VE veM(K) Y Hro/(H2) K,
(5.5)

It is worth observing here that since H, k-orbits in Vi are in one-to-one corre-
spondence with quadratic extensions of K, by Corollary 2.1, then the sum in
(5.5) is in fact a sum over the quadratic extensions of K.

The objective of this chapter is to study the integrals in (5.5). We mention
one observation about these integrals. Since HY is of index 2 in H,, then the
map Hg,/(H?)k, —> Hk, -z given by h, — h! -z defines a double cover (i,e.
a 2-to-1 and onto continuous map) of the open orbit Hg, -z C Vk,. Define

the left Hg, -invariant measure —4‘5"—; on Vg, :
[P(zv)lé

dhy, -z, _ |det(hy)l.dz, dz,
3 = 3 = 3°
|P(hy - z,)|2 |(det(h))iP(z,)2  |P(z0)l3

Then the double cover map induces an invariant measure d;h;, on Hk, /(H;)x,
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which we normalize so that the yintegra.l in (5.5)' equals

/ wo(det())) fo (K, - z) iy,
HKU/(H:)KU
P(h;, - ) dhl -z

= w,,———-s/z,,h;~:1:—————3—
/Hw TP M o

1 dz,

S wo(P(z,)) 2 f, () — 5. .
ST Jy  HAPEI ) o 69

Before we continue our analysis, we find it convenient at this point to
introduce some definitions and notations that will simplify our exposition.

Throughout the remaining of this chapter, we will let K = K, for some
v € M(K). We will denote the absolute value '| - |l on K, = K simply by
| - |. The cardinality of the residue field of K will be denoted by q. Let dz
be the additive Haar measure on K normalized so that fo dr =1, where O is
the ring of integers in K. Let d*z be the multiplicative Haar measure on K*
normalized so that f,.d*z =1.

Let z = (z1,Z2,73) € V. Set dz = dr;drodz;. Then rﬁé%ﬂg is a left
Hy-invariant measure on V. For x € Vi, denote the orbit of x by V. = Hk-x.
For a quasicharacter w on K" satisfying w(—1) =1 and for f € S(Vk), define
two integrals Z,(w, f) and Zx(w, f) by

Ze(w, ) = [H g, NI X &, (5.7)
and
2w, 1) = [ W(P@IP1(0) (5.8)

We call these integrals the orbital zeta functions associated with the space of
binary quadratic forms. By (5.6), we note that Z.(w, f) is a constant multiple
of 2Z(w, f)- This constant depends on x, w, and the normalization of d, h’.
Note that the condition w(—1) = 1 was stipulated since without it Zx(w, f)

reduces to zero as every nonsingular form has a stabilizer of determinant —1.

Proposition 5.1 Z,(w, f) and 2«(w, f) converge absolutely and locally uni-
formly for R(w) > 1, and hence they represent analytic functions of w in that
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region. Furthermore, if f has compact support contained in Vi, then Z,(w, f)

and Z.(w, ) become entire functions of w.

Proof : Since Z,(w, f) and Z.(w, f) are constant multiples of each other, it
is enough to consider the convergence of Z.(w, f). Since f is locally constant

function with compact support U, then

| Ze(w, )| < /U |P(z)[3e-D da.

For 0 > 1, the above integral is finite by the continuity of |[P(z)| on the
compact set U and the finiteness of the Haar measure dz on compact sets. If
U C Vi, then |P(z)| has a nonzero lower bound on U and hence the above
integral also conveges forc < 1. B

The computation of the next section will show that the abscissa of absolute
convergence is 3.

We point out here that the name “orbital zeta function” is motivated by
the fact that the definition of Z4(w, f) depends on the Hk-orbit of x and not
on x itself. We also remark here that the number of distinct 24 (w, f) is finite
for any local field K. This follows from the fact that the Hk-orbits in Vi are
in one-to-one correspondence with extensions of K of degree less than or equal
to 2, by Corollary 2.1, and the number of such extensions of a local field K is
finite, see [12]. More information about similar orbital zeta functions can be

found in [3].

5.2 Computing Zx(w, f)

In this section we start evaluating Zx(w, f). The credit for computing
Zx(w, f) goes to Datskovsky [2]. For the sake of completeness, we choose to
describe his method of computing Zx(w, f).

Recall that for f = [[,carx) fv € S(Va), all but finitely many f, are
characteristic functions of Vp,. Therefore we need to compute Zy(w, f) for f

the characteristic function of Vo, where, according to the notation set up in
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the last section, O is the ring of integers of the nonarchimedean local field K.

To achieve this, we first fix a choice of an orbital representative x. Set

uv ifK,=K

Fx(uvv)z { (u+gv)(u+0"v) if[KxIK]zza

where O, = O[f] is the ring of integers in K. In fact, if K, = K(0) is a
quadratic ramified extension of K, then we may choose 6 to be any uniformizer
mx Of Kx. And if K is a quadratic unramified extension of K, then we may
choose 0 to be a unit in O, not congruent mod 7y to any unit in O. In either
case, we get Ox = O[f]. For more information, see [26]. We also point out that
the choice of the orbital representative is taken so that P(x) is the relative
discriminant of K, over K. |

Next, we need to describe a Haar measure on Hg. This will be done,
exactly as we did in Chapter 3, by applying the Iwasawa decomposition to
Gk. Every g € Gk can be written in the form g = kd(t, t;)n(u)a(7), where
k € K = Go, t,t;,7 € K*, and u € K. Define a measure dg on G by
setting dg = drd*td*t;dud*r, with the normalization [, .dk = 1, [,du = 1,
and [,.d*t = 1. Since Hx = Gk/(T,)k, where (Tp)k = {d(t7%,t1) : t, € K*},
we define a Haar measure dh on Hk by setting dg = d*t,dh. Thus if we write
h = o(kd(t,1)n(u)a(r)), then dh = dxd*tdud*r.

We also need to define two invariant measures d /' and dh"” on Hx /(Hg)x
and (H2)k, respectively. For the measure d/ /’, it is defined, as in the last
section, as follows: Since Hx/(Hg)x forms a double cover of the open orbit
Vx = Hk - x, then there is a unique left Hk-invariant measure on Hg/(H2)k,
depending only on the Hk-orbit of x, such that for any ¢ € L!(V, ﬁm),

we have

dzr
— — K. 4
/ . #() |P(z)[3/2 -/Hx/(ng).( (R -x) d"h

We note that with this choice of the measure d h’, we have, as in (5.6),

Zy(w, f) = w(P(x))"s/ 22w, f)- (5.9)
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As for the measure dith” on (Hg)k, choose one normalized in such a way
that f( f2)o xh” = 1. The relation between the measures dh, d, k', and d;h”
is given by dh = byd' h'diLh"”, where b, is some constant depending only on x.

The main idea for computing Zy(w, f) is contained in the following lemma
of Datskovsky.

Lemma 5.1 Let M,(0) denote the set of all 2 X 2 matrices with entries in
O. Define the set Qy as follows:
1. Qx = {o(kd(t,1)n(u)a(r)) E Hx:t€ 0, T€ O, tuc O} if Kx =K
2. O ={o((t.9)) € Hx:t € O, [t| =1 or ¢, g € Glz(K) N M3(0)} if K,
S a quadratic unramified extension of K
3. Qc={o((t,g)) E Hx :t € O, |t| =1, g € Gl,(K) N M(0)} if K is a
quadratic ramified extension of K. | |

Further, let ¥, be the characteristic function of Q2 and let f be the char-
acteristic function of Vo. Then we have

beZo(w, f) = /H w(det(h))Uy(h) dh.  (5.10)
I x

Proof : See the proof of Lemma 4.1 in [2]. B

Lemma 5.1 implies the next proposition.

Proposition 5.2 Let f be the characteristic function of Vg and w = Qw, €

Q(K"). Then
]___?]EW if Kx - K
beZe(w, /) =n(®) § Greitiimmy  if [Ke: K] =2, unramified

=700 if [Ky : K] =2, ramified
where n(w) =1 if @ is trivial on O* and 0 otherwise.

Proof : Equation (5.10) of Lemma 5.1 implies

beZu(w, f) = /,, w(det(h)) dh (5.11)
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If Kx = K, then det(h) = (det(k)tr)3, witht € O, 7 € O*, tu € O.

Integration with respect to dx and d*r gives n(w3). So we wind up with

Let v = tu, then dv = |¢t|du. so we end up with

3
3 w(td t"ld”tdv=——n—(w)—.
T](w )[veo -[EO ( )l I 1 _q—-(3s—1)

Asuume that K is a quadratic unramified extension of K. Then h € €2
can be written in the form h = o((t, g)) = o(rd(t, t1)n(u)a(T)) = o((¢,

i 0
K ( ' ))), with [t] =1 or ¢71, t1,t1u, t,7 € O, and & € Gl5(0). Thus

tl'u, tlT
det(h) = (det(k)tt?T)3. As before, integration with respect to dk is n(w?®) and

integration with respect to d*t is equal to
/ W3(t)d't = / W(t) &t + A(t) d°t = (1 + q~*)n(w?).
o lej=1 ftl=q~!

So we get

/ w(det(h)) dh = n(w®)(1 +q~%) / / / (1) dud rd"t,.
Qs ' 6, €0 Jt17€0 J tueO

Let ¢, = ¢,7 and v = t,u, then d*t, = d*t, and dv = [t;|du. So the last integral
becomes

n(w®) (1 + q~ %) / / w? (tl)ws(tg) [t1] 7! dvd*tod*ty
t1€0 Jt2€0 JveO

_ ) +q7)
(1—qG-D)(1—-q3%)

When K is a quadratic ramified extension of K, we will get the same result
as in the unramified case except that the quantity (1 + q7%) will disappear
because in this case we have [t|] =1 for h = o((¢,9)) € Qx. B

Next we proceed to compute bx. Recall that K = Go- By the normalization

of the measures, we get for h € o(K)

/ dh=// j/ drd*tdud*t = 1.
o(K) xJo*JoJo* »
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On the other hand, we also have

1= / dh = by | / d. K d"h".
e(K) o(K)(H)x /(HR)k J o(K)N(HE )

Since o(K) N (Hg)k = (HZ)o, then integration with respect to dih” is 1 by
normalization. So the last integral becomes

dz
1=b, d.K =b / __ar
()N HD K /(HDK * Jogyx |P(z)[372

But for z € o(K) - x, we have |P(z)| = |P(e(x) - x)| = |(det(x))*3P(x)| =

|P(x)|. So we end up with
_ 1P(x)P2

Joryx 92
Equipped with this formula, we obtain the following proposition.

b (5.12)

Proposition 5.3 Let q be the cardinality of the residue field of K. Then

by = (1—_;"7[?- if [Ky : K] = 2, unramified
2¢ /2 if [Ky : K] =2, ramified, q # 2.

(1—q~1)2(+¢1)
Proof : Let 7 be a uniformizer of K. Assume K, = K. By our choice of an
orbital representative, x = uv. Define the set D, = {z € Vi : Fz(u,v) = wv
mod 7}. We state some properties of Dy. If £ € Dy, then clearly z € Vg. For
T = (T1,Z2,Z3) € Dy, 23 — 47123 =1 mod 7. By the ultrametric inequality,
|z3 —4z;z3| = 1, and hence |P(z)| = |P(x)| = 1. Also Hensel’s Lemma implies
that all forms in D, split. Further, D, C ¢(K) - x. To prove this, note that
if z € Dy, then z is Hk-equivalent to x. So there exists h € Hk such that
z=h-x€ Hxk -x = Vx. Since z € Vo, then z = h-x € (Vx)o. But
by Lemma 5.1 (its proof), € - x = (Vx)o. So we may assume h € €, i.e,
h = o(kd(t,1)n(u)a(r)) with t € O, 7 € O*, and tu € O. From the identity
P(h - x) = (det(h))?/3P(x), we deduce that ¢t € O*, and hence u € O. Thus
h € o(K). So this shows Dy C o(K)-x. Also it is clear that if k) = Kk, mod 7,
then g(k;) - Dx = o(k32) - Dx.
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Now to compute by, let 9(Ko/x0) act on Dx. The order of o(Ko/x0)
is (@ — 1)(q> — 1)(q?> — q). The stabilizer group of the form x = uw, by

t1 O :
Section 2.2, consists of elements of the forms o(((t1t2) 71, ( 01 ))) and
t2

0 ¢

o({tita) 7L, ( )), so its order is 2(q‘— 1)2. The orbit of x, o(Ko/~0) - X,
2

thus has order 1(@. This in turn implies that o(K) - x consists of 91‘1:;_—11
disjoint copies of Dy. Since Dy = (0, 1, 0) + (7wO)3, then the measure of Dy is
the same as that of (1O)3, which is q~3. Applying formula (5.12), we get the
value of b, stated in the proposition.

Next assume that K, is a quadratic unramified extension of K. By the
choice of an orbital representative, x = (u+6v)(u+6'v). As in the above case,
let o(Ko/ro) act on Dy = {z € Vk : Fz(u,v) = (u+6v)(u+6'v) mod 7}. The
stabilizer group of the form (u + 6v)(u + 6'v) can he described, by Section 2.2,
as consisting of matrices that act on (u + 0v) by multiplication by an element
of Ox/mOy or by multiplication by an element of O, /7Oy followed by Galois
conjugation. Thus its order is 2(q*> — 1). This implies that ¢(K) - x consists
of Qq_l)g‘z:;f)l()gz—l) disjoint copies of Dy. Since the measure of Dy is q~3 and
|P(x)| =1, formula (5.12) again gives the value of by in this case.

Finally, we consider the case when K, is a quadratic ramified extension
of K. Since q # 2", there are exactly two ramified extensions K, and K,,
of K. Let D2 = {z = (z1,22,23) € Vk : 2, € 0%, 22 =0 mod m, z3 =0
mod 7, but z3 0 mod w2}. It follows that D; o C o(K) - x; U o(K) - x2. As
above, let 9(Ko/x0) act on D, 2. The stabilizer group of the set D, consists.

b
of those k such that k = (&, ( (C)l 4 )) mod 7. Thus o(K) - x; U o(K) - x

consists of (q—-l)ggi—];!)ng—l) disjoint copies of D, 2. Since the measure of D, ; is
1-—qYqgHqt- qu) and |P(x)| = q~1, then using formula (5.12), bearing

in mind that we have two ramified extensions, gives the value of by in this

case. B
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Combining Proposition 5.2 and Proposition 5.3 gives the following theorem.

Theorem 5.1 Let f be the characteristic function of Vp and w = wws €

Q(K*). Then
Ty fK. =K
Z(w, f) = n(w®) 2(1(23;:))(21(2'_‘.':_)”) if [Ky : K] = 2, unramified
(1—g_)*(+q) if [Ky : K] =2, ramified, ¢ # 2"

2¢71/2(1—q73)(1—g~¥s71)

where n(w) =1 if & is trivial on O* and 0 otherwise.
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CHAPTER 6

A MEAM VALUE THEOREM
FOR CLASS NUMBERS OF
QUADRATIC EXTENSIONS
OF FUNCTION FIELDS

6.1 Constructing Dirichlet Series

We continue our work to obtain a mean value theorem for class numbers
of quadratic extensions of the function field K. After studying the adelic zeta
function Z(w, f) and the accompanying local orbital zeta functions Z;(w,, fy)
and Z;(wy, f,), our next objective is to construct Dirichlet series that will
eventually yield the mean value theorem we are after. This will be done by
putting together the global and local information we obtained in the last two

chapters.
Recall the decomposition of Z(w, f) we obtained in Section 5.1:

Zw =g X cw@ [ oa@)FE-Ddn, 61

zeHx\VK Hg A
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where

u(z) = / i 62)
(H2)A/(H2) K

d.h' and d?h” are Haar measures on Hp /(H2)a and (H2)a /(HZ)k respectively,
and ¢, is a constant given by dh = c.d_ h'd’h". We will first choose the
measures d_h’' and d’h"” suitably so that ¢, will have the same value for all
T € Hg\VE. | |
Let du and d*t be respectively the additive and multiplicative Haar mea-
sures on A and A* normalized as in Chapter 4. Let du, and d*t, be respectively
the Haar measures on K, and K normalized as in Chapter 5. The relations

between the adelic and local measures are given by, see [26],

du=q"8 [] du, dt=px [[ ot

veM(K) vEM(K)

where pg = ';"_"1‘ and hg g is the divisor class number of K.
In Chapter 4, the adelic measure dh on H, is given by dh = ded*tdud*r.
While in Chapter 5, the local measure dh, on H, is given by dh, = dk,d*t,du,

d*ry. Since ds =[]

veM(k) kv, the above relations between the adelic and local

measures yield

dh = q' 5px% [ dho.
veM(K)

Next we define d.h’' and djh" for z € V§. Suppose z € V¥. Let x =
(xv)vem(k) be the standard Ha-orbital representative of z, i.e,' for every v €
M(K), x, is a standard representative of the orbit Hg, -z as chosen in Section
5.2. Stated differently, (K,): = (K,)x, for every v € M(K). This implies
z = h - x for some h = (h,) € Ha and hence (H.)k, = h,HZ h;*' for evei'y
v € M(K). Because of the last relation, we define the measure d7h; on (H2)k,
to be the measure dy_h; on (Hy )k, as defined in Section 5.2. Recall also that
in Section 5.2 we defined the measure d; h, on Hg,/(H; )k, by using the
double cover map. The relation between the measure dh, on Hg, and the
measures d/_h!, and d” h? is dh, = by,d. hid" h". Now we define d_.h’ and
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d’h” by setting
dii = ] bed b, din'= [ dr
vEM(K) veEM(K)
Combining all the measure relations gives dh = ¢~ 8p?d.h'd"h", and hence
¢z = ¢*78py? for all z € Hx\V{. Thus equation (6.1) becomes
2w, N=30"%% 3 wo) [ wlet®@)fE 5 LK. (63
2 HA/(H2)
[Kz:K]=2 A z/A
For the measure dzh' = [T earex) be,di b and for f = [T ear(i) for the
integral in (6.3) decomposes into the product '
II o[ wo(det(R)) fulh - 2) d b = [ besZalwsns £2) (64)
vEM(K) Hre, [(HZ) Ko veM(K)

where w, is the restriction of w to K,. Also by equation (5.9), we have

Zz(wm fv) = w,,(P(x))‘3/2Z,(w,,, fv)

= wy(P(z)) ™/ 2y, (wn, fo) (6.5)
= (L)Y Ze,(ws, fu)-

w(P())

Since P(z) € K*, [Tearcry «»(P(2)) =w(P(@)) = L. Also [Tearc) @o(P(x.))
= w(Dk, k), where Dg, /k is the relative discriminant of the field extension
K, over K, viewed as an idele. This is because the standard local orbital
representative x, is chosen so that P(x,) is the local discriminant of the field
extension (K;), over K,. For more information about the idelic discriminant,
see [8]. So we wind up with |

Z(w, f) = %ql—gp§2 Z l‘(x)“"(DKz/K)a/2 H by, Zx, Wy, fu).  (6.6)

[Kz:K]=2 veM(K) ‘

Before we continue our analysis, we introduce some notations. Let X, C
Vi, be a set of standard representatives of all the Hg, -orbits in Vk, - Since K,
is a local field, X, is a finite set. Let S C M(K) be a finite set. Set

Xs =[] %
vES

Then X5 is also a finite set. The elements of Xs are standard representatives
of all the Hg-orbits in Vg where Hs = [],.s Hk, and Vg = [],cs Vi, -
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Notation 6.1 Let z € Vi and xs = (Xy)ves € Xs. We say x is Hg-equivalent
to xg, written '

T ~ X,
if T is Hg,-equivalent to x, for everyv € S.

We next describe what the notation r ~ xg tells us about K.. Let
v € M(K). How v extends to an absolute value on K, depends on how
the polynomial F;(u, 1) factors over K,. Since K is a quadratic extension of
K, v will yield two or one absolute value on K. This is usually expressed

using tensor products as

Ku ®K K g (Kz)wl @ (Kz)‘wz’ or Kv ®K K g (Kx)w

where [(K;)w, : K,] = 1 for i = 1,2 and [(K;)w : K;] = 2. So in the first
case, w; and w, are the extensions of v to K,; and m the second case, w is the
extension of v to K.

Now the notation z ~ x, tells us how v € M(K) extends to K. Suppose
X, = uv. Since z ~ x,, then F(u,1) factors over K, and hence K, ®x K, =
(Kz)w, @ (Kz)w, = K, & K,. On the other hand, if x, = (u+60v)(u+60'v), then
T ~ X, implies that F(u, 1) does not factor over K, and hence K, @ K, =
(Kz)w with [(K;)w : Ky] = 2. In addition, x, determines whether (K3), is a
quadratic ramified or a quadratic unramified extension of K,.

So in general, the notation = ~ xg tells us how each v € S C M(K) extends
to K. In this situation we also say that xs is an S-signature of K, over K.

It is worth mentioning at this point that since the characteristic of K is
not 2, then there are exactly three quadratic extensions of K,; one unramified
and two ramified. In our analysis we distinguish between these two quadratic
ramified extensions. So this implies that the cardinality of X, defined above,
is 4.

From now on, let S be a fixed finite subset of M(K). We shall parti-

tion the elements in the orbit space Hx\Vy according to their Hg-orbits, or
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equivalently, according to their S-signatures. For xg = (x,)ses € Xg, set
Zy Wls, fls) = [ ] bx. 2, (w5, £2) (6.7)
vES

where w, is once again the restriction of w to K, w|s = [[,cswy, and f|s =

Il.cs fo- Then we can rewrite (6.6) as

Z(w,f) = —ql-sp 3" > n@)w(Drsx) Zes (wls, fls) [] bx, Zx, (wor £o)-

xs€Xs T~xs v¢S
(6.8)
Define 7, s by setting
Me,5(@) = [ [ bxo Zx, (@, fo)- (6.9)
vgS

If we choose S sﬁitably, we can evaluate 7. ¢ explicitly. For this, suppose
S is also chosen in such a way that w is unramified outside of S, i.e, w, is
trivial on O} and hence w, = @,w,, = w,, for every v ¢ S, and that f, is the

characteristic function of Vp, for every v ¢ S. Then Proposition 5.2 yields
Li,s(w_1w®) Lk s(w?)

nx,S(w) = LKz,S(ws) (6-10)
where
Lgsw) =[[-g¢*)
vgS
and
Lk, s(w) = II (1—g;™)™"
“GM(Kz)r“luvuis
are the truncated Hecke L-series of K and K, respectively.
Set
&xs(w) = Y. u@w(Dk./k) as(w). (6.11)

[Kz:K]=2,z~xs
This is the Dirichlet series that will eventually yield the mean va.lue theorem

we are after. With all of these notations, we end up with

Z(w, f) = —ql-sp N" Zeo(wls, fls)bxs (W) (6.12)

xs€Xs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

To get some analytic information about & (w) that is enough for our pur-
poses, we have to specialize f in (6.12). We already know that f =], M(K) fu
has the property that f, is the characteristic function of V, for every v ¢ S.
If we further choose f so that f|s = [],cs fv has compact support in Vg =
[I,es Vi, then by Proposition 5.1, Z, (wls, f|s) becomes an entire function
of w. Further, we can choose fls so that its support lies in the Hg-orbit
of only one xs = (Xy)ves, i-€, for every v € S,v'f,, has support in the orbit
Vi, = Hk, - x,; for instance, we can take f,(z,) = @, (P(z,)) . (characteristic
function of o(XC,)-x,). Then Z,, (wy, f») is independent of s. So with this choice
of f, only one Zy(w|s, f|s) is nonzero and independent of s. So (6.12) reduces

to ‘ ‘
Z(, f) = 50807 By (wls, Fls s (). (6.13)

With all of this at hand, we get the following proposition.

Proposition 6.1 Let S and f be as described above. Then (6.13) tmplies the
Sfollowing:

1. & (w) is an analytic function of w in the region R(w) > 1. It can be
continued to a meromorphic function analytic everywhere ezcept for simple

poles at w =@w,, @* =1, s=1+ 521%;%, and double poles at w with &3 =1,

s =%+ 72 and at the poles of T3 (ww_1,0, f).

2. For xs = (Xy)ves, we have

P(x,)[3?
Ress:lfxs (ws) = O’Kp%{ H L'(%'V_N_
Xy

veES

where
= 49" "8k (2) '
3(log q) Res,(k
Proof : Since Z(w, f) is analytic in the region R(w) > 1, then so is & (w)
by (6.13) and the choice of f given above. Also, by the choice of f, it follows
that Z(w, f) and &(w) have the same poles. Since f was chosen so that its.
support lies in V3, then the poles of Z(w, f) at s = 0 + F=~ will disappear.
Also, for v € S, f, has support in Vi . This will imply that £;(w, f) = 0
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and hence R(f) = [(f) = 0. Thus the poles of Z(w, f) at s = § + Foe also
disappear. For the poles of &5 (w3w_1,0, f), we point out that since for v € S,
support of £, is in KC, - X,, then X5 (w3w_;, 0, f) = 0 unless each x,, v € S, has
the property that (K,)x, = K,,.‘ In the latter case the poles can be found from
the expression of Lemma 4.7(2). | |

As for the second part, it will follow from (6.13) once we calculate the
residue Res,—; Z(ws, f)- By Theorem 4.1, it is easy to show that Ress—1Z(ws, f)

= qlffggj = 3{(52)‘]. So we need to calculate f (0). Note that

jo) = [ fwas=ge ] [ fulzy) da,

veEM(K)

where dz = dz,dz,dz3 is the measure on V chosen in Chapter 4 and dz, =
dz) ,dzs,dzs3, is the measure on Vi, chosen in Chapter 5. If v ¢ S, then f,
is the characteristic function of Vp, and hence fov fv(zy) dz, = 1 by normal-
ization of the measure dz,. So suppose v € S. Recall that in this case f was
chosen so that f, has compact support in Vg, (see the discussion before the

statement of this proposition.) Also Vg, = Ux.,ex., Hg, - x,. Thus we get

F0) = [Les(Trex, 2 (wi, )
= q3—3g H-ues(z:xvexu be Zx,, (wh fv))

= q3 38 sz—(xu)ues Hves Mz (wll.S" .flS)

Now since f was chosen so that f|s has support in the Hg-orbit of only one
Xg, then the above sum reduces to only one term corresponding to the xg in
(6.13). Taking w = w, in (6.13) and taking the residue of both sides at s = 1
yield the result. I

We close this section by calculating u(z). Let hg x, be the divisor class

number of K. Then we have the following proposition.

Proposition 6.2

‘ 2ho,k,
( ) hO

¥

Proof : Recall that

ua) = [ 2"
(H2)A/(H2)K
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where the measure dh” is as given at the begining of this section. (H2)a =

t O
(G2)a/(Ty)a where T, = {(t72, ( 0 ))} Let d*t be a Haar measure on

(Tg)a- Define an invariant measure dg"” on (G2)a by setting dg” = d”h"d*t.

Let (GQ)A ={9" = (t,9) € (G2)a : |det(g)|a = 1}. Then every element of
(G3)a is Tp-equivalent to an element of (G2)} L] 9(G2)4 for some g € (G2)a

satisfying |det(g)|a = q. Then (H;)a = (G3)4/(To)a LU9(G2)A/(Te)a- Define
an invariant measure dLg” on (G2)} by setting dlg” = d”h"d't. Then we get

— i 3

2 feoyisenn 9" = Janyarazye T Sy jim e Ot
= p(z) fAI/K. d't (6.14)
= p(z).

Since G3(K) = Rk, /k(Kz) = Gl (K;), by Proposition 2.2, then (G2)x =

K; and (G3)A = Ak, where A% _isthe idele group of K;. Thus (G2)A/(G2)k =
A%k./K;. Next we compare the measure d*t; on A%, with the measure d7g”
on (G7)a-

Since by our choice d;h” = [,c k) %, Py, then dig” -qi ver(k) 9o, hyd*t,
and d*t, = ﬁ vemk.) 4" (tz)s. We show dy hyd*t, = d (tz)y for every
v € M(K). |

Recall the map ¢ : G3(K) — Gl (K;) given by ¢(9) = a + bf for g =

*x Xk
~7G2(K)~y~t. Similarly, consider the map ¢' : G3,(K) — GI;(K) given by
! bl
#'(¢') = a’ +b'0 for g’ = (*, ( ¢ )) € G (K). As ¢’ = vg7™", an easy
' *x %k

computation shows ¢'(¢’) = ¢(g). Thus it is enough to consider the map ¢

b
(*, ( ¢ )) € G3(K). Suppose z' = v -z for some v € Gg. Then G (K) =

with z a standard orbital representative.
If K,®k K, = K, & K,, then d*(t;), = d*t;d*t, where d*t; is a Haar mea-
sure on K. In this case the orbital representative is x, = uv and G} (K,,) =

{((trt2) 7, ( t01 (:

dy g, = d*td*t;. Soin thls case we have d; hjd*t, = d*(t;),.

) t1,t € K:}. The measure on Gy, (Ky) is dy hyd*t, =
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If K, ®x K, = (K;)y, with [(K;)y : K,] = 2, then let d*(¢;), be the
Haar measure on (K); normalized so that f(o,); d*(tz), = 1. In this case to
show d; h;d*t, = d*(tz)», we use the local map ¢, : Go(K,) — Gl((Kz)v)
and find the measure of (O.); with respect to d*(t;), and the measure of

#;1((0z);) with respect to df hid*t, = dy g,. Since ¢;1((0:);) = (G2)o.,
2(8;1((0:);)) = (H)o, and (Tp)k, N 6;1((02);) = (Tp)o, = O;, then

/ / dy by d‘ ty, =1.
G;)Ou 2)

So in this case again we have dﬁuhﬁd‘t,, = d‘(tz),,. Thus we conclude that
dg" = ';f(;—";d‘t,. Now with (6.14), we get

u(z) =2 / dtg" - 2ho.k. / d't, = 2h0,K,.
GOR/GCK hox Jay_sk: ho,x

This completes the proof. B

6.2 The Mean Value Theorem

Now we have all the necessary tools that will enable us to obtain the mean
value theorem we are after. Let D, denote the absolute norm of the relative
discriminant Dg,/x of K, over K. Then D; is a positive integer. In fact D,
is a square. To see this, let, as in Section 6.1, x = (x,)yem(k) be the standard
H -orbital representative of z. Then z = h-xfor some h = (h,) € Hy;ie, z =
hy-x, for every v. Write h, = 0(gy). Then P(z) = x(g,)*P(x,). This gives 1 =
HveM(K) |P(z)|y = HueM(K) Ix(gv)3 HveM(K) |P(xo)|y = HveM(K) Ix(9v)[2 -
DZ*'. Thus D, = nueM(K) Ix(g0)12-

If w = wy, then wy(Dk, k) = D7*. So if we let w = w, in &, (w), then we
get the following altered Dirichlet series

§.() =8 = Y Ty (o) (6.15)

[Kz:K]=2,2~xs D:r:

where ‘
CK,S(3S - 1)(1(5(38)2 )

CK,,S (3s)

Nz,S (s) =
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Note that & _(s) = "‘”‘ —%—¢xs(s). By Proposition 6.1, &_(s) is analytic in the

region R(s) > 1 and has a simple pole at s = 1 with residue

R, = oxch I—I[P(x,,)l ‘ (6.16)

where ok is as given in Proposition 6.1.

Next we define a sequence of Dirichlet series. Let 77 C T2 CT3--- bean
increasing sequence of finite subsets of M(K) such that S C T; for allz > 1
and lim; ,o, T; = M(K). Similar to the definition of xg = (Xy)ves, define
Y1, = (Yy)ver; for each i > 1. We say yr. restricts to xs and write y.|s = xs
ify,=x,foreveryv€S. | |

For each 7 > 1, define the sequence of Dirichlet series

Gr(s)= D &.(s) | (6.17)

yr;ls=xs

or equivalently,

gone= 3 Ky () (6.18)

[K:z:K]=2,z~xs D2

where once again
Mo (S) — CK,T;'(3S — 1)([{)}';(33)2
o (k.1 (33) '

As & 1.(s) is a finite sum of Dirichlet series £ (s), then again by Proposition
6.1, &, 1.(s) is analytic in the region R(s) > 1 and it has a simple pole at

s = 1 with residue

= [Py
z:)'1;-l.<>'=x.<>' RyT; - ZYT‘-IS='XS R"S HveT.-\S by,

PGy, )3

= Lixg Z(Yu)ue'l' \S ]»-Iv-’:'T;\.S’s/2 by,
P
= Rx HvGT;\S Z &"L'

where the last sum is over all elements of Y, (Y, is the analogue of X,, see
the paragraph before Notation 6.1). Y, consists of 4 representatives: one for
split case, one for unramified quadratic, two for ramified quadratic extensions
of K,. These representatives satisfy |P(y,)|v = 1, ‘1,‘ g;’! respectively. So by
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Proposition 5.3, we get

Thus the residue of &£_ 1.(s) at s = 1 is given by
Rest =Ree ] O —% -a* + . (6.19)
veT:\S

This will imlpy the following proposition.

Proposition 6.3 The following limit exists:
Lim Rys 7, = Ry := Ry g(l -4 -4 + ).

Moreover, Ry, # 0.

Proof : Since 0 < 1 — ¢;%2 — ¢;3 + ¢;* < 1, then the sequence of residues
{R«; 1.}, is a decreasing sequence of positive real numbers and hence it
converges. The result now follows since lim;_,,, 7; = M(K). B

Next we give some properties of the weighting factors 7, 1:(s) of the Dirich-
let series £ 1.(s). Recall that

_ Ckx:(3s — 1)Ck 1 (39)?
nx,Ti(S) - CK,,T;(33)

where (x1:(s) = [Togr.(1 — ;)" is the truncated Dedekind zeta function of

K. Because of the nature of the geometric series (1 — ¢;°)™! = Y 1oy g,
nz1:(8) is itself a Dirichlet series which we shall write as
o0
Qn (sz 111)
1. (8) = — 2 .20
negi(s) =D = (6.20)

n=1

We gather some of its properties in the following proposition.

Proposition 6.4 1. 1, 1.(s) converges absolutely and locally uniformly in the
region R(s) > -§- Moreover, it is nonzero in that region.

2. For eachn > 1, a,(K;,T;) is a nonnegative integer and a,(K,,T;) = 1.
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3. For any integer N > 1, we can choose the set T; with i sufficiently large
so that a,(K;,T;) = 0 for all 1 < n < N. In particular, this implies that

lim; o0 Nz,T; (1) =1.
4. Let T c M(K) be a finite subset such that T; C T. Then for all n,

(s, T) < 0n(K, T2).

- 2 :
5. Let np,(s) = m@oenGs) gm0 anlKT) Then for all n,

CK,T" (63) ns

an (K, T;) < an(K, T).

Proof : (1) follows from the fact that the Dedekind zeta function (x(s) =
[Loerx)(1 —g,°) ™" converges absolutely and locally uniformly in the region
R(s) > 1 and it is nonzero in this region. For (2), note that
(1 —g;3%)? if v splits in K,
Nz1:(8) = H(1-917(3’—1))_1(1—%_3’)—2' (1 — ¢;%%) if v is unramified in K,
vEl: (1 —¢;3%) if v is ramified in K,

Because of the nature of the geometric series (1 — ¢;%)™! = 3 _p0, 5%, if we
write each factor of the above product as a Dirichlet series Yoo ; cagy 3", then
co = 1 and ¢, is a nonnegative integer for each n > 1. Now (2) follows. For
(3), note that if T; is very large, then we will truncate many factors of (x(s) =
[Toerrxy(1 — ;%) " and hence many of the coefficients of the corresponding
Dirichlet series become zeros. (4) follows from (2) and the fact that 7, 1(s)
has more factors truncated. For (5), note that
m(s) = [J (1 — @ )7 (1 — ;%) 2(1 — ¢;%).
vgT:
For each v, looking at each v—factor of 7z,1:(s) and 7r; (s) as a Dirichlet series,
it is clear to see that the coefficients of the Dirichlet series of the v—factor of
nz1, () are less or equal to the corresponding coefficients of the Dirichlet series
of the corresponding v—factor of nr,(s). This implies (5). @
Now we go back to &;_ r.(s). With (6.18) and (6.20), we may write

Gom() =Y 2 | (6:21)

n=1
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where
B(n) = > ho k. am (K, T)- (6.22)
[Kz:K]=2,z~xsmDE=n
Throughout the remainder of this section, we will drop the condition [K; :
K] =2 in (6.22) as it is clear from the context.

Proposition 6.5 We have

n
lim B(qn )

n—oo @3

= 3logq - R, 1;

Proof : By the definition of & .(s) and Theorem 4.1, it follows that &_ 1.(s)
is a rational function in ¢~3°. Thus we may write its partial fraction decom-

position:

* 3logg-Rx
n(e) = 25 4 T, et
=3 nt03logq - Res g g~ + 30, mi( 20 Pi(n)g™i g ™)
where the sum over j is finite, r; are reals, s; are rationals less than 1, m; is
the multiplicity of the pole at s;, and p;(n) is a polynomial in n. Comparing

the coefficient of ¢~3*" in the above expression with that of (6.21), we get
B(q3n) = 3loggq- RXS’T‘_q3n + E rjpj(‘n)qs.sjn_
J

Since s; < 1 for all j, the result follows. B
With Proposition 6.5 at hand, we now get the main theorem of this chapter.

Theorem 6.1 We have

1
lim — Z ho,x, = 3logq - Ry

n—oo q3"
3_
z~xs,DE=¢3"

where Ry is as given in Proposition 6.3.

Proof : Since Y ho k. < B(¢*"), then Proposition 6.5 implies

XS ,Dz3 =¢3"

. 1 :
lunsupqﬁ Z ho.x, < 3logq - Rxs1:-
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Letting ¢« — oo, Proposition 6.3 yields

_ 1
lim sup = Z ho.k. < 3logq - Rxs (6.23)
z~xs,Df =g3"

We note also that (6.23) implies that there exists a real number M > 0 such

that
> hok. Mg for alln>1 (6.24)
zxs,DE =gn
Set
Cn)= Y  hok.om(K,T)

:z:~xs,mD§=n
where a,,(K,T;) is as defined in Proposition 6.4(5). Since, by Proposition
6.4(5), am (K2, T3) < am(K, T;), we get

B(n) < C(n) (6.25)
for all n > 1. Note that
3n _ ]
C(g™) = Zz~xs, p¥—gon ho,x. + Zz~xg,m0§=qau,m22 ho, k. am (K, T;)
o0
= T~Xs 7D§ =g3n hO,K, +'Zm=2 Gm (K, Tt)(zzrvxs,Dz =’:|.-n hO,Kz)
< hok, + 3 s am(K, T )M -"-:ll

TrXs ,ng =¢3n

XS Dg=q3n hO,K, + qun (1711 (1) - 1)

where we have used (6.24) and Proposition 6.4(2,5). Thus by (6.25), we get

B(g®*" 1
% - M(m(1) 1) < Py Z ho.k. -

z~xs,DE =q37

Taking lim inf of both sides yields

o1
3logq- Res. — M(nr(1) —1) <liminf— Y~ hox.-

n—oo ¢3n
2~XS,D§= ™

By letting 7 — oo, Proposition 6.3 and Proposition 6.4(3) imply

1
3logg- Rys <liminf— D hox.. (6.26)

z"’xSyDzi =q3n
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Now (6.23) and (6.26) give the theorem. B

Next we translate Theorem 6.1 into a mean value theorem for ideal class
numbers of the quadratic extensions K of K. For this we first need to mention
some standard notations.

Let L be a finite separable extension of F,(T). Let‘OL be the integral
closure of F,[T] in L. Let hj denote the ideal class number of O. Let
M(L) be the set of all places of L. Denote by Py, the finite subset of M(L)
consisting of all infinite places. Here we call a place of L infinite if it is an
extension of the infinite place % of Fy(T). Let D(L) be the divisor group of L:
the free abelian group generated by the elements of M(L). A typical element

of D(L) is given by
D= Z NyU

veM(L)
where n, € Z and n, = 0 for all but finitely many v. The degree of such a
divisor is defined by

deg(D) = Y _ nydeg(v)
veM(L)

where deg(v) is given by ¢%9®) = ¢,. Let D°(L) be the subgroup of D(L)
consisting of divisors of degree zero. For f € L, define the divisor of f by

div(f) = ) ordy(f)o.

veM(L)

div(L) = {div(f) : f € L} is called the group of principal divisors of L. It is
a subgroup of D%(L). Let D(Px L) be the free abelian group generated by the
elements of Py, . Then D(Py,) C D(L). Set D°(Py 1) = D(Peo,r) N D(L)
and div(Py ) = D(Peo,) N div(L). Then we have

ho,r = |D°(L)/div(L)|
and the regulator r; of L is given by

r = [D°(Poo.1)/div(Pro.)|.
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Finally define the integer ny = g.c.d(deg(v) : v € Py ). Then we have the

following formula:
horng =hrrr. (6.27)

This formula is due to K. F. Schmidt (see[16]).
Applying formula (6.27) with L = K, Theorem 6.1 can be written in the

following form.

Theorem 6.2 We have

1 TK:
lim — Z hK‘n =3logq- Ry

n—soo 3" -~

XS, § =¢3"

where Ry is as given in Proposition 6.3.
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